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ABSTRACT 

 

 

 

 

The rapid progress of the high speed optical communications system is driven by the 

exponential growth of users demand on information and services. The trend towards 

high speed and high capacity transmission system are multiplexing technique such as 

electrical time division multiplexing (ETDM) and duty cycle division multiplexing 

(DCDM). Unfortunately, ETDM bit rate is limited by the speed of electronic devices 

and DCDM suffers from increased spectral width when the number of tributary 

increased. Therefore, in this research, a new multiplexing technique is proposed, 

known as Multi Slot Amplitude Coding (MSAC). In this technique, three, four and 

five tributaries can be achieved with less number of slots compared to DCDM. The 

performance of 310 Gbit/s MSAC is -26 dBm for receiver sensitivity (RS) and 

25.5 dB for optical signal-to-noise ratio (OSNR). The improvement of 3.5 dB for RS 

and 3.7 dB for OSNR are obtained when optimize level spacing is implemented. 

When compared to DCDM, the spectral width is reduced by around 25%, not less 

than 55% improvement of chromatic dispersion (CD) tolerance, 0.6 dB better RS, 

and 1.5 dB better OSNR. The spectral width for 310 Gbit/s, 410 Gbit/s and 510 

Gbit/s MSAC is 60 GHz, which indicates improvement of spectral efficiency. 

Optical spectrum of MSAC has spectral line at 10 GHz to provide an accurate clock 

frequency at symbol rate. In addition the performance of MSAC technique is 

simulated under self phase modulation (SPM) effect. The result shows that the 

maximum launched optical power is +12.79 dBm and +12.62 dBm for 50 km and 80 

km standard single mode fiber (SSMF) with 100% compensation of dispersion using 

dispersion compensation fiber (DCF) at receiver. Moreover, SPM threshold improves 

around 2.7 dB when adopting the pre and post dispersion compensation method. 
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ABSTRAK 

 

 

 

Kemajuan pesat dalam sistem komunikasi optik kelajuan tinggi didorong oleh 

pertumbuhan pesat permintaan pengguna kepada maklumat dan perkhidmatan. 

Haluan menuju sistem penghantaran berkelajuan tinggi dan kapasiti tinggi ialah 

teknik pemultipleksan seperti pemultipleksan pembahagian masa elektrik (ETDM) 

dan pemultipleksan pembahagian kitar tugas (DCDM). Malangnya kadar bit ETDM 

dihadkan oleh kepantasan peranti elektronik dan DCDM mengalami peningkatan 

lebar spektrum apabila bilangan cabang bertambah. Oleh itu, dalam kajian ini, teknik 

baru pemultipleksan adalah dicadangkan, yang disebut sebagai pengekodan amplitud 

pelbagai slot (MSAC). Dalam teknik ini, tiga, empat dan lima cabang dapat dicapai 

dengan bilangan slot yang rendah berbanding DCDM. Prestasi 310 Gbit/s MSAC 

ialah -26 dBm untuk kepekaan penerima (RS), dan 25.5 dB untuk nisbah isyarat-

kepada-hingar (OSNR). Penambahbaikan 3.5 dB untuk RS and 3.7 dB untuk OSNR 

dicapai apabila jarak aras optimum dilaksanakan. Apabila dibandingkan dengan 

DCDM, lebar spektrum dikurangkan sekitar 25% dan peningkatan tidak kurang 

daripada 55% bagi toleransi serakan kromatik (CD), 0.6 dB baik RS, dan 1.5 dB baik 

OSNR. Lebar jalur 310 Gbit/s, 410 Gbit/s and 510 Gbit/s MSAC ialah 60 GHz, 

menunjukkan peningkatan kecekapan lebar jalur. Spektrum optik MSAC mempunyai 

garis spektrum pada 10 GHz untuk memberikan frekuensi pemasa yang tepat. 

Tambahan pula, prestasi MSAC teknik disimulasi terhadap kesan modulasi swafasa 

(SPM). Keputusan menunjukkan kuasa lancar optik maksima ialah +12.79 dBm dan 

+12.62 dBm untuk 50 km dan 80 km gentian optik mod tunggal piawai (SSMF) 

dengan 100% pampasan penyebaran dengan gentian pemampasan penyebaran (DCF) 

di penerima. Lebih lagi, ambang SPM meningkat 2.7 dB apabila menggunakan 

kaedah pampasan penyebaran sebelum dan selepas.  
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CHAPTER 1 

 

 

 

INTRODUCTION 

 

 

 

1.1. Background 

 

The tremendous demand for information and communication technology (ICT) is 

fuelled by the increasing of internet users, amount of time usage and type of services. 

ICT have become an important resource in this millennium for every country of the 

world to face the economic challenge. Many countries are trying to spend huge 

budget every year in order to provide good ICT facilities for their people based on 

the demand of various community. In the past few years the world have witnessed 

rapid changes of the internet access technology such as dial up line, digital subscriber 

line (DSL), Wifi, Cellular broadband and etc. Those technologies have given more 

opportunity to the people to use the internet much easier than before. At the same 

time, various services have been created by various communities to expand their 

business and increase bandwidth space in order to attract new customers. Generally, 

the services will require the user to spend more time and also require more data 

capacity in order to get the optimum services. Based on the projections by Cisco, IP 

Internet traffic will grow to 1.44 zettabyte per year by 2017 internationally, since the 

global IP traffic currently has an average growth rate of 23% per month from 2012 to 

2017 [1]. Figure 1.1 shows the projected forecasts in consumer internet traffic 

(households, university populations, and internet cafés) globally. More than 50% of 

the predicted internet traffic is generated by internet video category. 

The capabilities of ICT infrastructure must be properly planned for future 

expansion to support the huge demand of data capacity with reasonable cost and 
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quality. One of the key ICT infrastructures is communication network, to link all 

internet users all over the world by using fiber optic.  

 

 

Figure 1.1: Consumer internet traffic forecast [1]. 

 

Figure 1.2 shows the structure of typical communication network. The 

communication network is commonly separated into three categories; access 

network, metropolitan (metro) network and long-haul network or core network [2]. 

The metro network covers a region typically, a few kilometres to several tens of 

kilometres by interconnecting central offices in a region or big cities. However, the 

long-haul network spans from hundreds to thousands of kilometres to interconnect 

between different cities or region. The long-haul network known as the core or 

backbone network is working at high capacity data transmission in order to support 

all services requested by users which is connected to metro network through access 

networks. Core network requires devices and facilities with high capabilities to 

deliver the best performance to the consumers.  
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Figure 1.2: Structure of typical communication network [2] 

 

The deployment of optical communication worldwide is based on 

international standard such as SONET (Synchronous Optical Network), SDH 

(Synchronous Digital Hierarchy), OTN (Optical Transport Network), ATM 

(Asynchronous Transfer Mode, FDDI (Fiber Distributed Data Interface), Fibre 

Channel Standard, Gigabit Ethernet etc [3].  Generally, this standard provides the 

guide line for the optical society to implement optical communication system using 

various equipment manufacturers.  Therefore, the deployment can be provided more 

quickly and it would benefit the users and the optical society as well. The evolution 

of high capacity optical communication can be witnessed by the increasing of the bit 

rate in SONET/SDH/OTN and Ethernet as shown in Figure 1.3.  

Optical communication can be said to be important technology in today’s 

communication network. It is simply because of huge advantages over other types of 

communication system in terms of high bandwidth or capacity, low attenuation, 

immunity to electromagnetic interference, less material cost and better security 

compared to copper cable [2, 4, 5]. The advancement in various technologies such as 

fibre optic, electronic devices, light sources and etc, have transform optical 

communication to became more reliable and the only choice to support high capacity 

data for long haul application.  
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Figure 1.3: Evolution of data rate of SONET/SDH/OTN and Ethernet [6, 7] 

 

In order to utilize the huge bandwidth in fiber optic, generally, multiplexing 

and modulation are adopted in an optical communication system. Multiplexing is a 

process of sharing a common channel (fiber optic) by exploiting signal orthogonality, 

whereas in modulation, data or information (binary) is converted to symbol before 

transmission. The need for multiplexing is driven by the fact that it is much more 

economical to increase transmission capacity over a single fiber than it is to transmit 

at lower rates over multiple fibers, in most applications. Table 1.1 shows several 

approaches to implement various multiplexing and modulation technique. 

In optical communication systems, electrical time division multiplexing 

(ETDM) plays an important role for high speed and high capacity data transmission. 

Typically, ETDM is implemented in order to achieve the highest possible per-

channel bit rates by multiplexing several low speed channels in electrical domain [2]. 

The advantages of ETDM are always yielded the lowest cost, footprint, and power 

consumption per end-to-end networked information bit, once the underlying 

technologies were sufficiently mature. Due to this advantages, ETDM 

implementation have always been pushing the limits of high-speed electronic and 

optoelectronic components, with 100-Gb/s binary transmission systems representing 

the current limit of electronic multiplexing and demultiplexing capabilities [8-10].  
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Table 1.1: Multiplexing and modulation technique [8] 

Domain Multiplexing Modulation 

time 
Time division 

multiplexing (TDM) 

Pulse position 

modulation (PPM) 

frequency 

Frequency division 

multiplexing  (FDM),  

and Orthogonal FDM 

(OFDM) 

Frequency shifted 

keying (FSK) 

wavelength 
Wavelength division 

multiplexing (WDM) 

 

polarization 
Polarization division 

multiplexing (PDM) 

Polarization shifted 

keying (PolSK) 

phase 

 Phase shifted keying 

(PSK), Quadrature 

amplitude modulation 

(QAM) 

 

Typically, this high speed ETDM data stream is modulated using single 

wavelength. Therefore, high speed ETDM only occupy small portion of fiber optic 

bandwidth. Hence, another multiplexing known as WDM is adopted to utilize other 

bandwidth [11]. In WDM, multiple set of high speed ETDM or other technique at 

different wavelength propagate in similar fiber optic. Note that each WDM channel 

requires complete set of communication elements (light source, modulator, and 

photodiode receiver). Therefore with the combination of ETDM and WDM, huge 

transmission capacity per optical fiber can be achieved [12, 13]. 

Other types of multiplexing that has been reported is polarization division 

multiplexing (PDM) [14] and orthogonal frequency division multiplexing (OFDM) 

[15]. In PDM system, two modulated optical signals are transmitted at the same 

wavelength with orthogonal states of polarization (SOP). In order to multiplex and 

demultiplex both SOP, polarization beam splitter (PBS) is required at transmitter and 

receiver. OFDM is another latest technique in optical system. OFDM belongs to a 

broader class of multicarrier modulation (MCM) in which the data information is 

carried over many lower rate subcarriers. In OFDM, modulation and demodulation 
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are efficiently implemented using Inverse Fast Fourier transform (IFFT) and Fast 

Fourier transform (FFT), respectively. However, for high speed optical system, 

OFDM requires digital-to-analog converter (DAC) at transmitter and analog-to-

digital converter (ADC) at receiver with high speed and high resolution [16].  

Most commercial high speed optical system, currently up to 40Gbit/s is based 

on conventional modulation format such as non return-to-zero (NRZ) and return-to-

zero (RZ). Due to capacity demand and to achieve better spectral efficiency for each 

WDM channel, several advancement modulation format have been studied such as 

M-ary based on amplitude-shift keying (ASK), phase-shift keying (PSK), quadrature 

amplitude modulation (QAM) have been reported for high capacity applications [17-

31]. Transmission of M-ary ASK can be done using simple intensity modulation and 

direct detection like binary (NRZ/RZ) but has a relatively large power penalty 

because the number of signal levels increase significantly with the number of users. 

High spectral efficiency is also possible with M-ary PSK and QAM, unfortunately, it 

will increase the complexity of the system at the transmitter and even more at the 

receiver especially for coherent system. 

 

1.2. Problem statement 

 

In 2007, new multiplexing technique has been proposed to multiplex multiple users 

per WDM channel, as an alternative to TDM for wireless or optical communication 

[32, 33] know as Duty Cycle Division Multiplexing (DCDM). DCDM takes 

advantage of RZ line coding and offers more transitions to simplify the function of 

clock recovery circuit. In DCDM, each user is identified by its unique duty cycle and 

signal level[34]. Simulation studies show that DCDM is capable of tolerating more 

chromatic dispersion (CD) compared to RZ format using simple intensity modulation 

due to compact spectral width properties [35, 36]. DCDM setup is simple for optical 

link, therefore, it provides cost efficient for state of the art high data transmission.  

Despite several achievements of DCDM as mentioned above, there are two 

major weaknesses in this technique. First, N+1 number of signal levels are required 

in order to multiplex N number of users. Thus, it suffered from increased number of 

signal levels for additional user. High number of signal level means that more 

average power is required to achieve similar quality of eye diagram (Q-factor) 

compared to binary (2 levels). Second, when the number of users increase, slot 
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duration becomes short as number of slots increased as well. As a result, signal 

bandwidth will increase thus reducing the performance of dispersion tolerance.  

Variation version of DCDM, known as absolute polar DCDM (APDCDM) 

has been introduced in 2008 [37]. APDCDM implements signal inverting for even 

users before combining all multiplexed users. This approach helps in reducing the 

increment of multiplexed signal level with reference to the number of users. Thus, 

the receiver sensitivity improvement are observed as compared to DCDM [37, 38]. 

In [39-42], narrower spectral width has been achieved as compared to previous report 

by removing the guard slot but this will reduce symbol transitions which is important 

for clock recovery. Besides that, APDCDM still suffered from increased number of 

slots with increasing number of users.   

Considering the highlighted weaknesses of DCDM and APDCDM technique 

as mentioned above, new concept is necessary to search for the best solution. In this 

research, a new multiplexing technique, known as Multi Slot Amplitude Coding 

(MSAC) is proposed to further enhance the potential advantages of DCDM. MSAC 

has better way of utilizing the number of slots and signal levels in order to reduce the 

signal bandwidth and power penalty, hence improving the system performance.  

Besides that, the proposed multiplexing has a unique property; like RZ format or 

DCDM with better clock information thus simplify the function of clock recovery 

circuit. Multiplexing and demultiplexing for this signal can be performed 

economically using high speed electronic devices. 

 

1.3. Objectives 

 

The main goal of this research is to develop a new multiplexing technique to provide 

enhance capability and various important advantages than conventional multiplexing 

in high speed optical communication system. Based on this technique, multiple 

tributaries can be multiplexed and propagated efficiently over the same WDM 

channel. In specific, the objectives of this thesis are:  

1. To propose new electrical multiplexing technique known as Multi Slot 

Amplitude Coding (MSAC) to support multiple tributaries in high speed 

optical communication system. 
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2. To evaluate and analyze the performance of MSAC technique in fiber optic in 

term of receiver sensitivity, OSNR, CD tolerance and spectral width for 3, 4 

and 5 tributaries with tributary bit rate of 10 Gbit/s. 

3. To further investigate the self-phase modulation effect on MSAC system for 

50 km and 80 km SSMF with CDF to compensate the dispersion.  

 

1.4. Scope of study 

 

Figure 1.4 shows the K-Chart for this research represents the study model in order to 

provide the whole picture of research scope with simplify approach. This chart 

describes the relation of the main topic in digital communication field and the 

research work focussing in this thesis. The highlight textbox (pink colour) indicates 

the direction of this research work in order to achieve the research objectives. 

In this research a new multiplexing technique has been proposed known as 

MSAC. Therefore, the review of conventional transmission techniques in the field of 

digital communication such as multiplexing, modulation and coding have been done. 

Note that this research is related to the physical layer issues in the open system 

interconnection (OSI) 7-layer Reference Model [4]. The purpose of this study is to 

introduce the novel multiplexing concept for digital communication and evaluate the 

capability of this technique in a practical optical fiber communication system.  

Novel multiplexing concept in MSAC is based on conversion or translation 

binary data of N tributaries to unique symbol. This symbol is defined based on multi 

amplitude and multi slot structure which is different from conventional multiplexing 

technique. Therefore, new concept and model of MSAC multiplexer and 

demultiplexer are developed. The mathematical formulas have been derived to 

calculate the maximum number of symbol, the maximum number of tributary, 

aggregate bit rate, signal bandwidth, and spectral efficiency for given number of 

signal level, number of slot and tributary bit rate. 

Since, MSAC has unique symbol sequence with multi amplitude and multi 

slot, power spectral density (PSD) and bit error rate (BER) formula has significant 

differences to those used in conventional communication system. Therefore, for 

theoretical part, a PSD formula and BER formula have been proposed for MSAC 

technique. The BER formula, derivation is based on Gaussian approximation where 
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from the BER formula, analytical noise model of PIN receiver and optically 

amplified PIN receiver have been derived and analyzed to plot BER versus received 

optical power. This analysis provides important information about receiver 

sensitivity at targeting BER with consideration of noises impairment at receiver. 

Besides that, the effect of optical amplifier gain, photodiode responsivity, and 

tributary bit rate are studied.  

In this research, numerical simulation has been performed to evaluate the 

performance of MSAC optical system. Numerical simulation is undoubtedly 

important to provide more practical analysis which may be too extensive to be 

considered in the theoretical development. Two commercial software’s have been 

used to prove and implement MSAC technique, which are OptiSystem and 

MATLAB. OptiSystem has been used as main platform to implement a complete 

optical communication system. MATLAB is required to implement the new 

multiplexer, demultiplexer, and BER estimation, which are not available in 

OptiSystem components library. A practical high speed MSAC optical system setup 

has been proposed and the performance of this system has been evaluated by 

including various impairment factors such as noises, attenuation, dispersion, and 

nonlinearity. The validation of BER estimation has been done with bit-to-bit 

comparison method using pseudo random binary signal (PRBS) length of 214-1 bits 

for each tributary. Besides optical modulation spectra and receiver sensitivity, in this 

simulation work, chromatic dispersion tolerance, optical to noise ratio (OSNR), 

spectral width have been studied. Analysis of self-phase modulation (SPM) effect 

when operating in nonlinear regime is also considered in which the possibility for 

launching higher optical power for the purpose to extent the transmission distant. In 

addition, the effect of signal level spacing of MSAC signal is included in this 

research.  
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Figure 1.4: Scope of study using K-Chart™ 
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1.5. Thesis Overview 

 

This thesis is significantly dedicated towards the development of new multiplexing 

technique for optical communication system. This thesis is organized into six chapters. 

In Chapter 1, a brief and general view of modern fiber optic communication system 

with various multiplexing and modulation technique is highlighted. Problem 

statements, objectives and scope of study are also outlined. 

Chapter 2 provides the comprehensive review of optical communication 

system. Communication standards are provided as evident of commercial 

deployment of optical system. Concept, technical information as well as 

advantages/disadvantages of current multiplexing and modulation technique are 

described in detail as these are the main focus in this study. This chapter also address 

the typical impairments in fiber optic channel, noises, and bit error rate estimation 

which is important for designing practical optical system. 

Chapter 3 presents the basic concept and properties of the proposed 

technique, MSAC. The general symbol format, the derived mathematical formula 

related to the parameters (number of signal level, number of slot, tributary bit rate 

with aggregate capacity, number of tributary, bandwidth, and spectral efficiency), 

multiplexer, demultiplexer and BER estimation formula are presented. 

Based on the proposed technique in Chapter 3, Chapter 4 describes the 

development of theoretical PSD of MSAC signal. Development PIN receiver noise 

model and optically amplified PIN receiver model with theoretical performance 

analysis are discussed in this chapter. 

Chapter 5 emphasizes on the numerical simulation of MSAC technique in 

optical communication system. Performance investigation of MSAC system by 

considering various aspect of impairment of fiber optic and noises are presented 

Finally, Chapter 6 remarks the overall conclusions and research contributions 

of this thesis and discusses the possibilities for further development of this work.    
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CHAPTER 2 

 

 

 

OPTICAL COMMUNICATION SYSTEM: A REVIEW 

 

 

 

2.1. Introduction 

 

The aim of this chapter is to provide up to date review on optical communication 

system for high capacity and high speed data transmission over a most promising 

optical fiber channel. Today commercial optical communication system implemented 

based on international standard. Review on recent international standards is 

presented in order to understand the current technologies deployment. The state of 

the art multiplexing and modulation technique in optical communication system are 

discussed in term of concept, working principle, their advantages and disadvantages. 

This critical review provides important explanations to support our justification for 

proposing new multiplexing concept known as MSAC.  

Note that, implementation of multiplexing and modulation is actually related 

to the interaction of completed system which covers transmitter, transmission and 

receiver. It is expected that MSAC system, like other technique, is affected by 

various fibre optic impairments such as attenuation, dispersion, and nonlinearity. Due 

to that, the principle of fibre optic impairments is presented. Besides that, various 

noises such as shot noise, thermal noise and amplified spontaneous emission (ASE) 

noise limit the performance of MSAC system is also reviewed. The BER of MSAC is 

crucial part in optical system characterization, therefore the conventional method to 

obtain the BER is provided as reference in order to determine the BER of MSAC.  
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2.2. Review on commercial communication standard 

 

In general, there are many standards that have been established for communication 

system deployment. The purpose of these standards is to provide guideline for 

various manufacturer and vendor to interconnect communication equipments for 

practical realization. This standard consists of specific communication system 

information to be achieved at that particular time. It is understandable that this 

standardized work is not rigid, thus revision and new standardization will happen in 

future due to the growing bandwidth demand and technology advancement.  

In communication history, synchronous optical network (SONET) and 

synchronous digital hierarchy (SDH) are well known and popular standard for high 

speed communication. SONET is used in North America whereas SDH in other parts 

of the world. Existing SONET and SDH, actually has same purpose, but due to many 

differences of opinion and implementation philosophy in digital signal transmission. 

SDH was standardized by International Telecommunication Union – 

Telecommunication Sector (ITU-T). This standard provides comprehensive 

information to implement a digital system by defining the transmission format, 

speeds, optical interface characteristics, and network configuration.  The deployment 

transmission rates for SONET/SDH is shown in Table 2.1.  

 

Table 2.1: SONET and SDH transmission rates [4] 

SONET level Electrical level Line rate (Mb/s) SDH equivalent 

OC-1 STS-1 51.84  

OC-3 STS-3 115.52 STM-1 

OC-12 STS-12 622.08 STM-4 

OC-24 STS-24 1244.16 STM-8 

OC-48 STS-48 2488.32 STM-16 

OC-96 STS-96 4976.64 STM-32 

OC-192 STS-192 9953.28 STM-64 

OC-768 STS-768 39,814.32 STM-256 

 

Beside SONET and SDH, ITU-T also establishes other transport standard 

known as optical transport network (OTN). This standard provides the management 
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of services using multiple, different wavelengths of light over the same fiber optic to 

cater DWDM. Referring to ITU-T Recommendation G.959.1, three type of bit rate 

which are 2.5 Gbit/s, 10 Gbit/s and 40 Gbit/s was approved to provide guide line to 

implement optical system with point-to-point, single and multi channel setup. In this 

standard, the span distance has been defined as intra-office, short-haul, long-haul, 

very long-haul and ultra long-haul. Note that, this standard implement NRZ and RZ 

format as optical modulation format. 

Ethernet is another communication technology that has been standardized by 

IEEE. This technology is popular in local area network (LAN) due to simplicity and 

cost efficient. Nowadays, Ethernet has become a technology for metro and core 

network. In order to support the huge capacity demand, 40 Gbit/s and 100 Gbit/s 

Ethernet technology (40GE and 100GE) have been standardized in IEEE 802.3ba 

[43].  

In summary, as a guide line, this standard describes the specific information 

to implement optical fiber communication. Note that, in the future, due to increasing 

bandwidth demand, the evolution of standard is mandatory especially to utilize fiber 

optic bandwidth, therefore, advancement in optical fiber communication is very 

important covering various aspect such as fiber optics, electronic, multiplexing, 

modulation, coding, error correction, digital signal processing, laser, modulator, 

optical laser, dispersion management, and etc. The progress in optical system 

therefore gives us motivation to look and understand the limitation of current 

technology. Therefore, the following review is very important for this research. 

  

2.3. Multiplexing technique 

 

Generally, multiplexing technique is used to maximize the usage of the transmission 

medium or channel. The application of this technique includes increasing the channel 

capacity or the number of tributary/user. There are several multiplexing techniques 

which have been deployed in communication; Time Division Multiplexing (TDM), 

Frequency Division Multiplexing (FDM), subcarrier multiplexed (SCM), 

Wavelength Division Multiplexing (WDM), Polarization Division Multiplexing 

(PDM), and Orthogonal frequency division multiplexing (OFDM). The most recent 

is Duty Cycle Division Multiplexing (DCDM) which has been proposed as an 

alternative to TDM. 
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2.3.1. Time Division Multiplexing (TDM) 

 

In the history of communication, TDM has been used since 1950 in the public 

telephone network. During that time, the main factor for the implementation of TDM 

is to reduce the cost by utilizing the bandwidth available in a transmission medium 

which is higher compared to user bandwidth for a single voice. In TDM technique, 

the users will share the transmission medium based on time slot. This mean, each 

user will be given specific portion of time to transmit the information. During that 

portion of time, the user will occupy the medium entirely. In telephone system as an 

example, the bit rate required by each voice of user is low compared to the maximum 

bit rate for the transmission medium. Figure 2.1 describes the TDM technique for 

bits interleave which is simplest version of TDM. In this figure, three channels 

tributary at R bit rate per channel are multiplexed as single channel data stream at 3R 

bit rate capacity. Since the incoming bit duration is Tb (=1/R), thus the bit duration of 

output data stream is Tb/3, which is three time smaller than incoming bit duration. 

Besides bit interleave, 1 byte or frame of data from each channel tributary is selected 

and arrange in the output data stream. Typically, the actual hardware implementation 

from incoming data to multiplexed data is determined by the manufacturer. However, 

the manufacturer must comply with international standard such as SONET/SDH and 

OTN.  
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Figure 2.1: TDM technique [2] 

PTTA
PERP

UST
AKA
AN 
TUN
KU T

UN 
AMI
NAH



16 
 

The evolution of serial transmission bit rate from 10 Gbit/s to 40 Gbit/s in 

SONET/SDH and OTN is another milestone in optical fiber system. Even though   

40 Gbit/s capacity can be achieved using 4 channels WDM with 10 Gbit/s per 

channel, but the requirement of simple, quick and economical implementation 

offered by TDM are an attractive features. Note that, utilizing 40 Gbit/s TDM per 

channel will reduce network element (transmitter and receiver) effectively, thus 

management and maintenance effort are much simpler compared to 4 channel WDM 

[44]. Another version of TDM working on optical domain has been proposed as an 

alternative to go beyond the limitation of electrical TDM (ETDM), is known as 

optical TDM (OTDM) [45].  

Currently, high speed electronic based ETDM has been reported to support more 

than 40 Gbit/s serial data using more advance material and state-of-the-art 

technology [9, 46-48]. Figure 2.2 (a) describes the experimental setup for 107 Gbit/s 

ETDM optical system as reported in 2006 [9]. In this setup, ETDM was implemented 

using an electronic 2:1 multiplexer (SHF 408) to produce 107 Gbit/s serial binary 

(NRZ format) electrical signal as shown in Figure 2.2(b). This multiplexer was 

fabricated based on silicon-germanium heterojunction bipolar transistor (SiGe HBT) 

technology and manufactured by SHF Communication Technologies AG, Germany. 

The bit interval for this signal is corresponding to about 10 ps. Theoretically, ideal 

NRZ format with 10 ps interval has 100 GHz null electrical bandwidth. However, 

even though generating serial can be no longer the main limitation, for up to 

100_Gbit/s as mentioned above, this serial ETDM signal has to face with other 

transmission hurdles such as the type of modulation and WDM channel grid issues. 

Current system, up to 10 Gbit/s, using simple modulation such as on-off-keying 

(OOK) at 1550 nm, several thousand kilometers can be reached before signal 

regeneration over standard single mode fiber (SSMF), but this span distance is 

impossible to be maintained when the serial bit rate continuously increase if similar 

modulation is used. Therefore, the limitation of the conventional OOK based on 

NRZ or RZ will be discussed in the next section. Current research direction shows 

that, high speed serial data have to be converted to low speed symbol rate using 

multilevel signalling or M-ary in order to propagate at a longer distance compared to 

OOK.  
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Figure 2.2: (a) 107 Gbit/s ETDM optical system and (b)2:1 Multiplexer SHF 408 [9] 

 

2.3.2. Frequency Division Multiplexing (FDM) 

 

In FDM [49], the spectrum of medium is shared by dividing the spectrum to be sub-

band. Figure 2.3 shows the block diagram of FDM principle. In this figure, several 

typical 3 kHz bandwidth analogue signal of voice are combined in single medium by 

arranging them in 4 kHz sub-band. For example, in analogue telephone signals, 60 

MHz FDM system is capable to accommodate around 10800 channels over coaxial 

cable. Each sub-band must be well separated in order to prevent interference and the 

signal can be extracted by band-pass filter at the receiver. However, FDM is unable 

to compete with digital system based on TDM which is more reliable and more 

robust to noise. Beside FDM, almost similar concept has been reported especially in 

optical system, namely subcarrier multiplexing (SCM).  
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SCM has been reported for video signal distribution in cable television 

(CATV) [50-55], high speed data transport [56] and fiber-to-the-home (FTTH) of 

WDM passive optical network (PON) [57] . Since this technique transmits 

simultaneously several channel with smaller baud rate signal thus reducing impact of 

CD and M-ary can be adopted for better bandwidth efficiency compared TDM at 

similar data capacity. Considering hardware issues, microwave devices are more 

mature to provide stable microwave oscillator and better frequency selectivity of a 

microwave filter compared to optical devices. This technique is also compatible with 

advanced modulation format and coherent detection in the RF domain can be 

implemented easier compared to optical coherent detection. 

However, to implement this technique, the number of microwave components 

increase linearly as number of channels such as microwave oscillator, combiner and 

filter with different frequency characteristic requirement. Therefore the management 

of component quality is more challenging during practical implementation. Besides 

that, nonlinear Mach-Zehnder modulator (MZM) transfer function may induces 

nonlinear distortions of RF signal in which harmonic is created. This harmonic will 

interfere with other SCM channel creating intermodulation distortion effect. 

Moreover, the crosstalk issue associate with chosen channel spacing limits the SCM 

performance [57]. 

 

  

Figure 2.3: FDM principle [49] 
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2.3.3. Wavelength Division Multiplexing (WDM) 

 

Wavelength Division Multiplexing (WDM) was proposed by DeLange in 1970 [58] 

as frequency-division multiplexing in optical domain. The popularity of WDM 

started in the early 1990s because of the limitation of electronic equipment and more 

complex for high speed equipment realization to utilize fiber optic bandwidth to 

transport more data. Figure 2.4 shows the principle of WDM system. In this 

technique, N numbers of optical wavelengths are used as data carrier. These 

wavelengths are combined into an optical fiber using WDM multiplexer (WDM 

Mux). At the receiver side, WDM demultiplexer (WDM Demux) separates this 

wavelength as individual channel. Each optical wavelength is different and typically, 

channel spacing will determine the gap between those wavelengths so that 

overlapping optical carrier can be avoided. This technique allows any modulation 

technique implemented for each wavelength as long as spectral width of signal does 

not exceed the channel spacing used. Based on this technique, the aggregate capacity 

per fiber optic is given by N×R, where R is bit rate per channel, and assuming R is 

similar for all channels.  

 

WDM 

Mux

WDM

Demux

1

2

N

·

·

·

·

1

2

N

·

·

·

·

  

Figure 2.4: WDM principle [2].  

 

Table 2.2 shows the wavelength range of WDM bands. Note that, this range 

is approximation values and have not yet been standardized.  Considering O-band 
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which is 1260 nm to 1360 nm range is equivalent to 14 THz bandwidth. Meanwhile, 

combination of S-band and C-band in a range of 1460 nm to 1625 nm provides 

another 15 THz bandwidth. Total available bandwidth per fiber optic in O-, S- and 

C-band only is around 30THz of the low-loss regions of a standard G.652 single-

mode fiber as shown in Figure 2.5. 

  

Table 2.2: WDM bands [59] 

Band Descriptor Wavelength range (nm) 

O-band Original 1260 to 1360 

E-band Extended 1360 to 1460 

S-band Short 1460 to 1530 

C-band Conventional 1530 to 1565 

L-band Long 1565 to 1625 

U-band Ultra-long 1625 to 1675 

 

Figure 2.5: Typical silica fiber optic attenuation characteristic [59] 

 

In order to standardized the implementation of available WDM bands above, 

in 1998, ITU-T released the first specification for WDM known as Recommendation 
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G.692, Optical Interfaces for Multichannel Systems with Optical Amplifiers [60]. In 

this standard, channel wavelengths and frequencies have been specified for C-band 

(1530 nm to 1560 nm) with 50 GHz and 100 GHz channel spacing. In 2002, 

narrower optical channel spacing has been standardized by ITU-T as 

Recommendation G.694.1 with 12.5 GHz to 100 GHz channel spacing for C- and L-

bands (1530 nm to 1625 nm) [61]. This WDM channel spacing is known as Dense 

WDM (DWDM). Based on ITU-T standard, the number of channels is about 81 

channels for the C-band and about 111 channels for the L-band considering channel 

spacing of 50 GHz. Besides that, considering low cost requirement for access 

network and local area network, coarse WDM (CWDM) was standardized by ITU-T 

Recommendation G.694.2 [62]. This standard specifies the centre wavelength of 18 

CWDM channels in O- to L-bands (1270 nm to 1625 nm) with 20 nm channel 

spacing. This wide spacing is important to give more tolerance in laser source due to 

wavelength-drift for low cost uncooled laser source.  

In the early stage, WDM transmission implementation is based on point-to-

point setup as shown in Figure 2.4. After that, the wavelength add/drop multiplexer 

(ADM) is introduced in WDM system to provide better way to manage the 

wavelength channel flow for implementing WDM network in which more than two 

nodes can be linked together with more convenience way because no optical-

electrical conversion involved. The purpose of ADM is to add and drop single or 

several WDM channel from WDM network typically important task in metro and 

core network. The detail WDM network technology can be found in [11, 63]. 

Passive optical network (PON) technology is an example of successful WDM 

implementation in access network to provide high capacity, increased reach and 

energy saving compared to typical digital subscriber line (DSL) technology [64]. In 

this technology, the wavelength for the downstream signal and the upstream signal 

are 1490nm and 1310nm, respectively. A low cost light source that have wide 

separation in wavelength channel spacing can be used to deliver the triple-play 

services to end users without affecting the targeted performance. An optical 

component, known as passive WDM coupler is used to combine both wavelength 

into a fiber optic at central office (CO) and to separate them in optical line terminal 

(OLT). PON technology progress indicates that WDM is a better option to be 

adopted, therefore recent research interest on WDM-PON technology as evident [65-

70].  
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Research studies based on WDM technology for upgrading fiber optic 

capacity usage by increasing wavelength channel used is tremendous [71-80].  The 

highest capacity reported so far is 101.7 Tbit/s  with 370 WDM channels in C- and 

L-bands using PDM-128QAM-OFDM at 294 Gbit/s per channel and 25 GHz 

spacing[13]. 432 WDM channels and 25GHz channel spacing are latest achievable 

WDM transmission in C- and L-bands using PDM 16-QAM with 171.2 Gbit/s per 

channel that yield  69.1 Tbit/s capacity [12]. 

Besides the progress in WDM system, there are several issues need to be 

considered when dealing with WDM technique.  Note that, each WDM channel 

requires individual components as single channel. Thus the management of 

component has become more critical compared to TDM system [44]. Nonlinearity 

effect, such as Four Wave Mixing (FWM) degrades the performance of WDM 

system seriously when the dispersion-shifted fiber is deployed [81-85]. Others 

nonlinearity impairment including Stimulated Raman Scattering (SRS) [86, 87] and 

Cross Phase Modulation (XPM) [88, 89] have been reported as sources of problem in 

WDM system.  

  

2.3.4. Polarization Division Multiplexing (PDM) 

 

In the inspiration toward the high spectral efficiency of high capacity optical 

transmission system, polarization of optical signal is a promising key parameter that 

has been intensively studied as a multiplexing technique. Besides PDM, other 

acronym has been used such as POLMUX (Polarization Multiplexing) [90] or 

PolDM (Polarization Division Multiplex) [14].  

Note that, electric field orientation or polarization state is a fundamental 

property of light. This property can be exploited in optical communication as 

modulation or multiplexing technique similar to time, frequency and wavelength. 

Polarization shift keying (PolSK) is a modulation technique, in which the state of 

polarization (SOP) of optical signal is being used to represent a symbol for 

transmission in free space or fiber optic channel. 

In PDM system, two signals are transmitted at the same wavelength with 

orthogonal SOP. In order to multiplexed and demultiplexed both SOP, polarization 

beam splitter (PBS) is required at transmitter and receiver. The main drawback of 

PDM is due to the polarization mode dispersion (PMD) related impairment [90-92]. 
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This impairment reduces the PMD tolerance of the single channel system and 

furthermore reduces the nonlinear tolerance in the case of WDM transmission, 

through XPM induced cross polarization modulation. Besides that, the complexity of 

the system increase with additional optical component such as PBS. 

 

 

Figure 2.6: PDM technique [91] 

 

2.3.5. Orthogonal Frequency Division Multiplexing (OFDM) 

 

OFDM is another latest technique in optical system. Currently, this technique is 

widely deployed in broadband wired and radio frequency (RF) based wireless 

communication. In OFDM, the digital information is converted as multiple lower rate 

subcarriers. The interest of OFDM in optical system is related with the advancement 

of digital signal processing (DSP) technology. DSP technology is required for 

efficiently implementing inverse fast Fourier transform (IFFT) and fast Fourier 

transform (FFT). OFDM requires digital-to-analog converter (DAC) at transmitter 

and analog-to-digital converter (ADC) at receiver. Figure 2.7 shows the coherent 

optical OFDM (CO-OFDM) system. Generally, OFDM has two fundamental 

advantages which are; robust to channel dispersion, and ease of phase and channel 

estimation in a time-varying environment. However, OFDM also has its intrinsic 

disadvantages, such as high peak-to-average power ratio (PAPR) and sensitivity to 

frequency and phase noise[93]. On top of that, the operation speed of electronic 

devices such as DAC/ADC and modulator drivers limits the channel line rate [94]. 
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Figure 2.7: CO-OFDM system [93] 

 

2.3.6. Duty Cycle Division Multiplexing (DCDM) 

 

DCDM is a new multiplexing technique that has been proposed in 2007 as an 

alternative to TDM by Abdullah [33]. In this technique, several user or tributary are 

multiplexed as a symbol by exploiting RZ signal properties. In order to generate 

unique symbol for all possible data from each user, RZ conversion are applied with 

the predefined duty cycle for each user before the signal is combined together. This 

technique assumes that the data from each user are synchronized and identical 

amplitude with NRZ line code. The duty cycle of RZ conversion is based on the time 

duration over symbol duration, Ts.   The duty cycle for ith
 user is given by 

1

S
i

i T
Tdc

n





 (2. 1) 
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