DYNAMIC TUNABILITY ENHANCEMENT OF REFLECTARRAY ANTENNA USING NON-HOMOGENEOUS DIELECTRIC MATERIALS

MUHAMMAD HASHIM DAHRI

A thesis submitted in fulfillment of the requirement for the award of the Degree of Master of Electrical Engineering

Faculty of Electrical and Electronics Engineering Universiti Tun Hussein Onn Malaysia

AUGUST 2014

Sincerely dedicated to my beloved Mother and Father

ACKNOWLEDGEMENT

First of all, a deep and Humble gratitude to Allah Almighty for providing me the opportunity and giving me the strength to finish this work. I would like to express my special appreciation and thanks to my supervisor Associate Professor Dr. Muhammad Yusof Ismail. I would like to thank him for encouraging my research and for advising me to grow as a researcher. His advice on both research as well as on my career have been priceless. I would like to thank the technical staff of Wireless and Radio Science Centre (WARAS) of Universiti Tun Hussein Onn Malaysia (UTHM) for the technical support. I would specially like to thank all the technicians of PCB and Project Laboratories of UTHM for their kind help and support. A special thanks to my parents, siblings, uncles and all those friends who supported me unconditional throughout this work.

ABSTRACT

The conventional antenna systems require the mechanical movement of beam scanning antenna to meet the demands of emerging field of communications. To overcome the flaw of the mechanical movement an electronically tunable reflectarray antenna based on non-homogeneous properties of substrate materials has been introduced. This research study provides a thorough investigation on the tunability performance of reflectarrays designed in X-band frequency range. The objective of this work is to demonstrate the functionality of an active reflectarray antenna with optimized loss performance and enhanced dynamic phase range. Different types of reflectarray resonant elements such as rectangular, dipole and ring are discussed here with different design configurations based on their ability of frequency tunability and dynamic phase range. Commercially available computer models of CST Microwave Studio and Ansoft HFSS have been used to investigate the phase agility characteristics of reflectarray resonant elements printed above various nonhomogeneous materials (0.17 $\leq \Delta \epsilon \leq 0.45$). The analytical approach has been used to develop equations for progressive phase distribution and frequency tunability of individual reflectarray element which is validated by CST simulations. The results obtained from theoretical investigations have been further validated by experimental implementations. An optimized configuration of non-homogeneous Liquid Crystal (LC) material with 0.5 mm thickness below the resonant element has been designed and tested by waveguide scattering parameter measurements. An external bias voltage of 0V to 20V has been applied across the LC substrate of individual resonant elements in order to obtain the electronic tunability. The three resonant elements namely rectangular, dipole and ring offer a measured dynamic phase range of 95°, 153° and 197° respectively at 10 GHz using the proposed design configuration. Moreover, the ring element attains a 107% higher dynamic tunability with a 56% reduction in the reflective area as compared to rectangular element.

TABLE OF CONTENTS

DECI	LARATION	ii			
DEDI	ICATION	iii			
ACK	NOWLEDGEMENT	iv			
ABST	TRACT	v			
TABI	LE OF CONTENTS	vi			
LIST	LIST OF TABLES				
LIST	OF FIGURES	xiv			
LIST	LIST OF APPENDICES				
LIST	OF PUBLICATIONS	xxi			
PERPLIST	OF AWARDS	xxiv			
CHAPTER 1 INTR	ODUCTION				
1.1	Problem statement	4			
1.2	Objectives of the study	5			
1.3	Scopes of the study	5			
1.4	Introduction to reflectarray antenna	6			
	1.4.1 Advantages and disadvantages of reflectarrays	8			
	1.4.2 Potential applications of reflectarray antenna	10			
1.5	Thesis statement	11			
CHAPTER 2 THEORETICAL OVERVIEW					

2.1 History and background of reflectarray antenna2.2 Design and analysis of microstrip reflectarray antenna15

2.2.1Selection of the substrate material162.2.2Selection of the patch element172.2.3Reflection loss and bandwidth of reflectarray antenna172.2.4Reflection phase and FoM212.3Performance enhancement of reflectarray antenna using different optimization techniques222.3.1Optimization of loss and bandwidth performance by material properties222.3.2Stacked layer configuration for bandwidth improvement272.3.3Reflectarray patch elements for phase range enhancement292.4Dielectric properties of substrate materials312.4.1Dielectric properties of substrate materials312.4.2Dielectric non-linear, anisotropic or non- homogeneous materials322.5Liquid crystal material characteristics362.5.1Types of LCs362.5.2Effect of varying temperature on LC392.5.4Effect of varying frequency on LC402.6Applications of dielectric non-linear materials412.6.2Millimeter wave beam former based on LC432.6.3Microwave absorbers442.6.4Tunable reflectarray antennas45					
2.2.2Selection of the patch element172.2.3Reflection loss and bandwidth of reflectarray antenna172.2.4Reflection phase and FoM212.3Performance enhancement of reflectarray antenna using different optimization techniques222.3.1Optimization of loss and bandwidth performance by material properties222.3.2Stacked layer configuration for bandwidth improvement272.3.3Reflectarray patch elements for phase range enhancement292.4Dielectric properties of substrate materials312.4.1Dielectric inear, isotropic or homogeneous materials312.4.2Dielectric non-linear, anisotropic or non- homogeneous materials322.5Liquid crystal material characteristics362.5.1Types of LCs362.5.2Effect of varying temperature on LC392.5.4Effect of varying trequency on LC402.6Applications of dielectric non-linear materials412.6.2Millimeter wave beam former based on LC432.6.3Microwave absorbers412.6.4Tunable reflectarray antennas45		2.2.1	Selection of the substrate material	16	
 2.2.3 Reflection loss and bandwidth of reflectarray antenna 17 2.2.4 Reflection phase and FoM 21 2.3 Performance enhancement of reflectarray antenna using different optimization techniques 22 2.3.1 Optimization of loss and bandwidth performance by material properties 22 2.3.2 Stacked layer configuration for bandwidth inprovement 27 2.33 Reflectarray patch elements for phase range enhancement 29 2.4 Dielectric properties of substrate materials 2.4.1 Dielectric linear, isotropic or homogeneous materials 2.4.2 Dielectric non-linear, anisotropic or nonhomogeneous materials 2.4.3 Comparison between ferroelectrics and liquid crystal material characteristics 2.5 Liquid crystal material characteristics 2.5 Effect of varying electric charge on LC 2.5.4 Effect of varying frequency on LC 40 2.6 Applications of dielectric non-linear materials 2.6.1 Phase shifters based on dielectric non-linear materials 2.6.1 Willimeter wave beam former based on LC 2.6.2 Millimeter wave beam former based on LC 2.6.3 Microwave absorbers 2.6.4 Tunable reflectarray antennas 45 2.7 Conclusion 		2.2.2	Selection of the patch element	17	
antenna172.2.4Reflection phase and FoM212.3Performance enhancement of reflectarray antenna using differer optimization techniques222.3.1Optimization of loss and bandwidth performance by material properties222.3.2Stacked layer configuration for bandwidth improvement272.3.3Reflectarray patch elements for phase range enhancement292.4Dielectric properties of substrate materials312.4.1Dielectric properties of substrate materials312.4.2Dielectric non-linear, nisotropic or non homogeneous materials322.4.3Comparison between ferroelectrics and liquid crystals352.5Liquid crystal material characteristics362.5.1Types of LCs362.5.3Effect of varying temperature on LC392.5.4Effect of varying frequency on LC402.6Applizations of dielectric non-linear materials412.6.2Millimeter wave beam former based on LC432.6.3Microwave absorbers412.6.4Tunable reflectarray antennas41		2.2.3	Reflection loss and bandwidth of reflectarray		
2.2.4 Reflection phase and FoM 21 2.3 Performance enhancement of reflectarray antenna using different optimization techniques 22 2.3.1 Optimization of loss and bandwidth performance by material properties 22 2.3.2 Stacked layer configuration for bandwidth improvement 27 2.3.3 Reflectarray patch elements for phase range enhancement 29 2.4 Dielectric properties of substrate materials 31 2.4.1 Dielectric linear, isotropic or homogeneous materials 31 2.4.2 Dielectric non-linear, anisotropic or nonhomogeneous materials 32 2.4.3 Comparison between ferroelectrics and liquid crystal 35 2.5.1 Types of LCs 36 2.5.2 Effect of varying temperature on LC 39 2.5.4 Effect of varying frequency on LC 40 2.6 Applications of dielectric non-linear materials 41 2.6.2 Millimeter wave beam former based on LC 33 2.6.3 Microwave absorbers 41 2.6.4 Tunable reflectarray antennas 45			antenna	17	
2.3Performance enhancement of reflectarray antenna using different optimization techniques222.3.1Optimization of loss and bandwidth performance by material properties222.3.2Stacked layer configuration for bandwidth improvement272.3.3Reflectarray patch elements for phase range enhancement292.4Dielectric properties of substrate materials312.4.1Dielectric linear, isotropic or homogeneous materials312.4.2Dielectric on-linear, anisotropic or non- homogeneous materials322.4.3Comparison between ferroelectrics and liquid crystals352.5Liquid crystal material characteristics362.5.1Types of LCs362.5.2Effect of varying temperature on LC382.5.3Effect of varying frequency on LC402.6Applications of dielectric non-linear materials412.6.1Phase shifters based on dielectric non-linear materials412.6.2Millimeter wave beam former based on LC432.6.3Microwave absorbers442.6.4Tunable reflectarray antennas45		2.2.4	Reflection phase and FoM	21	
different optimization techniques 22 2.3.1 Optimization of loss and bandwidth performance by material properties 22 2.3.2 Stacked layer configuration for bandwidth improvement 27 2.3.3 Reflectarray patch elements for phase range enhancement 29 2.4 Dielectric properties of substrate materials 31 2.4.1 Dielectric linear, isotropic or homogeneous materials 31 2.4.2 Dielectric non-linear, anisotropic or non- homogeneous materials 32 2.4.3 Comparison between ferroelectrics and liquid crystals 35 2.5 Liquid crystal material characteristics 36 2.5.1 Types of LCs 36 2.5.2 Effect of varying temperature on LC 38 2.5.3 Effect of varying temperature on LC 38 2.5.4 Effect of varying temperature on LC 39 2.5.3 Effect of varying temperature on LC 39 2.5.4 Effect of varying temperature on LC 36 2.5.1 Phase shifters based on dielectric non-linear materials 40 2.6.1 Phase shifters based on dielectric non-linear materials 41 2.6.2	2.3	Perfor	mance enhancement of reflectarray antenna using		
2.3.1Optimization of loss and bandwidth performance by material properties222.3.2Stacked layer configuration for bandwidth improvement272.3.3Reflectarray patch elements for phase range enhancement292.4Dielectric properties of substrate materials312.4.1Dielectric linear, isotropic or homogeneous materials312.4.2Dielectric non-linear, anisotropic or non- homogeneous materials322.4.3Comparison between ferroelectrics and liquid crystals352.5Liquid crystal material characteristics362.5.1Types of LCs362.5.3Effect of varying frequency on LC392.5.4Effect of varying frequency on LC402.6Applications of dielectric non-linear materials412.6.2Millimeter wave beam former based on LC432.6.3Microwave absorbers442.6.4Tunable reflectarray antennas45		differe	ent optimization techniques	22	
by material properties 22 2.3.2 Stacked layer configuration for bandwidth improvement 27 2.3.3 Reflectarray patch elements for phase range enhancement 29 2.4 Dielectric properties of substrate materials 31 2.4.1 Dielectric linear, isotropic or homogeneous materials 31 2.4.2 Dielectric non-linear, anisotropic or non- homogeneous materials 32 2.4.3 Comparison between ferroelectrics and liquid crystals 35 2.5 Liquid crystal material characteristics 36 2.5.1 Types of LCs 36 2.5.2 Effect of varying electric charge on LC 38 2.5.3 Effect of varying frequency on LC 40 2.6 Applications of dielectric non-linear materials 40 2.6.1 Phase shifters based on dielectric non-linear materials 41 2.6.2 Millimeter wave beam former based on LC 43 2.6.3 Microwave absorbers 44 2.6.4 Tunable reflectarray antennas 45 2.7 Conclusion 48		2.3.1	Optimization of loss and bandwidth performance		
 2.3.2 Stacked layer configuration for bandwidth improvement 2.3.3 Reflectarray patch elements for phase range enhancement 2.4 Dielectric properties of substrate materials 2.4.1 Dielectric linear, isotropic or homogeneous materials 2.4.2 Dielectric non-linear, anisotropic or non- homogeneous materials 2.4.3 Comparison between ferroelectrics and liquid crystals 2.5 Liquid crystal material characteristics 2.6 Effect of varying electric charge on LC 2.5 Effect of varying frequency on LC 40 2.6 Applications of dielectric non-linear materials 40 2.6.1 Phase shifters based on dielectric non-linear materials 41 2.6.2 Millimeter wave beam former based on LC 33 34 35 35 36 37 37 38 39 39 39 30 30 30 31 31 32 35 36 37 36 37 36 37 37 38 39 39 39 30 30 30 31 31 32 35 36 37 37 38 39 39 30 30 31 31 32 35 36 37 37 38 39 39 30 30 31 31 31 32 33 34 35 35 36 37 37 38 39 39 30 30 31 31 31 31 31 32 33 34 35 35 36 37 37 38 39 39 39 30 30 31 31 31 31 32 34 35 35 36 37 37 38 39 <			by material properties	22	
improvement 27 2.3.3 Reflectarray patch elements for phase range enhancement 29 2.4 Dielectric properties of substrate materials 31 2.4.1 Dielectric linear, isotropic or homogeneous materials 31 2.4.2 Dielectric non-linear, anisotropic or non- homogeneous materials 32 2.4.3 Comparison between ferroelectrics and liquid crystals 35 2.5 Liquid crystal material characteristics 36 2.5.1 Types of LCs 36 2.5.2 Effect of varying electric charge on LC 38 2.5.3 Effect of varying frequency on LC 40 2.6 Applications of dielectric non-linear materials 40 2.6.1 Phase shifters based on dielectric non-linear materials 41 2.6.2 Millimeter wave beam former based on LC 43 2.6.3 Microwave absorbers 44 2.6.4 Tunable reflectarray antennas 45 2.7 Conclusion 48		2.3.2	Stacked layer configuration for bandwidth		
2.3.3Reflectarray patch elements for phase range enhancement292.4Dielectric properties of substrate materials312.4.1Dielectric linear, isotropic or homogeneous materials312.4.2Dielectric non-linear, anisotropic or non- homogeneous materials322.4.3Comparison between ferroelectrics and liquid crystals352.5Liquid crystal material characteristics362.5.1Types of LCs362.5.2Effect of varying electric charge on LC382.5.3Effect of varying frequency on LC402.6Applications of dielectric non-linear materials412.6.1Phase shifters based on dielectric non-linear materials412.6.3Microwave absorbers442.6.4Tunable reflectarray antennas452.7Conclusion48			improvement	27	
enhancement292.4Dielectric properties of substrate materials312.4.1Dielectric linear, isotropic or homogeneous materials312.4.2Dielectric non-linear, anisotropic or non- homogeneous materials322.4.3Comparison between ferroelectrics and liquid crystals352.5Liquid crystal material characteristics362.5.1Types of LCs362.5.2Effect of varying electric charge on LC382.5.3Effect of varying frequency on LC392.5.4Effect of varying frequency on LC402.6Applications of dielectric non-linear materials412.6.3Milimeter wave beam former based on LC432.6.3Microwave absorbers442.6.4Tunable reflectarray antennas452.7Conclusion48		2.3.3	Reflectarray patch elements for phase range		
2.4Dielectric properties of substrate materials312.4.1Dielectric linear, isotropic or homogeneous materials312.4.2Dielectric non-linear, anisotropic or non- homogeneous materials322.4.3Comparison between ferroelectrics and liquid crystals352.5Liquid crystal material characteristics362.5.1Types of LCs362.5.2Effect of varying electric charge on LC382.5.3Effect of varying frequency on LC392.5.4Effect of varying frequency on LC402.6Applications of dielectric non-linear materials402.6.1Phase shifters based on dielectric non-linear materials412.6.2Millimeter wave beam former based on LC432.6.3Microwave absorbers442.6.4Tunable reflectarray antennas452.7Conclusion48			enhancement	29	
2.4.1Dielectric linear, isotropic or homogeneous materials312.4.2Dielectric non-linear, anisotropic or non- homogeneous materials322.4.3Comparison between ferroelectrics and liquid crystals352.5Liquid crystal material characteristics362.5.1Types of LCs362.5.2Effect of varying electric charge on LC382.5.3Effect of varying temperature on LC392.5.4Effect of varying frequency on LC402.6Applications of dielectric non-linear materials402.6.1Phase shifters based on dielectric non-linear materials412.6.2Millimeter wave beam former based on LC432.6.3Microwave absorbers442.6.4Tunable reflectarray antennas452.7Conclusion48	2.4	Dielec	tric properties of substrate materials	31	
materials312.4.2Dielectric non-linear, anisotropic or non- homogeneous materials322.4.3Comparison between ferroelectrics and liquid crystals352.5Liquid crystal material characteristics362.5.1Types of LCs362.5.2Effect of varying electric charge on LC382.5.3Effect of varying temperature on LC392.5.4Effect of varying frequency on LC402.6Applications of dielectric non-linear materials402.6.1Phase shifters based on dielectric non-linear materials412.6.2Millimeter wave beam former based on LC432.6.3Microwave absorbers442.6.4Tunable reflectarray antennas452.7Conclusion48		2.4.1	Dielectric linear, isotropic or homogeneous		
2.4.2Dielectric non-linear, anisotropic or non- homogeneous materials322.4.3Comparison between ferroelectrics and liquid crystals352.5Liquid crystal material characteristics362.5.1Types of LCs362.5.2Effect of varying electric charge on LC382.5.3Effect of varying temperature on LC392.5.4Effect of varying frequency on LC402.6Applications of dielectric non-linear materials402.6.1Phase shifters based on dielectric non-linear materials412.6.2Millimeter wave beam former based on LC432.6.3Microwave absorbers442.6.4Tunable reflectarray antennas452.7Conclusion48			materials	31	
homogeneous materials322.4.3Comparison between ferroelectrics and liquid crystals352.5Liquid crystal material characteristics362.5.1Types of LCs362.5.2Effect of varying electric charge on LC382.5.3Effect of varying temperature on LC392.5.4Effect of varying frequency on LC402.6Applications of dielectric non-linear materials402.6.1Phase shifters based on dielectric non-linear materials412.6.2Millimeter wave beam former based on LC432.6.3Microwave absorbers442.6.4Tunable reflectarray antennas452.7Conclusion48		2.4.2	Dielectric non-linear, anisotropic or non-		
2.4.3Comparison between ferroelectrics and liquid crystals352.5Liquid crystal material characteristics362.5.1Types of LCs362.5.2Effect of varying electric charge on LC382.5.3Effect of varying temperature on LC392.5.4Effect of varying frequency on LC402.6Applications of dielectric non-linear materials402.6.1Phase shifters based on dielectric non-linear materials412.6.2Millimeter wave beam former based on LC432.6.3Microwave absorbers442.6.4Tunable reflectarray antennas452.7Conclusion48			homogeneous materials	32	
crystals352.5Liquid crystal material characteristics362.5.1Types of LCs362.5.2Effect of varying electric charge on LC382.5.3Effect of varying temperature on LC392.5.4Effect of varying frequency on LC402.6Applications of dielectric non-linear materials402.6.1Phase shifters based on dielectric non-linear materials412.6.2Millimeter wave beam former based on LC432.6.3Microwave absorbers442.6.4Tunable reflectarray antennas452.7Conclusion48		2.4.3	Comparison between ferroelectrics and liquid		
2.5Liquid crystal material characteristics362.5.1Types of LCs362.5.2Effect of varying electric charge on LC382.5.3Effect of varying temperature on LC392.5.4Effect of varying frequency on LC402.6Applications of dielectric non-linear materials402.6.1Phase shifters based on dielectric non-linear materials412.6.2Millimeter wave beam former based on LC432.6.3Microwave absorbers442.6.4Tunable reflectarray antennas452.7Conclusion48			crystals	35	
2.5.1Types of LCs362.5.2Effect of varying electric charge on LC382.5.3Effect of varying temperature on LC392.5.4Effect of varying frequency on LC402.6Applications of dielectric non-linear materials402.6.1Phase shifters based on dielectric non-linear materials412.6.2Millimeter wave beam former based on LC432.6.3Microwave absorbers442.6.4Tunable reflectarray antennas452.7Conclusion48	2.5 C	Liquid	crystal material characteristics	36	
2.5.2Effect of varying electric charge on LC382.5.3Effect of varying temperature on LC392.5.4Effect of varying frequency on LC402.6Applications of dielectric non-linear materials402.6.1Phase shifters based on dielectric non-linear materials412.6.2Millimeter wave beam former based on LC432.6.3Microwave absorbers442.6.4Tunable reflectarray antennas452.7Conclusion48		2.5.1	Types of LCs	36	
 2.5.3 Effect of varying temperature on LC 39 2.5.4 Effect of varying frequency on LC 40 2.6 Applications of dielectric non-linear materials 40 2.6.1 Phase shifters based on dielectric non-linear materials 41 2.6.2 Millimeter wave beam former based on LC 43 2.6.3 Microwave absorbers 44 2.6.4 Tunable reflectarray antennas 45 2.7 Conclusion 48 		2.5.2	Effect of varying electric charge on LC	38	
2.5.4Effect of varying frequency on LC402.6Applications of dielectric non-linear materials402.6.1Phase shifters based on dielectric non-linear materials412.6.2Millimeter wave beam former based on LC432.6.3Microwave absorbers442.6.4Tunable reflectarray antennas452.7Conclusion48		2.5.3	Effect of varying temperature on LC	39	
2.6Applications of dielectric non-linear materials402.6.1Phase shifters based on dielectric non-linear materials412.6.2Millimeter wave beam former based on LC432.6.3Microwave absorbers442.6.4Tunable reflectarray antennas452.7Conclusion48		2.5.4	Effect of varying frequency on LC	40	
2.6.1Phase shifters based on dielectric non-linear materials412.6.2Millimeter wave beam former based on LC432.6.3Microwave absorbers442.6.4Tunable reflectarray antennas452.7Conclusion48	2.6	Applic	cations of dielectric non-linear materials	40	
materials412.6.2Millimeter wave beam former based on LC432.6.3Microwave absorbers442.6.4Tunable reflectarray antennas452.7Conclusion48		2.6.1	Phase shifters based on dielectric non-linear		
2.6.2Millimeter wave beam former based on LC432.6.3Microwave absorbers442.6.4Tunable reflectarray antennas452.7Conclusion48			materials	41	
2.6.3 Microwave absorbers442.6.4 Tunable reflectarray antennas452.7 Conclusion48		2.6.2	Millimeter wave beam former based on LC	43	
2.6.4 Tunable reflectarray antennas452.7 Conclusion48		2.6.3	Microwave absorbers	44	
2.7 Conclusion 48		2.6.4	Tunable reflectarray antennas	45	
	2.7	Conclu	usion	48	

vii

CHAPTER 3 MATERIALS AND METHODS

-	_			
	3.1	Backg	round literature studies	50
	3.2	Simul	ations based on CST MWS and Ansoft HFSS	50
	3.3	Nume	rical Analysis of tunable reflectarray antenna	52
	3.4	Fabric	ation of LC based reflectarray resonant elements	52
	3.5	Measu	rements of active reflectarray resonant elements	53
	3.6	Concl	usion	53
CHAPTER 4	4 DESI	GN AN	ALYSIS OF TUNABLE REFLECTARRAY	
	ANTI	ENNA		
	4.1	Verifi	cation of results based on commercially available	
		simula	ation tools	54
		4.1.1	Design of a square patch reflectarray element	55
		4.1.2	Design of a phase shifter element based on LC	
			material	63
	4.2	Invest	igation of a rectangular patch reflectarray antenna	
		based	on homogeneous materials	66
		4.2.1	Reflection loss and static phase range	
			performance	67
		4.2.2	Electrical behavior at resonant frequency	70
		4.2.3	Effect of dielectric properties on reflectarray	
			performance	72
	4.3	Analy	sis of a rectangular patch reflectarray antenna	
		based	on non-homogeneous materials	73
		4.3.1	Reflection loss performance	73
		4.3.2	Dynamic phase range and frequency tunability	75
		4.3.3	Electrical behavior at resonant frequency	77
		4.3.4	Effect of dielectric anisotropy on reflectarrays	79
	4.4	Desig	n of a rectangular patch reflectarray antenna based	
		on a fe	erroelectric material	81
		4.4.1	Reflection loss and frequency tunability	81
		4.4.2	Reflection phase analysis	82
	4.5	Analy	sis of different reflectarray resonant elements	

based on various non-homogeneous LC materials 83

	4.5.1	Reflection loss and frequency tunability	85
	4.5.2	Dynamic phase range	87
4.6	Tunab	le microwave absorber based on LC material	89
	4.6.1	Absorption rate and band-pass frequency	91
	4.6.2	Phase agility	92
4.7	Perfor	mance improvement of tunable reflectarray	
	antenn	a with various LC based design configurations	93
	4.7.1	Design 1: LC material partially filled below the	
		resonant element in a 1 mm thick substrate	94
	4.7.2	Design 2: LC material fully filled in a 1 mm	
		thick substrate	96
	4.7.3	Design 3: LC material fully filled in a 0.5 mm	
		thick substrate	99
	4.7.4	Design 4: LC material partially filled below the	
		resonant element in a 0.5 mm thick substrate	103
4.8	Perfor	mance analysis of tunable reflectarray antenna	
	with v	ariable LC layer thickness	106
	4.8.1	Design based on Aluminium supporting structure	106
	4.8.2	Design based on Rogers RT/d 5880 supporting	
		structure	112
4.9	Numer	rical analysis	117
	4.9.1	Relationship between surface current density and	
		reflecting area of the resonant patch element	118
	4.9.2	Relationship between guided wavelength and	
		area of the resonant patch element	120
	4.9.3	Prediction of dynamic phase range	122
	4.9.4	Prediction of frequency tunability	124
4.10	Conclu	ision	125
СПАДТЕД 5 БАД	DICATI	ON AND SCATTEDINC DADAMETED	
UNAFIER 3 FAB	DAICAIL	UN AND SUATTERING FARAMETER	

MEASUREMENTS OF REFLECTARRAY RESONANT ELEMENT

5.1	Waveguide simulator	127
5.2	Fabrication of different reflectarray antenna unit cells	129

5.3	Fab	rication of LC based reflectarray antenna unit cells	131	
	5.3.	1 Design and fabrication of an encapsulator for LC		
		based reflectarray unit cells	133	
	5.3.	2 LC filling technique	134	
5.4	Me	asurement setup	134	
5.5	Me	asurements and comparison of passive reflectarray		
	ante	nna elements printed on Rogers RT/d 5880 substrate	135	
	5.5.	1 Reflection loss and surface currents	136	
	5.5.	2 Static phase range and FoM	137	
5.6	Me	asurements and comparison of passive reflectarray		
	ante	nna elements based on K-15 LC material	139	
	5.6.	1 Properties of K-15 nematic LC	139	
	5.6.	2 Comparison between simulated and measured		
		results	141	
5.7	Me	asurements of active reflectarray elements based on		
	K-1	5 LC substrate	144	
	5.7.	1 Measured reflection loss and frequency tunability	145	
	5.7.	2 Measured dynamic phase range performance	147	
	5.7.	3 Tuning time and tunability	150	
5.8	Cor	clusion	151	
CHAPTER 6 CO	NCLU	SION AND FUTURE RECOMMENDATIONS		
61	Cor	clusions	153	
62	E Fut	ure recommendations	155	
RE	157			
AP	APPENDIX			

LIST OF TABLES

Table 1.1: Advantages and disadvantages of reflectarray antenna	9
Table 2.1: Different frequency bands and their applications	14
Table 2.2: Selected dielectric linear materials with their dielectric	
properties	32
Table 2.3: Selected dielectric non-linear materials with their	
dielectric anisotropies	33
Table 2.4: Comparison between required bias voltage between LC	
and Ferroelectric materials	35
Table 4.1: Comparison between reflection loss performance at	
different tangent loss values	58
Table 4.2: Comparison between reflection magnitudes at different	
substrate thicknesses	60
Table 4.3: Comparison between resonant frequencies at different	
substrate thicknesses	60
Table 4.4: Comparison between static phase range at different	
substrate thicknesses	62
Table 4.5: Reflection loss and bandwidth of different substrate	
materials	68
Table 4.6: Static phase range and FoM of different substrate	
materials	69
Table 4.7: Electric field intensity, current density and reflection loss	
of different homogeneous materials at 10 GHz	71
Table 4.8: Reflection loss of some non-homogeneous materials at 10	
GHz	74
Table 4.9: Dynamic phase range and frequency tunability of some	
non-homogeneous materials	77

Table 4.10:	Values of electric field intensity and flux density with	
	dynamic phase range for non-homogeneous materials	79
Table 4.11:	Reflection loss performance of reflectarray resonant	
	elements	86
Table 4.12:	: Frequency tunability of different reflectarray resonant	
	elements	87
Table 4.13:	Surface currents and dynamic phase range of rectangular,	
	dipole and ring elements	89
Table 4.14:	Performance analysis of different resonant elements of	
	tunable microwave absorber	91
Table 4.15:	Comparison between CST and HFSS results of proposed	
	design configuration	94
Table 4.16:	Comparison between CST and HFSS results of proposed	
	Design 2	98
Table 4.17:	Comparison between CST and HFSS results of proposed	
	Design 3	101
Table 4.18:	Comparison between CST and HFSS results of proposed	
	Design 4	104
Table 4.19:	Comparison of E-field and surface currents with	
	reflection loss performance of three different elements at	
	variable LC thickness	110
Table 4.20:	Dynamic phase range and frequency tunability	
	performance of three different elements based on variable	
	thickness of LC layer	111
Table 4.21:	E-fields and reflection loss performance of different	
	resonant patch elements based on variable LC substrate	
	thickness	115
Table 4.22:	Dynamic phase range and frequency tunability	
	performance of three different elements based on variable	
	thickness of LC layer	117
Table 4.23:	Simulated and formulated dynamic phase ranges of	
	rectangular, dipole and ring elements	123
Table 4.24:	Simulated and formulated tunable frequency ranges of	
	rectangular, dipole and ring elements	125

Table 5.1: Comparison between designed and fabricated dimensions	
of reflectarray resonant elements	130
Table 5.2: Reflection loss and surface currents of different resonant	
elements printed on Rogers RT/d 5880	137
Table 5.3: Reflection phase and FoM values of different resonant	
elements printed on rogers RT/d 5880	138
Table 5.4: Reflection loss and resonant frequency of different	
resonant elements based on K-15 LC material	142
Table 5.5: Static phase range and FoM of different resonant elements	
based on K-15 LC material	144
Table 5.6: Comparison between simulated and measured results of	
different active reflectarray elements	147
Table 5.7: Comparison between simulated and measured dynamic	
phase range of different active reflectarray elements	150
Table 5.8: Tuning time and FoM of different active reflectarray	
resonant elements	151

LIST OF FIGURES

Figure 1.1:	A parabolic reflector antenna with centre feed point	2
Figure 1.2:	Operation of phased arrays	3
Figure 1.3:	Operation of (a) parabolic reflector (b) reflectarray	
	antenna	6
Figure 1.4:	A 2 X 2 rectangular patch reflectarray antenna with	
	proper element spacing	8
Figure 1.5:	Applications of reflectarrays	10
Figure 2.1:	A reflectarray element placed in an infinite array	
	approach	15
Figure 2.2:	Incident and reflected E-fields of a reflectarray element	16
Figure 2.3:	Different types of reflectarray patch elements	17
Figure 2.4:	(a) Surface current on the patch element (b) E-fields	
	inside the substrate material	18
Figure 2.5:	Reflection loss and bandwidth of reflectarray antenna	20
Figure 2.6:	Reflection phase of reflectarray antenna	21
Figure 2.7:	Paper results of different reflection magnitudes at various	
	loss tangent values (Rajagopalan & Rahmat-Samii 2010)	24
Figure 2.8:	Paper results of different reflection magnitudes at	
	different substrate thicknesses (Rajagopalan & Rahmat-	
	Samii 2010)	25
Figure 2.9:	Paper results of different reflection phase curves at	
	different substrate thicknesses (Rajagopalan & Rahmat-	
	Samii 2010)	26
Figure 2.10): Multiple bounces of energy in different substrate	
	thicknesses of reflectarray antenna	26
Figure 2.11	1: Unit cell for two layer reflectarray antenna (Encinar &	
	Barba 2010)	28

Figure 2.12: Reflectarray antenna with two separate feeds to transmi	it
and receive at different frequencies (Encinar & Barba	
2010)	28
Figure 2.13: Multi-band reflectarray antenna with top and bottom	
stacked layer configuration (Huang et al. 2007)	29
Figure 2.14: The concentric split ring square reflectarray element	
(Yusop et al. 2009)	30
Figure 2.15: Alignment of molecules of dielectric anisotropic	
material with respect to an external electric field	33
Figure 2.16: Effect of temperature on three physical states of K-15	
Nematic liquid crystal	35
Figure 2.17: The rod like molecular arrangement of (a) Nematic	
phase LC (b) Smectic phase LC (c) Cholestric phase LC	37
Figure 2.18: Dipole moment P inside the dielectric non-linear	
material without and with an external electric charge	39
Figure 2.19: Side view of a phase shifter based on LC material	
(Moessinger et al. 2010)	41
Figure 2.20: Phase shift of phase shifter based on LC material	
(Moessinger et al. 2010)	42
Figure 2.21: Phase shift of BST phase shifter at different bias	
voltages (Velu et al. 2007)	42
Figure 2.22: Structure of millimetre wave beam former using LC	
(Kamoda et al. 2004)	43
Figure 2.23: Salisbury screen microwave absorber, without and with	1
a tunable voltage (Seman et al. 2009)	45
Figure 2.24: Design configuration of unit cell rectangular patch	
tunable reflectarray antenna (Ismail et al. 2007)	46
Figure 2.25: Three finger design of cascaded dipole elements (Bildil	ĸ
et al. 2011)	47
Figure 3.1: Summary of the process of research work	49
Figure 3.2: Boundary conditions for an infinite reflectarray element	
in (a) CST MWS and (b) Ansoft HFSS	51
Figure 4.1: Design layout of square patch reflectarray element	56

Figure 4.2: Re	flection loss curves based on CST and HFSS	
sir	nulations for different loss tangent values	57
Figure 4.3: Re	flection magnitude curves at different substrate	
thi	cknesses (t)	59
Figure 4.4: Re	flection phase curves at different substrate thicknesses	
(t)		61
Figure 4.5: Bu	ilt model of phase shifter element (a) Front view (b)	
Bo	ottom view (Moessinger et al. 2010)	64
Figure 4.6: S1	1 and S21 parameters of phase shifter element	65
Figure 4.7: Ph	ase shift analysis of phase shifter element	66
Figure 4.8: Re	flection loss curves of some dielectric homogenous	
ma	aterials	67
Figure 4.9: Re	flection phase curves of some dielectric homogenous	
ma	aterials	69
Figure 4.10: E	lectric field intensity and reflection loss with respect to	
fre	equency	70
Figure 4.11: C	urrent density in logarithmic scale with respect to	
fre	equency	71
Figure 4.12: C	current density and electric intensity vs reflection loss	72
Figure 4.13: E	ffect of dielectric constant over electric flux density	
an	d static phase range	72
Figure 4.14: R	eflection loss curves of some non-homogeneous	
ma	aterials	74
Figure 4.15: D	ynamic phase range of some non-homogeneous	
ma	aterials at 10 GHz	76
Figure 4.16: D	ynamic phase and frequency tunability vs dielectric	
an	isotropy of non-homogeneous materials	77
Figure 4.17: C	current density vs frequency for different non-	
ho	mogeneous materials	78
Figure 4.18: E	lectric field intensity and electric flux density vs	
die	electric anisotropy	80
Figure 4.19: E	lectric flux density range vs dynamic phase range of	
no	n-homogeneous materials	80

Figure 4.20: Reflection loss and frequency tunability of rectangular	
patch reflectarray unit cell based on BST substrate	82
Figure 4.21: Distorted reflection phase curves of rectangular patch	
reflectarray unit cell based on BST substrate	83
Figure 4.22: Design configuration of LC based reflectarray with	
different resonant elements	84
Figure 4.23: Reflection loss performance of different resonant	
elements printed on an LC material	85
Figure 4.24: Current distribution on the surface of resonant elements	
with reflecting areas printed on LC-B1 material	86
Figure 4.25: Dynamic phase ranges of different reflectarray resonant	
elements	88
Figure 4.26: Design configuration of proposed tunable microwave	
absorber	90
Figure 4.27: Reflection loss curves with band-pass and band-stop	
frequencies of microwave absorber	92
Figure 4.28: Reflection phase curves of tunable microwave absorber	93
Figure 4.29: Built model of tunable reflectarray antenna	94
Figure 4.30: (a) Reflection loss and (b) reflection phase curves, for	
different reflectarray elements of Design 1	95
Figure 4.31: (a) Surface current density and (b) E-field lines in LC	
substrate, for different reflectarray elements of Design1	96
Figure 4.32: Design configuration of tunable reflectarray antenna	97
Figure 4.33: (a) Reflection loss and (b) reflection phase curves, for	
different reflectarray elements of Design 2	98
Figure 4.34: (a) Surface current density and (b) E-field lines in LC	
substrate, for different reflectarray elements of Design2	99
Figure 4.35: Structural model of tunable reflectarray antenna	100
Figure 4.36: (a) Reflection loss and (b) reflection phase curves, for	
different reflectarray elements of Design 3	101
Figure 4.37: (a) Surface current density and (b) E-field lines in LC	
substrate, for different reflectarray elements of Design3	102
Figure 4.38: Proposed design configuration of tunable reflectarray	
antenna	103

Figure 4.39: (a) Reflection loss and (b) reflection phase curves, for	
different reflectarray elements of Design 4	104
Figure 4.40: (a) Surface current density and (b) E-field lines in LC	
substrate, for different reflectarray elements of Design4	105
Figure 4.41: LC based two patch unit cell element with Aluminium	
supporting structure	107
Figure 4.42: Effect of LC thickness on E-fields and surface currents	
of three different elements	109
Figure 4.43: Concentration of surface currents on Aluminium	
material used for rectangular LC cavity	109
Figure 4.44: Reflection loss versus substrate thickness for three	
different elements	111
Figure 4.45: LC based two patch unit cell element with Rogers	
supporting structure	112
Figure 4.46: Relationship between E-fields, surface currents and	
substrate thickness for different reflectarray elements	113
Figure 4.47: Concentration of surface currents on Rogers material	
used for rectangular LC cavity	113
Figure 4.48: Relationship between reflection loss and substrate	
thickness for different reflectarray elements	114
Figure 4.49: Relationship between frequency tunability and substrate	
thickness for different reflectarray elements	116
Figure 4.50: Relationship between dynamic phase range and	
substrate thickness for different reflectarray elements	116
Figure 4.51: Vector representation of surface currents on reflectarray	
patch element, in the presence of incident electric field	119
Figure 5.1: X-band waveguide simulator for scattering parameter	
measurements	128
Figure 5.2: Design layout of a two patch reflectarray unit cell element	
(a) front view (b) side view	129
Figure 5.3: Fabricated reflectarray unit cells printed on Rogers RT/d	
5880	130
Figure 5.4: Design of the two patch unit cell active reflectarray	
element (a) side view (b) substrate view	131

Figure 5.6: Arrangement of fabricated unit cell along with	
encapsulator from top to bottom (1-4)	133
Figure 5.7: Process for filling of LC material inside the fabricated	
reflectarray unit cell (a) model of cavity based substrate	
(b) the LC filling process (c) the fully filled LC cavity	134
Figure 5.8: Measurement set-up for active reflectarray unit cells	135
Figure 5.9: Reflection loss performance of different reflectarray	
resonant elements based on a linear material	137
Figure 5.10: Reflection phase performance of passive reflectarray	
resonant elements based on linear material	138
Figure 5.11: Comparison between simulated and measured reflection	
loss curves of rectangular element based on K-15 nematic	
LC	140
Figure 5.12: Simulated and measured reflection loss curves of three	
different reflectarray elements based on LC material	142
Figure 5.13: Simulated and measured reflection phase curves of three	
different reflectarray elements based on LC material	143
Figure 5.14: Simulated and measured reflection loss curves of active	
reflectarray rectangular element	145
Figure 5.15: Simulated and measured reflection loss curves of active	
reflectarray dipole element	146
Figure 5.16: Simulated and measured reflection loss curves of active	
reflectarray ring element	146
Figure 5.17: Simulated and measured reflection phase curves of	
active reflectarray rectangular element	148
Figure 5.18: Simulated and measured reflection phase curves of	
active reflectarray dipole element	149
Figure 5.19: Simulated and measured reflection phase curves of	
active reflectarray ring element	149

xix

LIST OF APPENDICES

APPENDIX

TITLE PAGE

A	Flow Chart of the Project	162
В	Rogers 5880 and Rogers 5870 Data Sheet	163
С	Graphical comparison between CST and HFSS	
	simulations based on different proposed configurations	165

LIST OF PUBLICATIONS

Journals:

- M. Y. Ismail and M. Hashim Dahri, "Tunability Performance of Reflectarrays Based on Non-Linear Material Properties", American Journal of Engineering and Applied Sciences, 2013, Volume 6, Issue 1, Pages 25-30.
- M. Hashim Dahri and M. Y. Ismail, "Performance Analysis of Reflectarray Resonant Elements based on Dielectric Anisotropic Materials", in Procedia Engineering, Volume 53, 2013, Pages 203–207.
- M. Y. Ismail and M. Hashim Dahri, "Tunable Reflectarray Resonant Elements based on Non-linear Liquid Crystals", in Journal of Advanced Materials Research, Volume 746, 2013, Pages 357-362.
- M. Y. Ismail, M. Inam and M. H. Dahri, "Phase Characterization of Reconfigurable Reflectarray Antennas", in International Journal on Electrical Engineering and Informatics, Volume 5, Number 4, December 2013.
- (v) M. Y. Ismail and M. Hashim Dahri, "Microwave Absorption Analysis of Passive and Active Reflectarray Resonant Elements", accepted for publication in International Journal of Electrical Engineering and Informatics.

Proceedings:

- M. Y. Ismail and M. Hashim Dahri, "Tunable Reflectarray Resonant Elements based on Non-linear Liquid Crystals", in International Conference on Material Science and Technology (ICMST 13), Hong Kong, 2013.
- M. Y. Ismail, M. Hashim Dahri and W. N. Zaihasra, "Characterization of Material Properties for Tunable Reflectarray Antenna Design", in 2012 National Conference on Physics (PERFIK 2012), published in American Institute of Physics (AIP) Conference Proceedings 1528, pages 237-242.
- M. Yusof Ismail and M. Hashim Dahri, "Analytical Investigation of Phase Agile Reflectarray Elements Based on Non-Linear Materials", in International Conference on Electrical, Computer, Electronics and Communication Engineering ICECECE 2012, Bali, Indonesia October 24-25, 2012.
- M. Hashim Dahri and M. Y. Ismail, "Phase Distribution Analysis of Reflectarray Resonant Elements based on Linear and Non-linear Materials", in International Symposium on Telecommunication Technologies (ISTT2012), 26-28 November 2012 in Kuala Lumpur, Malaysia.
- M. Hashim Dahri and M. Y. Ismail, "Performance Analysis of Reflectarray Resonant Elements based on Dielectric Anisotropic Materials", in Malaysian Technical Universities Conference on Engineering & Technology (MUCET 2012), November 2012.
- M. Y. Ismail and M. Hashim Dahri, "Microwave Absorption Analysis of Reflectarray Resonant Elements Based on Non-Homogeneous Substrate", 15th International Symposium of Antenna Technology and applied Electromagnetics (ANTEM) 25–28 June 2012 – Toulouse France.
- M. Hashim Dahri and M. Yusof Ismail, "Performance Analysis of Reflectarray Antenna Elements Printed on Non-linear Dielectric Materials," Progress in Electromagnetic Research Symposium (PIERS 2012), Malaysia, March 2012.
- (viii) M.Y. Ismail, M. Inam and M. Hashim Dahri, "Reconfigurable Reflectarray

Antennas: An Alternative Novel Solution for Satellite Communication Systems". Invited talk in 9th International Conference on Frontiers of Information Technology (FIT), December 2011, Islamabad, Pakistan.

- M. Hashim Dahri and M.Yusof Ismail, "Phase Distribution Analysis of (ix) Reflectarrays based on Variable Material Properties," IEEE Student Conference on Research and Development (SCORED 2011), Malaysia, December 2011.
- M. Hashim Dahri and M. Yusof Ismail, "Tunability Performance of (x) Reflectarray Elements based on Anisotropic Substrates," International Seminar on the Application of Science & Mathematics (ISASM 2011), November 2011.
- (xi) M. Hashim Dahri and M. Yusof Ismail, "Phase Distribution Analysis of Reflectarrays Based on Isotropic and Anisotropic Substrate Materials,"

LIST OF AWARDS

- Silver Medal, "Tunable Microwave Absorber for Wireless Systems", International Technology Invention and Innovation Exhibition (ITEX 2012), May 2012, Kuala Lumpur Malaysia.
- Silver Medal, "Non-Resonant Microwave Absorber for Mobile Radio Environment", Malaysia Technology Expo (MTE 2012), February 2012, Kuala Lumpur Malaysia.
- (iii) Consolation Prize, "Non-Resonant Microwave Absorber for Mobile Radio Environment" Research and Innovation Compete, November 2011, UTHM.
- (iv) Gold Medal, "Multi-function dynamic Steerable Flat Antenna", International Conference and Exposition on Invention of institutions of Higher Learning (PECIPTA 2011), September 2011, Kuala Lumpur, Malaysia.

CHAPTER 1

INTRODUCTION

Throughout the time, one thing that has distinguished humans from other creatures is their ability to exchange ideas and other information. That is, humans can communicate and share the information between each other. In ancient times, fire was first used as a communication tool by Chinese. Ancient Egyptians and Romans were able to use some sound making instruments to convey their messages at a distance. It is this capability that has played a big part in the development of human civilization. In fact, as our civilization continues to grow, the advancement in our communication capacity is required. The one of the first application of the new field of electricity was to extend our communication range. This was accomplished through the use of wires and telegraphy. Messages were sent by turning electrical currents on and off in accordance with a telegraph code. This system gradually evolved into the telephone system where the electrical currents are varied at audio rate. Thus the spoken word can be conveyed between two distant points. However, the telephone system still required wires, which limited its capabilities. Thus, the next development was to move towards "wireless" communications in the form of radio waves. This greatly extended the communication range, which was useful to communicate with ships at sea and remote areas of the world. Wireless or radio communications represented a significant advancement. The signals were brought to send into the free space without using any wired media with the help of a device called "Antenna".

Antenna is a device which converts electrical signals into the radio waves and make them capable to propagate into the free space (Balanis 2005). The idea of an antenna was first introduced by Heinrich Hertz in 1886, during his work to prove the existence of electromagnetic field which was first predicted by James Clerk Maxwell in 1873 (Pozar 2005). But it was Guglielmo Marconi who was able to send

REFERENCES

- Askeland, D., Fulay, P. & Wendelin, W., 2010. *The Science and Engineering of Materials*, Cengage Learning.
- Bahadur, B., 1990. Liquid Crystals: Applications and Uses 1st ed., World Scientific.
- Balanis, C.A., 2005. Antenna; Theory Analysis and Design 3rd ., John Wiley and sons.
- Berry, D.C., Malech, R.G. & Kennedy, W.A., 1963. The reflectarray antenna. *IEEE Transactions on Antennas and Propagation*, 11(6), pp.645 651.
- Bialkowski, M.E. & Sayidmarie, K.H., 2008. Phasing Characteristics of a Single Layer Microstrip Reflectarray Employing Various Basic Element Shapes. In 2008 International Workshop on Antenna Technology Small Antennas and Novel Metamaterials.
- Bildik, S. et al., 2011. Reconfigurable liquid crystal reflectarray with extended tunable phase range. In 2011 8th European Radar Conference. IEEE, pp. 404–407. Available at: http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=6101792.
- Bildik, S. et al., 2012. Temperature investigations of liquid crystal based reconfigurable reflectarrays. In 15th International Symposium on Antenna Technology and Applied Electromagnetics (ANTEM), 2012. Toulouse, pp. 1–4.
- Bulja, S. et al., 2010. Measurement of Dielectric Properties of Nematic Liquid Crystals at Millimeter Wavelength. *IEEE Transactions on Microwave Theory And Techniques*, 58(12), pp.3493–3501. Available at: http://discovery.ucl.ac.uk/862382/.
- Chan, H.L., 1999. Smart ferroelectric materials for sensors and mechatronic device applications. In *IEEE Electron Devices Meeting*. Hong Kong, pp. 68 71.
- Dankov, P.I., Levcheva, V.P. & Peshlov, V.N., 2005. Utilization of 3D simulators for characterization of dielectric properties of anisotropic materials. In 2005 *European Microwave Conference*. pp. 517–520.
- Dolfi, D. et al., 1993. Liquid crystal microwave phase shifter. *Electronics Letters*, 29(10), pp.926–928.

- Encinar, J. & Barba, M., 2010. Design manufacture and test of Ka-band reflectarray antenna for transmitting and receiving in orthogonal polarization. In *14th International Symposium of Antenna Technology and Applied Electromagnetics* (ANTEM). America, pp. 1–4.
- Encinar, J. & Barba, M., 2008. Reflectarray for K/Ka Band Terminal Antenna. In *Proceedings of 30th ESA Antenna Workshop on Antennas for Earth Observation, Science, Telecommunication and Navigation Space Missions*. European Space Agency.
- Fowler, C., 1998. Old radar types never die; they just phased array or ... 55 years of trying to avoid mechanical scan. Aerospace and Electronic Systems Magazine, 13(9), p.24A–24L.
- Fusco, V.F. et al., 2008. Ultra-thin tunable microwave absorber using liquid crystals. *Electronics Letters*, 44(1), pp.5–6. Available at: http://ieeexplore.ieee.org/xpl/freeabs_all.jsp?arnumber=4415016.
- Gaebler, A. et al., 2009. Liquid Crystal-Reconfigurable Antenna Concepts for Space Applications at Microwave and Millimeter Waves. *International Journal of Antennas and Propagation*, 2009, pp.1–7. Available at: http://www.hindawi.com/journals/ijap/2009/876989/.
- Huang, J., 1995. Analysis of microstrip reflectarray antenna for microspacecraft applications, Spacecraft Telecommunications Equipment Section.
- Huang, J., 1991. Microstrip reflectarray. Antennas and Propagation Society Symposium 1991 Digest, pp.612–615. Available at: http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=174914.
- Huang, J. et al., 2007. Multiband reflectarray development.
- Huang, J. & Encinar, J., 2007. Reflect Array Antennas, USA: Wiley Inter Science.
- Ida, N., 2004. Engineering Electromagnetics, Springer.
- Inam, M. & Ismail, M.Y., 2011a. Reflection loss and bandwidth performance of Xband infinite reflectarrays: simulations and measurements. *Microwave and Optical Technology Letters (MOTL)*, 53(1), pp.77 – 80.
- Inam, M. & Ismail, M.Y., 2011b. Scattering parameter measurements of infinite tunable reflectarrays. In 2011 7th International Conference on Emerging Technologies. IEEE, pp. 1–4.
- Ismail, M. et al., 2007. Phase agile reflectarray cells based on liquid crystals. *Microwaves, Antennas & Propagation, IET*, 1(4), pp.809–814.
- Ismail, M.Y. et al., 2009. Investigation of static phasing distribution Ccharacteristics of passive reflectarray antenna elements. In *PIERS Proceedings*. Moscow, Russia, pp. 18 – 21.

- Ismail, M.Y. & Cahill, R., 2005. Beam steering reflectarrays using liquid crystal substrate. In *High Frequency Postgraduate Student Colloquium*. pp. 62–65.
- Ismail, M.Y. & Inam, M., 2010a. Analysis of design optimization of bandwidth and loss performance of reflectarray antennas based on material properties. *Modern Appl Sci J CCSE*, 4, pp.28 35.
- Ismail, M.Y. & Inam, M., 2010b. Performance improvement of reflectarrays based on embedded slots configurations. *Progress In Electromagnetics Research C*, 14, pp.67 78.
- Ismail, M.Y. & Inam, M., 2012. Resonant Elements for Tunable Reflectarray Antenna Design. *International Journal of Antennas and Propagation*, 2012, p.6.
- Ismail, M.Y., Inam, M. & Zaidi, A.M.A., 2010. Reflectivity of reflectarrays based on dielectric substrates. *American J. of Engineering and applied Sciences*, 3(1), pp.180 – 185.
- Ismail, M.Y. & Zain, A F M, 2009. Phase tunability of reflectarray patch elements using tunable dielectric substrate of nematic liquid crystal. In 2009 IEEE International Workshop on Antenna Technology. Ieee, pp. 1–4. Available at: http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=4906880.
- Jakoby, R et al., 2004. Nonlinear dielectrics for tunable microwave components. In 15th International Conference on Microwaves, Radar and Wireless Communications, 2004. MIKON-2004. pp. 369–378.
- Kamoda, H. et al., 2004. Millimeter-wave beam Former using liquid crystal. In *34th European Microwave Conference*. Amsterdam, pp. 1141 1144.
- Karabey, O. et al., 2011. Methods for improving the tuning efficiency of liquid crystal based tunable phase shifters. In *European Microwave Integrated Circuits Conference (EuMIC)*. pp. 494–497.
- Kelly, S.M. & O'Neill, M., 2000. Liquid Crystals for Electro-Optic Applications. In H. S. Nalwa, ed. *Handbook of Advanced Electronic and Photonic Materials and Devices*. California: Academic Press, pp. 1–66.
- Kuki, T, Fujikake, H & Nomoto, T, 2002. Microwave variable delay line using dualfrequency switching-mode liquid crystal. *IEEE Transactions on Microwave Theory And Techniques*, 50(11), pp.2604–2609. Available at: http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=1046036.
- Martin, N. et al., 2003. Patch antenna adjustable in frequency using liquid crystal. In *33rd European Microwave Conference Proceedings IEEE Cat No03EX723C*. IEEE, pp. 1–4. Available at: http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=1262986.
- Matthew, N. & Sadiku, O., 2007. *Elements of Electromagnetics*, Oxford University Press.

- Moessinger, A. et al., 2010. Compact tunable ka-band phase shifter based on liquid crystals. *Microwave Symposium Digest MTT 2010 IEEE MTTS International*, 1(c), pp.1020–1023. Available at: http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=5517405.
- Nornikman, H. et al., 2010. Effect on source signal condition for pyramidal microwave absorber performance. In *International Conference on Computer* and Communication Engineering (ICCCE). pp. 11–12.
- Pozar, D.M., 2005. Microwave Engineering 3rd ed., USA: John Wiley and sons.
- Pozar, D.M. & Metzler, T.A., 1993. Analysis of a reflectarray antenna using microstrip patches of variable size. *Electronics Letters*, 29(8), pp.657–658. Available at: http://link.aip.org/link/ELLEAK/v29/i8/p657/s1&Agg=doi.
- Pozar, D.M., Targonski, S.D. & Syrigos, H.D., 1995. Analysis and design of millimeter wave microstrip reflectarrays. *IEEE Antennas and Propagation Society International Symposium 1995 Digest*, 1(2), pp.287–296. Available at: http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=560348.
- Pozar, D.M., Targoski, D. & Syrigos, H.D., 1997. Design of millimeter wave microstrip reflectarrays. *IEEE Transactions on Antennas Propagation*, 45(2).
- Rajagopalan, H. & Rahmat-Samii, Y., 2008a. Dielectric and conductor loss quantification for microstrip reflectarray: simulations and measurements. *IEEE Transactions on Antennas and Propagation*, 56(4), pp.1192–1196. Available at: http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=4483612.
- Rajagopalan, H. & Rahmat-Samii, Y., 2008b. Loss quantification for microstrip reflectarray: Issue of high fields and currents. In 2008 IEEE Antennas and Propagation Society International Symposium. pp. 1–4. Available at: http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=4619755&isnumber =4618896.
- Rajagopalan, H. & Rahmat-Samii, Y., 2010. On the reflection characteristics of a reflectarray element with low-loss and high-loss substrates. *IEEE Antennas and Propagation Magazine*, 52(4), pp.73–89. Available at: http://ieeexplore.ieee.org/xpl/freeabs_all.jsp?arnumber=5638237.

Rappaport, T.S., 2003. Wireless Communication Systems 2 nd., Prentice Hall.

- Seman, F.C., Cahill, R. & Fusco, V.F., 2009. Electronically tunable liquid crystal based Salisbury screen microwave absorber. In 2009 Loughborough Antennas Propagation Conference. pp. 93–96.
- Serway, A.R. & Jewet, W.J., 2009. *Physics for Scientists and Engineers* 8th ed., Cengage Learning.

- Shrout, T.R. & Swartz, S.L., 1992. Processing of ferroelectric and related materials: a review. In ISAF 92 Proceedings of the Eighth IEEE International Symposium on Applications of Ferroelectrics. pp. 80–88.
- Skolnik, M.I., 2008. Radar Handbook 3rd ed., USA: McGraw Hill .
- Sulaiman, N.H. & Ismail, M.Y., 2013. Dual Frequency X-Band Reflect Array Antenna using Dual Gap. *Procedia Engineering*, 53, pp.271–277.
- Tennant, A. & Chambers, B., 2004. A single-layer tuneable microwave absorber using an active FSS. *IEEE Microwave and Wireless Components Letters*, 14(1), pp.46–47.
- Trushkevych, O. et al., 2010. Dielectric anisotropy of nematic liquid crystals loaded with carbon nanotubes in microwave range. *Electronics Letters*, 46(10), pp.693 695.
- Velu, G. et al., 2007. A 360° BST phase shifter with moderate bias voltage at 30 GHz. *IEEE Transactions on Microwave Theory And Techniques*, 55(2), pp.438–444.
- Xie, J. et al., 2010. Application of monopulse techniques in angle-measuring of single-beam mechanical scanning radar. In *3rd International Congress on Image and Signal Processing (CISP)*. IEEE, pp. 2971–2974.
- Yaghmaee, P. et al., 2013. Electrically Tuned Microwave Devices Using Liquid Crystal Technology. *International Journal of Antennas and Propagation*, 2013, p.9.
- Yusop, S.H. et al., 2009. Analysis of concentric split ring square reflectarray element for bandwidth enhancement. In 2009 International Conference on Space Science and Communication.
- Zhang, S., Wan, Q. & Wang, H., 2011. DOA estimation in mechanical scanning radar systems using sparse signal reconstruction methods. In 2011 7th International Conference on Wireless Communications Networking and Mobile Computing. IEEE, pp. 1–4.

