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ABSTRACT 

 

 

 

 

This research is about generating models of injection moulding processing conditions, 

towards quality performance of polypropylene-nanoclay integral hinges, exposed to 

high heat temperature. The assessment of hinges’ quality performance analyses was 

translated as the signal to noise ratio values for ultimate tensile strength, shrinkage and 

warpage. This research had adopted Taguchi Optimisation Method, to optimise the 

processing conditions, to generate the regression models and to construct master 

curves for quality performance prediction based on nanoclay content. According to the 

results, 18 regression models have been successfully generated. 3 types of master 

curves have been constructed based on the produced models with the specific nanoclay 

content.  Additionally, the quality performance of the integral hinges was extended to 

high heat exposures, and the additional of nanoclay had produced a significant 

advancement in the injected mould samples. Validation test has been carried out 

towards the regression model with most of the models have produced good predictions 

of quality performances. The novelty of this research is the correlations between the 

optimum injection moulding processing conditions with the precise range of 

shrinkage, warpage and ultimate tensile strength. The correlations were simplified in 

the form of regression models and master curves. These models and master curves 

were recommended as references and a prediction method, specifically for 

polypropylene-nanoclay integral hinges manufacturing and design process. These 

findings will lead to wider and optimum applications of thin layer parts and 

components such as packaging products; as well as other manufacturing field such as 

artificial human parts development and building appliances. 
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ABSTRAK 

 

 

 

 

Kajian ini adalah mengenai penjanaan model keadaan pemprosesan bagi proses acuan 

suntikan; terhadap prestasi kualiti engsel bersepadu polipropelina-tanah liat nano yang 

terdedah pada suhu tinggi.Penilaian analisis prestasi kualiti ini diterjemahkan melalui 

nilai-nilai nisbah isyarat terhadap hingar bagi kekuatan tegangan muktamad, 

pengecutan dan perlengkungan. Kajian ini telah mengguna pakai Kaedah 

Pengoptimuman Taguchi, untuk mengoptimumkan keadaan pemprosesan, untuk 

menjana model regresi dan untuk membangunkan keluk induk bagi prestasi kualiti 

berdasarkan kandungan tanah liat nano. Berdasarkan kepada keputusan yang 

diperolehi, 18 model regresi telah dijana. 3 jenis keluk induk telah dibangunkan 

berdasarkan model yang dihasilkan, mengikut kandungan tanah liat nano yang khusus. 

Sebagai tambahan, prestasi kualiti engsel bersepadu ini diperluaskan kepada 

pendedahan terhadap suhu yang tinggi, dengan penambahan tanah liat nano yang 

mampu menghasilkan kemajuan nilai terhadap sampel acuan suntikan. Ujian 

pengesahan telah dijalankan ke atas model regresi dan kebanyakan model 

menghasilkan ramalan prestasi kualiti yang baik. Keunikan penyelidikan ini adalah 

korelasi antara keadaan pemprosesan acuan suntikan yang optimum dengan julat nilai 

yang jitu bagi pengecutan, perlengkungan  dan kekuatan tegangan muktamad. Kolerasi 

ini telah diterjemahkan dalam bentuk model regresi dan keluk induk, yang mana hasil 

dapatan ini sangat dicadangkan sebagai rujukan dan kaedah ramalan, khusus untuk 

proses pembuatan dan rekabentuk engsel bersepadu dari polipropelina-tanah liat nano. 

Penemuan ini akan membawa kepada aplikasi yang lebih luas dan optimum bagi 

pembuatan bahagian-bahagian dan komponen berlapisan nipis, seperti produk 

pembungkusan dan juga bidang pembuatan lain seperti pembangunan anggota tiruan 

manusia dan peralatan pembinaan. 

 

 

PTTA
PERP

UST
AKA
AN 
TUN
KU T

UN 
AMI
NAH



vii 

 

 

 

 

 

CONTENTS 

 

 

 

 

                           TITLE                                                                                               i 

     DECLARATION                                                                             ii 

                           DEDICATION                                                                                iii 

                           ACKNOWLEDGEMENT iv 

                           ABSTRACT v 

                           LIST OF TABLES x 

                           LIST OF FIGURES xii 

                           LIST OF SYMBOLS AND ABBREVIATIONS xiv 

                           LIST OF APPENDICES xvii 

CHAPTER 1     INTRODUCTION 1 

                            1. 1     Background study 1 

                            1. 2     Problem statement 2 

                            1. 3     Objectives 3 

                            1. 4     Scope of study 3 

                            1. 5     Expected result 4 

CHAPTER 2     LITERATURE REVIEW 5 

2. 1      Introduction 5 

            2.1.1     Injection moulding processing conditions 5 

            2.1.2      Mould for injection moulding 6 

            2.1.3     Simulation in injection moulding 8 

2.1.4     The effect of processing conditions 11 

2.1.5     Optimisation method 14 

2. 2     Polypropylene- nanoclay nanocomposites 19 

2.2.1     Micro mechanism, structure, morphology  

                                                     and properties.                                                  20 

2.2.2     Preparation methods 23 

PTTA
PERP

UST
AKA
AN 
TUN
KU T

UN 
AMI
NAH



viii 

 

2.2.3    Clay content and compatibilizers 25 

                            2. 3      Integral hinges design and applications. 30 

2. 4      High heat exposure properties of polypropylene. 34 

                            2. 5       Previous research summary 38 

CHAPTER 3    METHODOLOGY 40 

3. 1     Introduction 40 

3. 2     Development of mould 40 

3.2.1     Runner size 44 

3.2.2     Gate location selection 44 

3.2.3     Fabrication and verification of mould. 45 

                           3. 3     Optimisation of processing condition at high heat  

                                      exposure 48 

3.3.1     Quality performance measurement- Shrinkage, 

                                                  warpage and ultimate tensile strength.              53 

3.3.2     Signal to noise ratio 56 

3.3.3     Best combination of processing condition 58 

                           3. 4     Regression modelling 59 

3.4.1     Regression model for room temperature 63 

3.4.2     Regression model for high temperature  

                                                    exposure                                                              63 

                            3. 5     Master curves construction. 64 

3.5.1     Validation test 65 

CHAPTER 4     RESULT AND DISCUSSION 66 

4. 1     Introduction 66 

4. 2     Development of mould findings 66 

          4.2.1     Runner size result 69 

          4.2.2     Gate location results 71 

          4.2.3     Fabrication and verification of actual mould 75 

4. 3    Optimisation of processing condition at high heat  

          exposure results 79 

          4.3.1     Warpage results 81 

          4.3.2     Shrinkage results 83 

          4.3.3     Ultimate tensile strength results 86 

PTTA
PERP

UST
AKA
AN 
TUN
KU T

UN 
AMI
NAH



ix 

 

          4.3.4     Signal to noise ratio results 90 

          4.3.5     Best combination of processing condition 

                       at room temperature 91 

          4.3.6     Best combination of processing condition  

                       at high temperature 92 

4. 4     Regression modelling results 94 

           4.4.1     Quality performance at room temperature 95 

           4.4.2     Quality performance for high temperature  

                        exposure 96 

4. 5     Master curves findings 97 

           4.5.1.     Validation test results 102 

4. 6     Summary 103 

CHAPTER 5     CONCLUSION AND RECOMMENDATIONS 104 

5.1     Conclusion 104 

5.2     Recommendations 105 

          5.1.1     Mould design and development 105 

          5.1.2     Optimising processing conditions. 106 

          5.1.3     Product and materials 107 

REFERENCES 110 

VITA                                                                                                                         151                  

 

 

 

 

 

 

 

 

 

 

 

 

 

PTTA
PERP

UST
AKA
AN 
TUN
KU T

UN 
AMI
NAH



x 

 

 

 

 

LIST OF TABLES 

 

 

 

 

Table 2.1     A review of simulation in injection moulding processes 9 

Table 2.2     Summary of simulation area of studies and software 10 

Table 2.3     Parameter change versus property effect (Bryce, 1996) 11 

Table 2.4     Certain ranges of condition for polypropylene artefacts 

                    (Bauccio et al., 1994). 12 

Table 2.5     Previous study about the effects of processing condition 13 

Table 2.6     Summary of multiple response optimisations. 19 

Table 2.7     Previous researches about clay and compatibilizers 25 

Table 2.8     Previous research in polypropylene integral hinges  

                    development via injection moulding.      39 

Table 3.1     Initial setup for injection moulding simulation.                                      43 

Table 3.2     Evaluation criteria for mould design.                                                      44 

Table 3.3     Runner size test description.                                                                    44 

Table 3.4     Physical data of AISI D2 (Uddeholm, 2014).                                         47 

Table 3.5     Initial processing condition for actual injection moulding.                     47 

Table 3.6     Factors and levels selection for practical injection moulding.                 48 

Table 3.7      Taguchi L9 (34) Orthogonal Array for practical injection moulding.       49 

Table 3.8     Thermal properties of the Titanpro 6331 polypropylene  

                    (Lotte Chemical Titan (M) Sdn Bhd., 2014).                                          49 

Table 3.9     Properties of the Cloisite -20A  

                     (BYK Additives &Instruments, 2013).                                                    50 

Table 3.10     Formulation of polypropylene-nanoclay nanocomposites.                         51 

Table 4.1      Cavity filling for Test 1                                                                          67 

Table 4.2      Cavity filling for Test 2                                                                          68 

Table 4.3      Result of runner analysis for Test 1                                                        69 

Table 4.4      Result of processing conditions based on each design.                          71 

Table 4.5      Result of warpage and shrinkage based on each mould.                        77 

PTTA
PERP

UST
AKA
AN 
TUN
KU T

UN 
AMI
NAH



xi 

 

Table 4.6      Warpage measurement for 0 wt. % nanoclay specimen                          82 

Table 4.7      Shrinkage measurement for 0 wt. % nanoclay specimen                        85 

Table 4.8      Ultimate tensile strength for 0 wt. % nanoclay specimen                       87 

Table 4.9       Signal to noise ratio for 0 wt. % of nanoclay                                           90 

Table 4.10    Optimum processing condition for room temperature                            92 

Table 4.11    Optimum processing condition for high temperature condition             93 

Table 4.12    The quality performance results at room temperature                            97 

Table 4.13    The quality performance results at 600C exposure.                                99 

Table 4.14    The quality performance results at 700C exposure.                              101 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

PTTA
PERP

UST
AKA
AN 
TUN
KU T

UN 
AMI
NAH



xii 

 

 

 

 

LIST OF FIGURES 

 

 

 

 

Figure 2.1     Single screw injection moulding (Groover, 2007). 6 

Figure 2.2     Schematic diagram of twice direct compounding process:  

                      (a) first direct compounding and  

                      (b) recompounding (Dong & Bhattacharyya, 2008)                          27 

Figure 3.1     Research process flow 41 

Figure 3.2     Research distribution 42 

Figure 3.3     Types of mould design based on runner test and gate location. 45 

Figure 3.4     Design of integral hinges test sample (ISO527-2, 1993). 46 

Figure 3.5     The Brabender Twin Screw Extruder Lab-Compounder  

                      KETSE 20/40         51 

Figure 3.6      Field Emission Microscopy  

                      (FESEM - Model: JEOL JSM 7600F)                                                  52 

Figure 3.7      Injection moulding machines (Nissei NP7-1F, 7 tonne) 53 

Figure 3.8      Mould base for sample preparation 53 

Figure 3.9      Definition symbol for warpage 54 

Figure 3.10    Universal Testing Machine for hinges mechanical  

                       properties analysis        55 

Figure 3.11    High temperature operating range (Caronproducts, 2014) 56 

Figure 3.12    Example of master curve for integral hinges quality performance 64 

Figure 4.1      Volume shrinkage (%) of test samples versus design                          72 

Figure 4.2      Warpage (mm) of test samples versus design                                       72 

Figure 4.3      The air traps results based on design                                                     73 

Figure 4.4      The final design of integral hinges test sample                                     74 

Figure 4.5      Diagram of mould A                                                                             75 

Figure 4.6      Diagram of mould B                                                                             76 

Figure 4.7      Fabricated Mould A and Mould B                                                        76 

Figure 4.8      Warpage results for each mould sample                                               77 

PTTA
PERP

UST
AKA
AN 
TUN
KU T

UN 
AMI
NAH



xiii 

 

Figure 4.9      Shrinkage results for each mould sample                                                78 

Figure 4.10    Material consumption based on each mould design                               79 

Figure 4.11    FESEM image for the pellet with 5 wt. % of nanoclay content.           80 

Figure 4.12    FESEM image for the injected mould hinges with 5 wt. %  

                       of nanoclay content.                                                                             80 

Figure 4.13    The measurement points of thickness, ta                                               81 

Figure 4.14    Warpage measurement results                                                              83 

Figure 4.15    Shrinkage measurement results based on clay content                         85 

Figure 4.16    UTS of integral hinges for 0 wt. % nanoclay                                        88 

Figure 4.17    UTS of integral hinges for 1 wt. % nanoclay                                        88 

Figure 4.18    UTS of integral hinges for 5 wt. % nanoclay                                        89 

Figure 4.19    The example of main effects plot.                                                         91 

Figure 4.20    Regression analysis at room temperature for 0 wt. % nanoclay           95 

Figure 4.21    Regression analysis at 600C for 0 wt. % nanoclay                                96 

Figure 4.22    Regression analysis at 700C for 0 wt. % nanoclay                                96 

Figure 4.23    Master curve for Quality Performance vs Clay  

                       content at room temperature                                                                98 

Figure 4.24    FESEM image for the hinges with 3 wt. % of nanoclay content        100 

Figure 4.25    Master curve for Quality Performance vs Clay content at 600C         100 

Figure 4.26    Master curve for Quality Performance vs Clay content 700C             102 

Figure 4.26    Validation test results                                                                          103 

Figure 5.1      Master curves for integral hinges quality performance                      106 

 

 

 

 

 

 

 

 

 

 

 

 

PTTA
PERP

UST
AKA
AN 
TUN
KU T

UN 
AMI
NAH



xiv 

 

 

 

 

LIST OF SYMBOLS AND ABBREVIATIONS 

 

 

 

 
0C - Degree Celsius 

2D WAXS - Two Dimension Wide Angle X-ray Scattering 

ABS - Acrylonitrile–Butadiene-Styrene 

AFM - Atomic Force Microscopy 

ANN - Artificial Neural Network 

ANOVA - Analysis of Variance 

BP - Back Propagation 

CAD - Computer Aided Design 

CAE - Computer Aided Engineering 

CBR - Case Based Reasoning 

CEC - Cation Exchange Capacity 

CNC - Computer Numerical Control 

DMA - Dynamic Mechanical Analysis 

DSC - Differential Scanning Calorimetry 

EVA - Ethylene Vinyl Acetate 

FEM - Finite Element Method 

FKMP - Faculty of Mechanical and Manufacturing Engineering 

FT - Filling Time 

FTIR - Fourier Transfer Infra Red 

G - Grams 

G’ - Storage Modulus 

GA - Genetic Algorithm 

H - Height 

HDPE - High Density Polyethylene 

HRS - Hot Runner System 

HSC - High Strength Concrete  

iPP - Isotactic Polypropylene 

PTTA
PERP

UST
AKA
AN 
TUN
KU T

UN 
AMI
NAH



xv 

 

L - Length 

Lave - Average Length 

Lc - Length of Actual Mould Cavity 

LRM - Linear Regression Method. 

MD - Machine Direction 

min - Minute 

mm - Millimetre 

MPa - Mega Pascal 

MSD - Mean Squared Deviation 

MT - Melt Temperature 

MWNT - Multi Walled Nano Tubes 

ND - Normal Direction 

o-MMT - Organo-Montmorillonite 

OLS - Ordinary Least Squares 

P-V-T - Pressure-Volume-Temperature 

PC/ABS - Polycarbonate / Acrylonitrile–Butadiene-Styrene 

PCA - Principal Component Analysis 

PP - Packing Pressure 

PP-EP - Polypropylene-Ethylene Propylene 

PP-g-AA - Polypropylene-grafted-Acrylic Acid 

PP-g-MA - Polypropylene –grafted- Maleic Anhydride 

Q1@600C - Quality Performance for the first formulation for the exposure 

condition at 600C 

Q1@700C - Quality Performance for the first formulation for the exposure 

condition at 700C 

Q1@RT - Quality Performance for the first formulation for the exposure 

condition at Room Temperature 

QP - Quality Performance 

R-Sq - Correlation Coefficient 

R-Sq (adj) - Correlation Coefficient (Adjusted) 

S - Second 

S - Shrinkage 

S/N - Signal to Noise 

PTTA
PERP

UST
AKA
AN 
TUN
KU T

UN 
AMI
NAH



xvi 

 

S/N QP - Signal to Noise for Quality Performance 

S/N S - Signal to Noise for Shrinkage 

S/N UTS - Signal to Noise for Ultimate Tensile Strength 

S/N Z - Signal to Noise for Warpage 

SA - Simulated Annealing 

SEM - Scanning Electron Microscopy 

SIM - Sequential Injection Moulding 

SIRIM - Standards and Industrial Research Institute of Malaysia 

SS - Screw Speed 

T ambient - Ambient Temperature 

T mould - Mould Temperature 

ta - Average Thickness 

TD - Transverse Direction 

TEM - Transmission Electron Microscopy 

TGA - Thermal Gravimetric Analysis 

TS - Transmission Spectroscopy 

UTM - Universal Testing Machine 

WAXS - Wide Angle X-ray Scattering 

wt.% - Weight Percentage 

XRD - X-Ray Diffraction 

Z - Warpage 

α - Coefficient of Thermal Expansion 

 

 

 

 

 

 

 

 

 

 

 

 

PTTA
PERP

UST
AKA
AN 
TUN
KU T

UN 
AMI
NAH



xvii 

 

 

 

 

LIST OF APPENDICES 

 

 

 

 

APPENDIX TITLE  PAGE 

 

A 

 

Experimental data for warpage 

  

120 

B Experimental data for shrinkage  123 

C Experimental data for ultimate tensile 

strength 

 126 

D Experimental data for signal to noise ratio  132 

E Main effects plots for signal to noise ratio  135 

F Regression analysis results  144 

    

 

 

 

 

 

 

 

 

 

 

 

 

PTTA
PERP

UST
AKA
AN 
TUN
KU T

UN 
AMI
NAH



1 

 

 

 

 

 

CHAPTER 1 

 

 

 

 

INTRODUCTION 

 

 

 

 

In this chapter, discussion about research background, problem statements, objectives 

and scope of study in this research have been presented.  The expected result, which is 

the novelty of this research also, was stated at the end of this chapter. 

 

1. 1       Background study 

 

This research is about modelling of injection moulding processing conditions toward 

the performance of functional polypropylene integral hinges samples with the 

additional of nanoclay Cloisite-20A, exposed to high heat temperature.  The research 

started by performing injection moulding simulation and practical work; in order to 

verify and validate the developed mould for test the samples. The mould test sample 

was used to optimise the processing conditions towards shrinkage, warpage and 

ultimate tensile strength, with exposure to high heat environment. These properties 

analysis are very important in the manufacturing industry, because the characterisation 

of functional integral hinges was very useful in various thermoplastic component 

designs and manufacturing processes. The findings of this research, in the form of   the 

regression model and developed the master curves, can lead to production of better 

quality, with longer life span of functional integral hinges. The model and curves were 

very useful as references, for further applications and improvement with wide potential 

in the manufacturing of plastic parts and components. Moreover, the additional value 

of this research was the usage of nanoclay Cloisite-20A as the nano size filler in the 
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polymer nanocomposites system was rectified to withstand exposure to the high heat 

environment.  

 

1. 2       Problem statement 

 

The manufacturing of thin wall components with integral hinges is crucial for the 

several plastic industries due to the thinner components permit considerable 

improvement of environmental impact, beneficial effects on the reduction of fuel 

consumption and overall weight savings.  Additionally, the decrease in thickness 

allows significant reduction in production costs because shorter cycle times and less 

material consumption. Particularly, thin wall plastic products relate to smaller and 

lighter parts; should be able to withstand the daily usage, and at the same time 

maintaining their aesthetic appearance. These features are critical in the realization of 

automotive interior components that must maintain high quality look and feel 

throughout the life cycle of the vehicle (Spina, 2004).  

These intricate parts in the plastic industry, comes with toughest quality 

requirements, could be achieved through injection moulding technology (Nardin et al., 

2002). Due to its ability to produce multifaceted shape plastic parts with good 

dimensional accuracy and very short cycle times, injection moulding has become one 

of the processes that is greatly preferred in manufacturing industry (Bozdana & 

Eyercioglu, 2002). These injected moulded parts, however, are very prone to defects. 

To avoid such quality control problems, it is desirable to successfully predict the 

optimum processing conditions, such as pressures, temperatures, and times (Hill, 

1996). Any change in these variables can affect the process stability and the quality of 

the manufactured parts. Unfortunately, it has been found difficult to control and adjust 

simultaneously between the processing conditions and the properties of the product; 

and there is no single set of rules to designate which parameters to use in order to 

manufacture consistently a part with no defects (Dumitrescu et al., 2005). Furthermore, 

failures or damages of these parts become more frequent when it exposed to high 

temperature environment. 

In order to solve the problems, optimising the processing conditions through 

several techniques becomes one of the promising solutions.  The optimisation methods, 

such as Principal Component Analysis (Fung & Kang, 2005) ; Neuro Fuzzy Model 

(Antony & Anand, 2006) ; Gaussian Process Approach with Genetic Algorithm (Zhou 
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& Turng, 2007), Grey Relational Analysis (Khan et al., 2010) and Taguchi (Mehat & 

Kamaruddin, 2011) have been proven as a good solution in finding the suitable 

injection moulding processing condition. 

Additionally, the utilisation of fillers in polymer composites also a possible 

solution, whereby the fillers such as nanoclay could improve the mechanical properties 

as well as the fire retardant behaviour.  However, too many fillers with wrong 

processing condition might lead back to poor quality and component performance 

(Wang, 2012; Yuan et al., 2008). 

Therefore, this research proposes to solve the problem of thermoplastic integral 

hinges parts design and processing conditions, by introducing a suitable model and 

master curves as the reference to predict the properties of polypropylene integral 

hinges with the additional of nanoclay Cloisite-20A. By transforming the pristine 

polypropylene into polymer nanocomposites, with the right clay content and 

processing conditions, the integral hinges were expected to sustain its function; even 

when it was exposed to the high heat environment.  

 

1. 3       Objectives 

 

The objectives of this research are:  

a) To develop mould for producing the integral hinges test’s sample. 

b) To optimise the processing conditions by adopting the Taguchi Optimisation 

Method. 

c) To generate regression model base on the optimised processing condition of 

polypropylene-nanoclay integral hinges with the responses of quality 

performance, exposed to 600C to 700C.  

d) To construct master curves based on the regression model for quality 

performance versus clay content for integral hinges. 

 

1. 4       Scope of study 

 

The scopes of this study are as stated: 

a) The raw material selected is polypropylene, a type of homopolymer, Titan Pro 

6331, from Titan Petchem (M) Sdn. Bhd. The compatibilizer is a functionalized 
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polypropylene-grafted-maleic anhydride (PP-g-MA), containing 1 wt. % of 

maleic anhydride (OREVAC C100).  

b) The additional material to develop these polymer nanocomposites is nanoclay 

Cloisite-20A, varies from 0 wt. %, 1 wt. %, 2 wt. %, 3 wt. %, 4 wt. % and 5 

wt. %, obtained from Southern Clay, Inc. US, courtesy from Wilbur-Ellis 

Company, Connell Bros. Company (Malaysia) Sdn. Bhd. 

c) The performance of polypropylene integral hinges shall be translated through 

shrinkage, warpage and ultimate tensile strength. The test conducted for the 

manufactured samples shall adopt ISO standards.  

d) The mould was made from AISI D2 cold work tool steel. Evaluation shall be 

made to choose the best mould design to define runner size and gate location. 

e) The expected result shall focus more on generating the regression model that 

shall be fitted in the master curves, after getting the optimised processing 

condition by using the Taguchi Optimisation Method.   

f) The chosen processing condition were screw speed, melt temperature, injection 

pressure and filling time.  

 

1. 5       Expected result 

 

In this research, a mould for preparing test samples specifically representing an 

integral hinge component was produced. These samples were made by using the mould 

that had been developed using simulation. The actual mould was fabricated and actual 

injection moulding was carried out to validate the simulation findings. The novelty of 

this research is the correlations between optimum injection moulding processing 

conditions and the quality performances of the products, exposed to the high heat 

environment, which were translated in the form of regression models. Master curves 

have been constructed for quality performance versus the nanoclay content, based on 

the regression models. The model and master curves can be used as references 

specifically for polypropylene-nanoclay integral hinges manufacturing and design 

process, with the extend condition in high heat environments. The additional of 

nanoclay shall be the additional advantage, whereby with the right nanoclay content, 

the quality performance of integral hinges was improved.  
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CHAPTER 2 

 

 

 

 

LITERATURE REVIEW 

 

 

 

 

2. 1      Introduction 

 

This chapter is about the past works related to this project. It summarizes several 

previous researches which were related to this project. Previous research findings 

about the optimisation of injection moulding processing condition and research about 

polypropylene-nanoclay were included in this chapter.  Research on the application of 

polypropylene, especially at high heat exposure was also been stated at the end of this 

chapter.  

 

2.1.1 Injection moulding processing conditions 

 

In general, injection moulding is a process that involves hot, injection moulded molten 

polymer which is heated with a highly plastic state; and then injected automatically by 

a screw with the support of hydraulics actuator, under high pressure into a mould 

cavity where it solidifies into cooled mould where the molten polymer will follow the 

final shape of the mould. The moulded part is then removed from the cavity. The 

advantage of this process is, that it may produce discrete components that are almost 

net shape and significant economies of mass production. The production cycle time is 

typically in the range of 10-30 seconds, for small components and longer time is not 

uncommon for large parts. Moreover, the mould may contain more than one cavity, 

therefore multiple mouldings are produced for each cycle and it also increases the 

cycle time as well. An injection moulding machine usually consists of an injection unit 
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and clamping unit.  A schematic diagram of injection moulding machine is shown in 

Figure 2.1 (Groover, 2007). 

 

 

Figure 2.1: Single screw injection moulding (Groover, 2007). 

 

Intricate and complex designs/dimensions are possible with injection moulding.  

In these cases, the challenge is to design and fabricate a mould that has the same 

geometry as the original component and which also easy for part removal.  Part sizes 

can be in the range from about 50 grams up to about 25 kilograms, whereby the bigger 

parts represented by components such as refrigerator doors and automobile bumpers.  

The mould is the special tooling in injection moulding, because not only it determines 

the part shape and size, it also contributes a lot towards parts quality.  For large, 

complex parts, the mould can be expensive, depending on the type of material and the 

machining time.  For small parts, the mould can be built to contain multiple cavities, 

which is also making the mould expensive.  Thus, injection moulding is economical 

and provide a good return of investment only for mass production (Groover, 2007). 

 

2.1.2 Mould for injection moulding 

 

Mould in injection moulding usually is in the form of cavity whereby the molten 

polymer shall be injected and solidified in this particular part.  The surface of this tool 

will act as heat exchanger when the injected material solidifies with contact or for 

cooling the moulded component. The most common cold runner in plastic injection 

moulding tooling is a two-plate, cold runner mould at horizontal injection moulding. 

With thermoplastic materials, a cold runner mould refers to a mould in which the 
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runner is cooled, solidified, and ejected with the moulded part during each moulding 

cycle.  This tooling becomes common due to its simplicity, least expensive, easy to 

construct and the easiest to operate with less maintenance as compared with the hot 

runner mould.  This type of mould consists of two halves; which is stationary and 

movable half; fastened to the two platens of the moulding machine’s clamping unit.  

When the clamping unit opened, the two mould halves open.  The function of movable 

half is to eject finish or desired part (Osswald et al., 2008).  

Most of the mould consists of the cavity, sprue, runner, gates, injection system 

and cooling system. These elements are very important in ensuring the melt polymer 

distributed uniformly.  The details about these elements are stated as below (Osswald 

et al., 2008). 

a) Cavity - the feature which usually formed by removing metal from the mating 

surfaces of the two halves.  Moulds can contain a single cavity or multiple 

cavities to produce more than one part in a single shot. 

b) Sprue /distribution channels – This element leads the melt polymer from the 

nozzle into the mould.  The sprue is in the form of carrot and act as an inlet 

channel to transfer molten material from the heating chamber into the runner 

system. 

c) Runner - the function is to lead the melt polymer from the sprue to the multiple 

cavity moulds.  Runner also acts as channels to connect the sprue bush to the 

cavity gates.  There are two types of runner system-cold and hot.  Cold runners 

are ejected with the part are trimmed after mould removal.  The advantage of 

cold runner is lower mould cost.  The hot runner keeps the polymer at or above 

its melt temperature.  The material stays in the runner system after injection for 

the next injection. 

d) Gates- Is a part that constricts the flow of plastic into the cavity.  It prevents 

material from flowing out of the cavity when the injection pressure removed.  

There are one or more gates for each cavity in the mould. 

e) Ejection system- A system required to eject the moulded part from the cavity 

at the end of the moulding cycle.  Ejector pins built into the moving half of the 

mould usually accomplish this function.  The cavity is divided between the two 

mould halves in such a way that the natural shrinkage of the moulding causes 

the part to stick to the moving halt When the mould opens, the ejector pins push 

the part out of the mould cavity. 
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f) Cooling system- This system consists of an external pump connected to 

passageways in the mould, through which water is circulated to remove heat 

from the hot plastic.  Air must be evacuated from the mould cavity as the 

polymer rushes in.  Much of the air passes through the small ejector pin 

clearances in the mould.  In addition, narrow air vents are often machined into 

the parting surface; only about 0.03 mm deep and 12 to 25 mm wide, these 

channels permit air to escape to the outside but are too small for the viscous 

polymer melt to flow through. 

Besides of these elements, there are other crucial factors that need to be 

considered specifically for thin-layered product. The factors are cycle time, gate 

locations and cavity condition. Cycle time is largely dependent on section thickness, 

machine conditions, heating capacity and injection capacity. The overall cycle time 

can vary from apply five seconds for thin articles to 60 seconds or more for thick 

articles. As for injection moulding hinges, it is important that the flow front cross the 

thin section at one instant. Gate location must provide balanced fill. The substantial 

pressure drop occurs when the flow front crosses the hinge, resulting in an increase of 

shrinkage rate. This may require adjustment of cavity dimensions to ensure proper fit 

of mating halves. The flow through the hinge will generate additional shear heating 

requiring additional local cooling. If the mating halves require two gates for filling and 

packing, they must be designed and developed to locate the weld line away from the 

hinges (Bauccio et al., 1994).  

 

2.1.3 Simulation in injection moulding  

 

With plastics gaining more and more ground in engineering applications, there was a 

critical demand on the quality of injected moulded parts. To satisfy these demands, 

software was manipulated to achieve the outstanding level of part design, mould 

design, machining of cavities, and part mouldings (Beaumont et al., 2002). Correct 

control of the processing condition usually plays major roles in achieving good quality, 

whereby this parameter settings are usually quantified either based on statistical 

experimental methods, computer aided simulations, or through operators’ experiences. 

Table 2.1 shows a review of several studies which have manipulated the effectiveness 

of numerical simulation.  
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