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ABSTRACT 

 

 
 

The research described in this dissertation is a comprehensive account of an attempt, 

for the first time, correlates the secondary pores structural and physicochemical properties of 

polystyrene nanospheres/cadmium metal nanoparticles (PSNs/CdMNPs) composite thin film 

with its adsorption and catalytic properties. The PSNs/CdMNPs composites were fabricated 

on a hydrophilic silicon wafer through self-assembly process from its aqueous colloidal. The 

existence of secondary pores and atomic particles of cadmium were clarified by using a field 

emission scanning electron microscopy (FESEM) and an energy dispersive X–ray (EDX) 

spectroscopy, respectively. Physical and chemical physical stability of the secondary pores 

were tested toward continuous laser irradiation of 633 nm wavelength and oxygen/argon 

reactive ion etching (O2/Ar RIE), respectively. Thermal catalytic effect of CdMNPs was 

investigated through thermogravimetry/differential thermal analysis (TG/DTA). Any 

chemical bond change of the PSNs/CdMNPs composite due to both CdMNPs and adsorbate 

molecules were confirmed by using an attenuated total reflectance–Fourier transform infrared 

(ATR–FTIR) spectroscopy. The capability of adsorption and catalysis of the secondary pores 

were clarified to adsorb and degrade tartazine as a model compound. It was found that the 

fabricated secondary pores were composed of dumbbell-like nanostructure with >100 nm 

pores in size had better adsorption capability than other adsorbents. It was demonstrated that 

the Freundlich constants ratio expressed as KF/n was 1.715 10
4
. This value is much higher 

than previously reported for coconut shell activated carbon (CSAC), i.e. 0.158 and 

commercial activated carbon (CAC), i.e. 0.403. The rate of catalytic degradation of tartrazine 

on secondary pores was 0.718 µmol min
–1

 and a good agreement with pseudo first–order 

kinetics. Nanostructures of the secondary pores of PSNs/CdMNPs were not significantly 

changed under 633 nm continuous laser irradiation for 20 minutes as well as under O2/Argon 

RIE (30 sccm argon flow rate, 15 sccm oxygen flow rate, 20 seconds) suggesting a strong 

structural integrity of the secondary pores. Based on these results, it was concluded that 

PSNs/CdMNPs composites thin film secondary pores showed the adsorption and catalytic 

capabilities and is considered a potential adsorbent and catalyst.  
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ABSTRAK 

 

 

 

Penyelidikan yang diterangkan dalam disertasi ini adalah penjelasan percubaan yang 

komprehensif, untuk pertama kalinya, untuk mengaitkan sifat-sifat struktur dan fisikokimia 

liang sekunder daripada filem nipis komposit polistirena nanosfera/kadmium logam 

nanopartikel (PSNs/CdMNPs) dengan penjerapan dan sifat pemangkin. Komposit 

PSNs/CdMNPs telah difabrikasi pada wafer silikon hidrofilik melalui proses memasang diri 

daripada koloid berair itu. Kewujudan liang sekunder dan adanya partikel atom kadmium 

deselidiki masing-masing dengan menggunakan mikroskop imbasan pelepasan elektron 

(FESEM) dan spektroskopi tenaga serakan sinar–X (EDX). Ketahanan fizikal dan kimia liang 

sekunder itu diuji masing-masing dengan penyinaran laser berterusan  633 nm dan pemaparan 

ion reaktif oksigen/argon (O2/Ar RIE). Sifat pemangkin CdMNPs disiasat melalui 

termogravimetri/pembezaan analisis terma (TG/DTA). Apa-apa perubahan ikatan kimia 

daripada komposit PSNs/CdMNPs kerana kewujudan CdMNPs serta kehadiran molekul 

terjerap disahkan dengan menggunakan spektroskopi mengubah pantulan–inframerah Fourier 

yang dilemahkan (ATR–FTIR). Keupayaan penjerapan dan pemangkinan daripada liang 

sekunder komposit PSNs/CdMNPs diuji untuk menjerap dan untuk mendegradasi tartazine 

sebagai sebatian model. Ditemukan keputusan daripada FESEM yang menunjukkan 

pembentukan liang sekunder di PSNs/CdMNPs yang terdiri daripada bahan berstruktur nano 

yang berbentuk seperti halter dengan liang sekunder bersaiz > 100 nm. Struktur liang 

sekunder ini mempunyai keupayaan penjerapan tartrazin yang lebih tinggi berbanding dengan 

adsorben lainnya yang terbuat dari pada  liang primer. Hal ini terlihat dari nisbah pemalar 

Freundlich daripada liang sekunder komposit PSNs/CdMNPs yang dinyatakan sebagai KF/n 

adalah 1.715 10
4
.  Nilai ini adalah lebih tinggi daripada yang dilaporkan sebelum ini bagi 

karbon tempurung kelapa aktif (CSAC), iaitu 0.158 dan karbon aktif komersial (CAC), iaitu 

0,403. Ciri degradasi tartrazine kerana kewujudan CdMNPs dalam liang sekunder bersesuaian 

dengan kinetika derajat pertama semu dengan laju degradasi 0.718 μmol min
-1

. Nanostruktur 

liang sekunder PSNs/CdMNPs tidak ketara berubah di bawah penyinaran laser berterusan 633 

nm selama 20 minit dan juga O2/Argon RIE (30 sccm kadar aliran argon, 15 sccm kadar 

aliran oksigen, 20 saat) menunjukkan integriti struktur yang kuat daripada liang sekunder itu. 

Berdasarkan keputusan ini, dapat disimpulkan bahawa liang sekunder filem nipis komposit  

PSNs/CdMNPs  menunjukkan penjerapan dan keupayaan pemangkin dan dianggap sebagai 

adsorben dan pemangkin yang berpotensi. 
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tm: Thickness of covering metal 

TMAP Total amount of metal atomic particles covered fully a surface 

area of each PSNs particle  

tMAPS Thickness of metal atomic single layer covered the associated 

PSNs particle 

TMCPSNs Thickness of metal covering a PSNs surface 
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The direction of PVP molecule on stabilizing metal-covered 
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CHAPTER 1 

 

 

INTRODUCTION 

 

 

1.1 Background 

 

 

Recently, composite materials have attracted a great deal of attention due to its 

advantageous properties for various applications in the development of products in 

various aspects of human life. It is because the properties of composites are closely 

related to their constituent materials which are significantly different physical or 

chemical properties, and the materials work together to provide the composite unique 

properties [1–4]. Among of the composites materials, specifically, a porous polymeric 

matrix composite (PMC) of metal nanoparticles (MNPs) has shown very useful 

adsorptive and catalytic properties. They have a variety of application in the fields of 

sensors, controlled-drug-released agents and column-packing material [5–8], refining 

and chemical industry, fuel cells and photovoltaic cells [9], air purification, sewage 

disposal, environmental pollution control and medicine filtering [10–12] and so on. 

The physical and chemical properties of the composites are significantly enhanced 

when one of its constituents is within 1–100 nm in size, namely nanocomposite 

materials [2,13–14]. In this situation, the nanocomposites have special physico–

chemical properties due to the quantum size effect and high specific surface area to 

volume ratio which are different from their atomic or bulk counterparts [15–17]. 
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Nanoparticles of the transition metal oxides (TiO2, CuO, ZnO)[1,18,19]   and 

the transition metals (Ag, Au, Co, Pt, Fe, Zn, Cd)[7,8,20–22] are widely used as the 

constituents for the polymer/MNPs composite-based porous materials manufacturing 

for diverse applications. For instance, Jundale and his co-workers [1] have 

synthesized polyaniline/CuO nanocomposite for an optical and electrical transport 

material. Sandoval et al. [18] have synthesized a novel extruded polystyrene/TiO2 

nanocomposite material to degrade dye. Mu and his research team [22] have 

synthesized polyimide/ZnO nanocomposite for photoluminescence material. Another 

group of researchers [23] has synthesized polystyrene microfibers/CdS 

nanocomposite for electrical and optical material. Several previous works focused on 

composite/nanocomposite materials are listed in Appendix A. 

Almost all of the polymer matrixes mentioned above were porous solid-phase 

structure [1,19,22,23] of intraparticle pores type [24–26]. This is a big problem for the 

development of porous material engineering because the intraparticle pores are very 

difficult to be generated. The intraparticle pores generation always occur through 

polymerization process that requires many kinds of chemicals and this results in the 

difficulties to manufacture intraparticle pores-based porous materials with 

controllable size and shape [13,27,28]. In this context, it has been accepted that size, 

shape, and distribution of the pores are three very important factors in generating 

characters of the porous nanocomposite materials [15,18]. 

To date, many studies of the porous materials are commonly employing 

intraparticles pores-based porous materials [13,29] rather than interparticle pore–

based ones. This is because the first type of material is more dominant in surface area 

compared to the associated solid materials formed, as they are smaller in size, that 

provides higher total surface area to volume ratio than the second type of material 

[24].  

However, uncontrollable size, shape and uniformity of the intraparticle pores 

become a very serious problem for the porous nanocomposites‟ fabrication and 

development. It is because intraparticle pores generation always occur through 

polymerization process which requires many kinds of chemicals [13,27,28].  

Therefore interparticle pores are considered more controllable in size and shape to 

fabricate porous composite-based materials. In this research, aqueous monodispersion 

of polystyrene nanosphere (PSNs) of 200 nm size in average is used as polymeric 
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matrix for the intended porous composite thin film material. Study of the  

relationships of the size and shape with their adsorption and catalytic properties will 

be focused on the interparticles pores–based porous composite materials. 

Furthermore, the terms of primary pores and secondary pores will be used in this 

thesis instead of intraparticle pores and interparticle pores respectively.   

Adsorption and catalytic properties of the porous material are easier to be 

studied when it is in a solid phase. In particularly thin film solid–phase materials, they 

are commonly prepared as a colloidal system in the most suitable liquid medium to 

obtain nanoscale–size, shape and particles uniformity [2,30–32]. In the colloidal 

system, there are at least two kinds of components which are a dispersing medium as 

a continuous phase (including colloidal stabilizer) and dispersible particles of about 1 

nm–1 µm in size [13,33–35].  

Deposition of the colloidal system mentioned above on a convenient solid 

support material (noted as substrate) leads to self-assembly process [2,36–39]. 

However, cadmium metal nanoparticles (CdMNPs) have never been applied as a 

counterpart component in the fabrication of porous polymeric matrix composite 

material. It is commonly used either as CdS or CdSe for light-emitting device and 

solar cells that is incorporated into the polymer [40,41]. Therefore, we use CdMNPs  

metal nanoparticles instead of CdS and CdSe as a counterpart component to fabricate 

PSNs/CdMNPs composite thin film material with secondary pores generated among 

the PSNs/CdMNPs composite particles. This is because the study focused on the 

relationship between the size and shape of the secondary pores and its adsorption and 

catalytic properties rather than the electronic and electrical properties.  

On the other hand, tartrazine (trisodium–5–hydroxy–1–(4–sulfonatophenyl)–

4–(4–sulfonato–phenylazo)–H–pyrazol–3–carnoxylate)[42] is one of the synthetic 

dyes widely used in food; textile and paper coloring processing which has been 

reported could cause health problems at the level of bronchia and skin [43,44], 

allergies, asthma, migraine, blurred vision, thyroid cancer, mutagenic and lupus  

[42,45,46]. Tartrazine can endanger human life if it cannot be managed properly 

during the production and disposal process. At present, the most common treatment 

method for removal of tartrazine in waste water stream is adsorption [45–47] and 

oxidation catalytic degradation using metal oxide (TiO2) or hydrogen peroxide (H2O2) 

[43–44,48]. By these considerations, tartrazine was used to investigate the adsorption 
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and catalytic properties of the fabricated secondary pores of PSNs/CdMNPs 

composite thin film material.   

 

 

1.2   Problem statement  

 

 

The pore structure of a porous nanocomposite material is revealed from both 

intraparticle voids (primary pores) and interparticle voids (secondary pores) [24–26]. 

The shape and size of primary pores as well as pore uniformity are very difficult to be 

controlled. It is because they are generated from the polymerization reactions which 

require various kinds of chemicals (initiator, terminator, catalyst and appropriate 

medium) simultaneously employed [1,6,18,22,49–51].  On the other hand, the 

chemical as well as physical properties, particularly adsorption and catalytic 

properties of porous nanocomposite material are strictly determined by size, shape, 

and uniformity of not only the particles themselves but also the generated pores 

[2,5,52,53]. Therefore, qualitative classification of primary pores based on the size 

and shape has been performed [24–26]. They become micropores (the width is 

smaller than 2 nm), mesopores (the width is between 2 and 50 nm), and macropres 

(the width is larger than 50 nm), or they are classified as cylindrical shape, ink-bottle 

shape, and funnel shape.  However, secondary pores particularly in terms of the size 

and shape in correlation to the adsorption and catalytic properties of the associated 

materials have not been intensively studied yet as indicated by the limited number of 

papers published about this phenomenon [5,13,24,53]. As long as the time, 

interparticles voids or secondary pores of spherical shape materials were just utilized 

for the fabrication of nanostructure materials that commonly applied in lithography 

field [54,55].  

In nanomaterial science and engineering point of view, secondary pores can be 

utilized as a useful adsorbent since they have loading capacity for adsorptive 

materials are much bigger than that of primary pores. In addition, the secondary pores 

can also be used to embed or to incorporate any catalytic material for generating 

catalytic properties so that the associated incorporated material can be used as 
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catalyst. Therefore, the study of secondary pores of polystyrene nanospheres-based 

materials in relation to adsorption and catalysis is performed in this research.   

For the study, the problems are as follows:  

i. How can secondary pores of polystyrene nanospheres-based materials be 

synthesized and fabricated?  

ii. How is the secondary pores surface morphology of the fabricated materials and its 

physical and chemical stability? 

iii. How can the adsorption and catalytic properties of secondary pores of the 

fabricated polystyrene nanospheres-based materials be investigated?  

Secondary pores are also a very important factor which significantly influences the 

quality of any fabricated porous material [5,24–26,53]. Thus, the novelty and 

contributions of the study is about secondary pores: synthesis, fabrication, 

characterization, properties, and possibility of application as adsorbent and catalyst in 

the removal of tartrazine in correlation to their size, shape and distribution/uniformity.   

 

 

1.3 Hypothesis  

 

  

With regards to the definition of interparticle voids (secondary pores) [24–26] and a 

few references as stated in the previous section [1,6,18,49–51], the  hypotheses are as 

follows: 

i. PSNs-based secondary pores would be fabricated directly from aqueous colloidal 

PSNs particles without polymerization reactions by gently dropping the colloidal 

solution onto a hydrophilic silicon wafer surface, and the size and shape of the 

secondary pores could be enlarged significantly by cadmium metal nanoparticles 

(CdMNPs) that aggregate deposit between every two PSNs particles.  

ii. Physical and chemical stability of the fabricated secondary pores of 

PSNs/CdMNPs nanocomposite thin film can be increased by CdMNPs.  

iii. The capability of adsorption and catalysis properties of the fabricated secondary 

pores of PSNs/CdMNPs nanocomposite thin film can be investigated by using 

tartrazine as a water-soluble organic pollutant model.  
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1.4 Aim 

 

 

To fabricate polystyrene nanospheres/Cd metal nanoparticles (PSNs/CdMNPs) 

composite thin film material, explore its physical and chemical properties and apply it 

for the adsorption of water-soluble colored organic molecules, tartrazine and study of 

typical catalytic performance of the material. 

 

 

1.5  Objectives 

 

 

The objectives of this study are as follows: 

i. To fabricate secondary pores of PSNs/CdMNPs composite thin film material and 

investigate their specific surface morphology to determine their size and shape.  

ii. To investigate the secondary pores surface morphology and stability of the 

fabricated PSNs/CdMNPs composite thin film material.  

iii. To investigate the adsorption and catalytic properties of secondary pores of the 

fabricated PSNs/CdMNPs composite thin film material for removal of tartrazine.  

 

 

1.6 Scope 

 

 

In order to achieve the first objective, synthesis of PSNs/CdMNPs composite thin 

film material via aqueous colloidal system was carried out. It is because the size, 

shape, and uniformity of PSNs/CdMNPs particles would be generated in a colloidal 

system [56].  In this colloidal system, Cd metal precursor is reduced to become Cd 

metal nanoparticles using either chemical reagent (NaBH4) or physical treatment 

(high frequency ultrasound of 40 kHz for 45 minutes) [50,57,58]. Subsequently, the 

desired secondary pores of PSNs/CdMNPs composite thin film material were 

fabricated on a hydrophilic silicon wafer of 1 cm  1 cm size using gentle dropping 

method. FESEM was used to explore the surface morphology of the fabricated 
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secondary pores. This surface morphology provides a lot of information about the 

size, shape and distribution of the secondary pores.  

For the second objective, surface morphology of the fabricated secondary 

pores was explored using FESEM (JEOL JSM–7600 SM17600053, Japan). The 

success of CdMNPs incorporation onto PSNs particles was confirmed using Energy 

Dispersive X–ray (EDX) spectrometer (JEOL JSM–7600 SM17600053, Japan).  In 

addition, physical stability of secondary pores of the fabricated PSNs/CdMNPs 

composite thin film were investigated by continuous laser irradiation of 633 nm 

wavelength whereas chemical stability of the secondary pores were investigated  by 

oxygen/argon reactive ion exchange (O2/Ar RIE).      

As for the third objective; the optimum size, shape and distribution of the 

fabricated secondary pores of PSNs/CdMNPs composite thin film materials were used 

to adsorb tartrazine molecules through incubation method in batch system for a series 

of time: 5, 10, 15, 20 and 25 minutes under visible light lamps of the laboratory at 

ambient temperature and pressure. The adsorbed tartrazine in the secondary pores was 

confirmed by using ATR-FTIR spectrometer (LR 64912C, N3896, Perkin Elmer, 

U.S.A) equipped with a universal ATR sample holder and spectrum express FTIR 

software V1.3.2 Perkin Elmer LX100877–1. The adsorption characteristics of the 

pores were evaluated using both Langmuir and Freundlich isotherm adsorption. The 

catalytic characters were evaluated based on the curve trend correlated between the 

amount of tartrazine and adsorption time.  
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CHAPTER 2 

 

 

LITERATURE REVIEW 

 

 

2.1  Introduction 

 

 

In this chapter, a research study on the synthesis of self-assembled polystyrene 

nanospheres/cadmium metal nanoparticles (PSNs/CdMNPs) composite thin film for 

its application as an adsorbent and catalyst in the removal of tartrazine will be 

thoroughly reviewed.  

 

2.2 Pores Classification     

 

Based on reference [24–26], pore structure of solid materials can be classified into 

two main types, intraparticle voids (primary pores) and interparticle voids (secondary 

pores). In particular intraparticle voids, they can be distinguished further based on 

their size, shape, and interconnection to the surface of the associated particle.   

 Furthermore, based on the size of the pores, a pore is classified into three 

types [5,24–26,59]: 

i. Micropores that have widths smaller than 2 nm, 

ii. Mesopores that have widths between 2 and 50 nm, and  

iii. Macropores that have widths larger than 50 nm. 
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In addition, another size of 1–100 nm can be classified as nanopores since the size 

range is commonly used as a parameter of nano-scale-size material [2,14,60–62]. 

Currently, gigaporous material with pore size of 300-500 nm is also known [63].  

Based on the shape of the pores, a pore can be further classified into three types [24]: 

i. Cylindrical shaped pores,  

ii. Ink–bottle shaped pores, and   

iii. Funnel shaped pores.  

Based on the pore interconnection to the surface, a pore can be classified into 

two types [24]: 

i. Closed pores, and  

ii. Opened pores.  

Closed pores are defined as pores which are totally isolated from their 

neighbours, they have no access to the surface of the particle body. On the other hand, 

opened pores are defined as pores which have continual channel of communication 

with the external surface of the particle body, it may open only at the end (noted as 

blind pore or dead-end pore), or may open at two ends (noted as through pore) [24].  

In general, schematic illustration of the primary pore structure and configuration 

model is depicted in Figure 2.1. In special cases, schematic illustration of the primary 

pore structure and configuration model generated in PSNs particle body was proposed 

by Wibawa et al. (2011)[58] as depicted in Figure 2.2. 

 

Figure 2.1: Schematic illustration of primary pores classification based on the 

interconnection to the particle surface, and shape. (a) closed pores; (b, c, d, e) opened 

pores; (c, e, f) cylindrical shaped pores; (b) ink–bottle shaped pores; 

(d) funnel shaped pores [24] 

 

 

f 
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Figure 2.2: Schematic illustration of primary pores models revealed in PSNs particle 

body of 200 nm size. (a) India traditional trumpet–like pore; (b) face–to–face junction 

bottle neck–like pore; (c) randomly irregular form pore, and 

(d) straightforward pipe–like pore 

 

 

Accordingly, interparticle pore (secondary pore) generated among the PSNs particle 

bodies can be illustrated as shown in Figure 2.3. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.3: Schematic illustration of secondary pores models revealed 

among four PSNs particle bodies of 200 nm size 
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The pores and particle size, shape and distribution are the most important parameters 

for the properties of solid–phase materials in nano–scale–size from 1 nm up to 1µm 

size range [24–26,64]. It is because within the size, solid-phase materials are 

dominated by surface properties, including surface area and electrical charge rather 

than chemical composition of the materials [60]. Interfacial properties are more 

important for the smaller sizes as the consequence of the mass (atoms) would be at 

the surface of the particles compared to the bigger sizes [65].   

 Furthermore, the pore structure of solid-phase materials becomes a main 

parameter for the porosity (ε) of the associated materials. Porosity is defined as ratio 

of the total pore volume Vp including opened pores and closed pores to the apparent 

volume V of the particle or powder (excluding interparticles voids) [24–26,62].  It is 

clear that each typical pore provides specific roles that are different from each other in 

their interactions with other things such as fluids, lights, sounds, and so on.  For 

example, closed pore (Figure 2.1a) is intensively facile for many processes of sound, 

heat, and light absorptions so that they are beneficial for the manufacturing of 

vibration dumping material and heat, light even electrical insulators [24–26,62]. Open 

pores with dead-end are noted as blind open pores (Figure 2.1b and f) which facilitate 

many processes of adsorptions and catalysis effectively [24–26,62]. In addition, open 

pores without dead-end are noted as through pores (Figure 2.1c) which facilitate 

many processes of mass transportation so that they are beneficial in filtration and any 

material exchange processes [24,62,63]. 

 Accordingly, it can be concluded that pore size and shape as well as their 

typical distribution are very critical factors in the design and manufacturing process 

for porous solid nanomaterials for specific applications.  

 

2.3 Primary pores and secondary pore of PSNs/CdMNPs composite thin  

      film 

 

 

The generation of primary pores and secondary pores of PSNs-based porous materials 

is also a very critical factor for the development of porous material techniques. In this 

section, the generation of the typical pores is reviewed in detail. 
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2.3.1 Primary pores of PSNs/CdMNPs composite thin film 

  

Based on the references [24–26], primary pores (intraparticle voids) of 

PSNs/CdMNPs composite thin film can be generated by random scaffold of the 

polystyrene structure network. It has been widely known that polystyrene molecule 

can exist in three conformation structures due to the rotation of its skeleton carbon-

carbon single bonds to synchronize the most stable structure with minimum energy 

[66–68]. The three conformation structures of polystyrene that are well known are 

isotactic, syndiotactic and atactic as depicted in Figure 2.4 [68].  The isotactic and 

syndiotactic structures usually refer to either crystalline or fibber material whereas 

atactic is usually amorphous [67].  

 

 

Figure 2.4: Three conformational structures of polystyrene skeleton chain  

 

In the case of syndiotactic crystalline structure, it can be , ,  and  

crystalline forms depending on the process for getting the crystals [66,69,70]. The 

most important feature of this phenomenon is its molecular conformational structure. 

In this context,  and  crystalline forms contain trans-planar zigzag (T4) 

conformation that can be obtained by cooling the melted glass or by heating the glass 

[69].  Whereas    and   crystalline forms contain s(2/1)2 helical chains generated by 
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TTGG conformational sequences that can be obtained by dissolving the polymer into 

organic solvent (  form) and subsequently purging away the solvent from the polymer 

by heating (  form) [66,70]. Illustration of the molecular chain conformation of the 

crystalline phases of syndiotactic polystyrene is provided by reference [69], Figure 

2.5.  

 

 

 

 

 

 

 

Figure 2.5: Molecular chain conformation of crystalline phases of 

syndiotactic polystyrene [69] 

 

 

Unfortunately, it still does not provide a clear representation of primary pores 

generated in PSNs particles particularly in terms of the primary pore shape despite 

their channels being about 1.5-3.0 nm in size [71].  Researchers [58] have proposed 

four kinds of valuable models for open primary pores‟ shape that are possible 

revealed in the PSNs particles body. The pore models have also been developed based 

on the capability of multiple random bending and folding of the polystyrene chain 

frame work.  Schematic illustration of the individual primary open pores‟ models that 

are possibly revealed in the PSNs particles body is depicted in Figure 2.6. 

 

 

 

 

PTTA
PERP

UST
AKA
AN 
TUN
KU T

UN 
AMI
NAH



14 

 

 

 

 

 

 

 

 

 

Figure 2.6: Schematic illustration of the individual primary pores models revealed in 

PSNs particle body of 200 nm size proposed by Wibawa et al. (2011)[58] 

 

 

 

Figure 2.6a shows an Indian traditional trumpet-like model primary pore, 2.6b 

face-to-face junction bottle neck–like model primary pore, 2.6c randomly irregular 

form model, and the last is 2.6d straightforward pipe-like model primary pore. Figure 

2.6e represents PSNs particle body with the all primary pore models. The most 

interesting part of the proposal is the introduction of new terms of nano-sunken and 

nano-wells that are responsible for effectively binding sites in adsorption and catalytic 

processes. By using the above models, it is easier to understand that the highest 

capacity and capability of adsorption will occur on a pore model of irregular form, 

Figure 2.6c because of the five binding sites which exist therein. On the contrary, the 

lowest capacity and capability in adsorption will occur on a straightforward pipe-like 

pore model because it has only one binding site as proposed by Wibawa et al. [58].  

 

2.3.2 Secondary pores of PSNs/CdMNPs composite thin film 

 

Based on the reference [24–26], structure of secondary pores (inetrparticles voids) of 

PSNs/CdMNPs composite thin film would be generated by the ordered and 

disordered arrangement of the PSNs particles deposited properly on the surface of 

hydrophilic silicon wafer. In relation to that, each of the researchers [37–39] showed 

unique secondary pore surface morphology which revealed inter polystyrene particles 

2
0

0
 n

m
 

1 2 3 4 
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4 
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: Binding site sunken and wells 
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body of various sizes, 100-500 nm deposited on a solid support material were 

provided by references [37–39] as seen in Figure 2.7. 

 

 

Figure 2.7: FESEM images of (a) secondary pores revealed inter PSNs particles body, 

multilayer PSNs thin film deposit [37]; (b) ordered single 

layer PSNs thin film deposit [38]; and (c) disordered 

single layer PSNs thin film deposit [39]. 

 

 

 Figure 2.7a displays various sizes and shapes of secondary pores which 

revealed inter PSNs particle bodies forming interesting porous nanomaterial structure. 

The secondary pores structures can be justified clearly by Figure 2.7b and 2.7c where 

every three close-packed PSNs particles generated triangular shape secondary pores. 

Figure 2.7c demonstrated the arbitrary configuration of PSNs particles forming a few 

secondary pores generated by four or five close-packed PSNs particles. If any metal 

nanoparticles (MNPs) were inserted properly between every two close-packed PSNs 

particles, the pores will become larger and the capacity of adsorption can be enhanced 

significantly. In correlation to the definition of nanocomposite material [2,4,14], it 

means a new useful material namely porous nanocomposite thin film that has 

capability of adsorption and catalysis can be manufactured properly from PSNs and 

MNPs particles.  

Furthermore porosity of the material can be justified if their volume ratio of 

pore space to the total volume of the associated material is between 0.20–0.95 [62]. 

According to the structure and composition of porous material summarized in Table 
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2.1 [62]; the highest porosity of more than 0.6 commonly belongs to polymer-based 

materials, so that it is possible to include PSNs particles-based nanocomposite 

materials. 

 

Table 2.1: Structure and properties/characters relationship of some porous materials 

based on their main components [62] 

NO. 
CHARAC-

TERISTIC 

MATERIALS 

POLYME-

RIC 

CAR-

BON 
GLASS 

ALUMI-

NA 

SILICA-

TE 

OXIDES METAL 

1 Chemical 

stability 

Low-

medium 

High High High Very high High 

2 Costs Low High High Low-

medium 

Medium Medium 

3 Life Short Long Long Medium-

long 

Long Long 

4 Permeability Low-

medium 

Low-

medium 

High Low Low-

medium 

High 

5 Pore size Meso up to 

macro 

Micro up 

to meso 

Meso up 

to macro 

Micro up 

to meso 

Micro up 

to meso 

Meso up 

to macro 

6 Porosity > 0.6 0.3–0.6 0.3–0.6 0.3–0.7 0.3–0.6 0.1–0.7 

7 Strength Medium Low Strong Weak Weak-

medium 

Strong 

8 Surface area Low High Low High Medium Low 

9 Thermal 

stability 

Low High Good Medium-

high 

Medium-

high 

High 

 

 

Table 2.1 shows the relationship of porosity and other properties to the structure and 

composition of nanocomposite material. Here, for example, organic/inorganic 

polymeric-based material belongs to meso up to macro pores size, low surface area, 

porosity > 0.6, low up to medium in permeability, medium in strength, low in thermal 

stability, low up to medium in chemical stability, low cost and short living time. On 

the other hand, oxides-based materials possessed meso up to macro pores size, 

medium surface area, porosity 0.3-0.6, low up to medium in permeability, weak up to 

medium in strength, medium up to high in thermal stability, very high chemical 

stability, medium cost and long living time [62]. 

 Specifically, valuable secondary pores-based porous material can be 

fabricated by means of incorporating CdMNPs to PSNs particles as reported by 

Wibawa et al. (2011)[58]. The incorporated metal will promote hypercrosslinking of 
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the polymer chain and add unique physical properties such as responsiveness to 

mechanical, optical, thermal and sound barrier, magnetic, electric stimulation [72].  

 

2.4 Synthesis and fabrication of PSNs/CdMNPs composite thin film materials 

 

Secondary pores of PSNs/CdMNPs composite material can be generated only from its 

aqueous colloid coated on a solid support material. Accordingly, there are two steps 

to obtain nanostructure secondary pores of the PSNs/CdMNPs composite material. 

The first step is the synthesis of aqueous colloidal PSNs/CdMNPs composite. The 

second step is fabrication of secondary pores-based porous PSNs/CdMNPs composite 

thin film material on a solid support material through deposition method of the 

colloid. This section describes the two steps. 

 

2.4.1 Synthesis  

 

Referring to previous researches [2,73], PSNs/CdMNPs secondary pores-based 

porous nanocomposite thin film material can be synthesized by blending Cd metal 

precursor with numerous PSNs organic polymers. Various polystyrene-based 

nanocomposite materials had been synthesized using the blending method. Sometimes 

the blending was performed in solid-phase medium instead of liquid/aqueous 

medium. For example, silica gel microspheres encapsulated by imidazole 

functionalized polystyrene (SG–PS–azo–IM) was synthesized and characterized to 

adsorb transition metals with the highest adsorption capacity for Au(III) from aqueous 

solution [74]. Polystyrene/carbon nanotubes composites were synthesized by 

emulsion polymerization with non-covalent and covalent functionalization [75]. 

Polystyrene/multiwalled carbon nanotubes composites with individual-dispersed 

nanotubes and strong interfacial adhesion were synthesized in organic mediums of 

tetrahydrofuran  and ethanol [76].  

 Furthermore, referring to literature [77–79], it can be well understood that the 

most important things in the synthesis of PSNs/CdMNPs nanocomposites materials is 
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the reduction process of metal precursor used where positive charges ions (cations) 

become metal (zero valence ions). Many methods have been well known for the 

reduction of metal precursors which can be distinguished between chemicals methods 

and physical methods [80]. In this context, chemical methods mean the reduction was 

performed by employing chemical reducing agent of organic molecule such as N,N-

dimethylformamide (DMF) [77,78,81]  and inorganic molecule such as NaBH4 [82] to 

reduce metal precursor to its metal atom synchronically in a suitable solvent. In 

contrast, physical reduction methods means that the reduction was performed using 

physical actions such as high frequency ultrasound of  20 kHz–10 MHz [83,84], 

microwave irradiation  [85–87], gamma (γ) ray radiation [6,88] and so on. In this 

viewpoint, researchers [80] reported that there were ten various methods of silver 

nanoparticles preparation by means of reduction process which are well known today. 

Physical reduction using high frequency ultrasound would produce metal 

nanoparticles with lesser chemical contaminants compared to that produced by 

chemical reducing agents [58,89]. It is also simpler and safer than other physical 

reductions. In practice, the process of metal precursor reductions could be conducted 

by means of either in-situ in which metal nanoparticles are generated in polymer 

matrix or ex-situ in which metal nanoparticles that were previously synthesized are 

incorporated in the polymer matrix [2,30,87,90]. In order to make it easy to 

understand the difference of in-situ and ex-situ metal reduction process, a simple 

schematic illustration of both reductions processes is depicted in Figure 2.8.  

  

  

 

 

 

 

 

 

 

Figure 2.8: Schematic illustration of (a) ex situ reduction process of metal 

precursor M
+
 to metal nanoparticles (MNPs) and (b) that of in situ one 

 

Legend:   

(a) 

Physical treatments or 
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M+                     M

                    

M
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                     M                   M
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Figure 2.8a shows metal nanoparticles MNPs were generated on the outside of the 

supporting matrix material then incorporated into the matrix. In Figure 2.8b metal 

nanoparticles (MNPs) were generated inside the supporting matrix material.  

In addition, the reduction process depends on the purpose for which the 

nanocomposite is synthesized. Sometimes the in situ reduction process is preferred. 

At other times, the ex situ reduction process is prefered.  For example, nanocomposite 

that will be used for adsorbent material will use the in situ reduction process whereas 

the nanocomposite that will be used for catalytic material will use the ex situ 

reduction process. It is because catalytic reactions strictly require a fine condition 

whereby any poisonous contaminant must be removed from the active side of the 

catalyst, and this situation will be easier to achieve through ex situ method. Detailed 

comparisons of in situ and ex situ reduction processes are summarized in Table 2.2.  

 

Table 2.2:  Comparison of features of in situ and ex situ reduction process 

NO. FEATURES IN SITU EX SITU 

1 Employing stabilizer [90]  no need need 

2 Employing external reducing agents [90] no need need 

3 Quality of produced nanoparticles [2]  low high 

4 Synthetic routes for nanoparticles [2] Just one possible 

route 

Many possible 

routes can be 

applied 

5 Wide choice of host (supporting matrix) media [2] Not available available 

6 Control size and shape dependent properties of metal 

nanoparticles in host matrix [2] 

limited Well controlled 

 

 

On the other hand, colloidal system with particle size of between 1 nm and 

1000 nm (1µm) [89–90] is the best route to produce controllable size, shape and 

uniformity particles for nanocomposite thin film fabrication [2], including 

PSNs/CdMNPs composite thin film materials. In this context, water is a common 

polar solvent for preparing the mixtures of colloidal system particularly for 

hydrophilic nanoparticles dispersion [33].   

Based on  reference [34] and adopting the illustration of dispersion structure 

proposed schematically [35], it can be illustrated schematically the dispersion 

structure in a continuous phase/dispersion medium of water with modification as 

depicted in Figure 2.9. Here, water molecules (H2O) will be capable of forming a 

liquid matrix through hydrogen bonding networking between them, where many 
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unique cages like cave in nano size are generated in the matrix, of which any 

dispersed particles reside within the cages.   

 

 

 

 

 

 

 

 

Figure 2.9: Schematic illustration of the structure of dispersion  

system in water medium 

 

 

Figure 2.9 shows that particle size ranges from 1–1000 nm for colloidal dispersion 

system; less than 1 nm for molecular dispersion system that is called solution; and 

more than 1000 nm for coarse dispersion system that is called suspension.  

 On the other hand, water molecules are also capable of solvation for any 

positive and negative electrical charge particles in aqueous system. Solvation itself 

could be defined as an interaction of a solute with the solvent, which leads to 

stabilization of the solute species. One may also refer to the solvated state, whereby 

an ion in a solution is grafted by solvent molecules [91–93]. By this definition, a 

schematic illustration of the solvated state of positive ion and negative ion could be 

drawn as depicted in Figure 2.10.  It is very clear that the dispersion state and  

 

 

 

 

 

 

 

Figure 2.10: Schematic illustration of (a) solvated state of positive ion and  

negative ion, and  (b) in water 
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solvated state are very different. Figure 2.10 shows the positive ion surrounded by 

water molecules through electrostatic force attraction facilitated by water oxygen 

atom and the associated positive ion, whereas the negative ion was surrounded by 

water molecules through electrostatic force attraction facilitated by water hydrogen 

atom and the associated negative ion. 

Furthermore, various synthesis methods of CdS/Polystyrene nanocomposite 

reported by a lot of researchers [39–41,94,95] could be adopted with little bit 

modification to synthesize PSNs/CdMNPs composite material. The researchers used 

colloidal stabilizers of either polyvinyl pyrrolidone (PVP) or citric acid [23,41,94,95].  

However, in this research did not use colloidal stabilizer because of it can prohibit the 

capability of adsorption and catalysis of the fabricated secondary pores. 

 

2.4.2 Fabrication 

 

 

Secondary pores of any solid material including PSNs/CdMNPs composite thin film 

material could be generated on a solid support material (noted as a substrate) from its 

suitable liquid colloidal [2,37–39]. In this situation, colloidal particles could initiate in 

generating both lateral and vertical capillary force between them resulting in the 

capability of self-assembly which leads to a colloidal thin film forming on a suitable 

substrate [36]. A schematic illustration of the self-assembly process driven by 

capillary force which was adopted from literature [36] as shown in Figure 2.11.  

 

 

 

 

 

Figure 2.11: Schematic illustration of the self-assembly process drove by capillary 

force. (a) Lateral capillary forces appear when there is disorderly motion of colloidal 

particles in a liquid thick layer on a substrate, and (b) ordered state gives rise to 

aggregation after the top of particles protrude from the liquid layer [36] 
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Figure 2.11a shows how pressure causes colloidal particles to settle down forming a 

film while gravity keeps it planar. Figure 2.11b demonstrates a situation that 

generated lateral capillary forces for a liquid thin film through self–assembly process 

coinciding with disjoining pressure and three phase contact angle. In this figure, 2R is 

the diameter (size) of the colloidal particle, h1: thick liquid layer and h2: liquid thin 

layer. Explanation on how the capillary forces appear between colloidal particles had 

been reported by researchers in reference [36] in detail. 

Regarding the specific properties of colloidal system, it is well known that 

colloidal routes offer numerous advantages for the synthesis of PSNs/CdMNPs 

nanocomposite thin film material as it allows a good control over size, shape and size 

distribution of the nanocomposite particles using relatively simple experiment 

conditions [2,96]. In addition, many researchers proved that a solid nanocomposite 

thin film material could be manufactured properly on a surface of suitable solid 

support from its colloidal system by means of drop coating [97–99]; dip coating 

[31,100–102]; spin coating [103–105]; or spray coating [106–108]. However, the 

research objectives are about the adsorption phenomenon on secondary pores of the   

PSNs/CdMNPs nanocomposite thin film materials. Therefore the drop coating 

technique would be the most convenient technique for manufacturing them since the 

colloidal PSNs/CdMNPs nanocomposite for generating multilayer secondary pores 

can be produced in a more controllable quantity [97–99].  In this context, the size of 

secondary pores in the pattern is proportional to the size of the sphere, and the sphere 

size of 200 nm is a minimum threshold to get secondary pores of a good shape and 

size [109]. 

In addition, the size of secondary pores generated from single layer close 

packed periodical spheres arrays (SLPSA)(aSL) could be calculated approximately 

through equation 2.1 while those generated from double layer close packed periodical 

spheres arrays (DLPSA)(aDL) could be calculated approximately through equation 

2.2. Interpores distance in SLPSA (dSL) could be calculated through equation 2.3, 

whereas interpores distance in DLPSA (dDL) could be calculated through equation 2.4. 

In this case, it had been shown that triangle–like pores and regular hexagonal pores 

were revealed in the SLPSA and DLPSA respectively [54,55].  
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where D is the diameter of polystyrene nanospheres. 

 

 

 2.5 Characterization 

 

A lot of common methods to characterize thin film materials are reviewed in this 

section. The characterizations of the materials are as the follows. 

  

 

2.5.1   Thermal properties  

 

 

Thermal properties of the synthesized PSNs/CdMNPs composites were analyzed 

using thermogravimetric analysis (TGA) and different thermal analysis (DTA). Under 

TG analysis, the mass change/degradation of a sample as a function of temperature 

could be known and well determined.  The data output recorded from the TG is a TG 

curve that correlates sample mass decreasing (∆m) against the temperature progress 

(T). From the TG curve, the temperature decomposition or thermal stability and glass 

transition temperature (Tg) of the measured sample [8,17,49,94] will be known. Glass 

transition temperature itself can be defined as a temperature at which an amorphous 

solid material becomes soft upon heating or brittle upon cooling. The glass transition 

temperature will be lower than the melting point of its crystalline form [110]. In 

relation to this, it is common for CdMNPs to be initially immobilized in the film 

(2.1) 

(2.2) 

(2.3) 

(2.4) 
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below the Tg of the associated polymer matrices. It is subsequently embedded into the 

matrices at a temperature above Tg since the condition allows the polymer chain to 

have a high degree of mobility [30]. 

On the other hand, DTA can be used to measure the difference in temperature 

change between the sample and reference material both as a function of temperature. 

The data output recorded from the DTA is a DTA curve that correlates the 

temperature difference (∆T) against the temperature progress. Thus, from this DTA 

curve the typical heat energy accompanied the chemical change of the sample: either 

exothermic (heat released) or endothermic (heat absorbed) will be known [17,22,110].     

Accordingly, it could be concluded that by comparing the data of TG as well 

as DTA between PSNs/CdMNPs nanocomposite and pristine PSNs it could be known 

that CdMNPs have been successfully incorporated into PSNs particles. In this 

context, the quantity of calor (heat energy) required to decompose each material 

aforementioned is necessary to be determined. For that, the relationship between 

quantity of calor and temperature that is commonly used to explain the phenomena is 

expressed in equation 2.5 [111], and this equation can be applied to calculate the calor  

involved in the mass decomposition process.  

 

                       Q = mCp∆t           (2.5) 

where Q is heat energy (commonly notes as calor) absorbed, m is mass of the 

degraded material, Cp is specific heat capacity of the material and ∆t is the 

temperature difference of the decomposition at the start and final decomposition 

process that is noted as t1 and t2 respectively. In this case, calor quantity expressed in 

equation  2.5 can be approximately determined based on the  TG curves.  Based on 

the TG curves we can determine mass loss of the PSNs/CdMNPs composite as well as 

that of pristine PSNs at every temperature of the decomposition process where the 

calculation of calor quantity absorbed by the materials can be obtained.  

The most important way to find out the thermal characters of aqueous 

colloidal PSNs/CdMNPs composite is to investigate its homogenity. Therefore, 

equation 2.5 needs to be developed to become a more applicable equation. Thus, a 

valuable equation namely calor ratio (Qr) that is defined as in equation 2.6 where 

QPSNs/CdMNPs, QPSNs, QCdMNPSs  and mCdMNPSs  are expressesd in equations 2.7, 2.8, 2.9 and 

2.10 respectively can be introduced.   
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