# SHEAR STRENGTHENING AND REPAIR OF DEEP BEAMS WITH AND WITHOUT WEB REINFORCEMENT USING NEAR-SURFACE MOUNTED CFRP BARS

#### **DOUREAD RAHEEM HASEEN**

A thesis submitted in fulfillment of the requirement for the award of the Doctor of Philosophy

Faculty of Civil and Environmental Engineering
Universiti Tun Hussein Onn Malaysia

**JUNE 2018** 

## **ACKNOWLEDGEMENT**

I would like to express my utmost gratitude and appreciations to my main supervisor Prof. Ir. Dr. Abdul Aziz bin Abdul Samad for his guidance, encouragement and assistance throughout this amazing research journey. My sincere appreciation also extends to my co-supervisors Assoc. Prof. Dr. Noridah Mohamad and Assoc. Prof. Dr. Ali Naji Attiyah for their assistance and encouragement.

Special thanks to my love and wife Alyaa Abdul Razzaq Azeez for her continuous support throughout my life.

Thanks and acknowledgement to the all lectures at Civil and Hydraulic Structural Engineering department of Kufa Universiti, Specially, Lecturer. Dr. Thaer Matlab Mezher from for his assistance during the experimental works.

Lastly, special thanks to my freind, Raheem Kashan Zahger, friend for his continuous support throughout this journey. My deepest gratitude goes to my late parents Raheem Hassen and Sahira jaafar for their love and support. Finally, also private thankfulness goes to my uncle Abdul Razzaq Azeez and aunt seham nory abood.

### **ABSTRACT**

Shear failure of a reinforced concrete beam is catastrophic because it occurs suddenly and without warning. Recently, CFRP sheets and bars have been rapidly employed in strengthening structural concrete elements including deep beams. In this research, the behaviour of deep beam strengthened with carbon fiber reinforced polymer (CFRP) as Near Surface Mounted (NSM) bars was studied. Five groups of deep beams i.e. G1, G2, G3, G4 and G5 were studied. Each group of deep beams has the same shear span to effective depth ratio at 0.864. Group G1 consists of two beams as a control specimens and each one differs depending on either with web and without web reinforcement. Groups G2 to G5 consists of initially strengthened or pre-cracked and repaired deep beams with CFRP NSM bars with different schemes and orientations. Other variables included beams with and without web reinforcements. The selected orientations for all CFRP NSM bars were either at 0/90 or 45/135 degrees and the two different spacing schemes for the stirrups were at 100 mm or 150 mm. In total, 18 reinforced concrete deep beams with a size of 450 x140 x1200 mm were experimented. A simulation using finite element software ANSYS V.14 was conducted to validate the experimental work. Three existing theoretical equations from ACI 440, Khalifa & Nanni and *fib* were selected for comparison with the experimental findings. From the experimental, all deep beam specimens failed in shear. Experimental results indicated that all deep beams, either with or without web reinforcement, and strengthened or repaired with CFRP NSM bars showed increased shear capacity enhancement from 17% to 141% compared to the control specimens. Finite element analysis by ANSYS software also indicated similar behaviour in terms of shear capacity, crack patterns and mode of failure. In addition, three existing theoretical models; ACI 440, Khalifa and Nanni and fib models were applied for theoretical comparison of shear capacity contributed by CFRP NSM bars V<sub>f</sub>. The ACI 440 and Khalifa & Nanni model showed good consistency and good agreement with the experimental results. Finally, a modified effective strain limit based on different coefficient (R) values was proposed.

## **ABSTRAK**

Sifat kegagalan ricihan rasuk konkrit bertetulang secara tiba-tiba tanpa amaran adalah satu sifat yang sangat merbahaya. Oleh itu, pengunaan lembaran CFRP dan bar CFRP adalah kaedah yang telah kerap digunapakai dalam usaha untuk mengukuhkan elemen konkrit struktur termasuk rasuk dalam. Dalam kajian ini, ciri-ciri rasuk dalam yang diperkukuh dengan polimer bertetulang gentian karbon (CFRP) secara Near Surface Mounted (NSM) telah di kaji. Lima kumpulan rasuk G1, G2, G3, G4 dan G5 telah dilaksanakan. Setiap kumpulan rasuk mempunyai nilai rentang ricih dengan nisbah kedalaman yang berkesan pada 0.864. Kumpulan G1 terdiri daripada dua rasuk sebagai spesimen kawalan dan masing-masing berbeza bergantung sama ada dikukuh dengan tetulang web atau tanpa tetulang web. Kumpulan G2 hingga G5 terdiri daipada rasuk yang telah dikukuh awal dengan bar CFRP NSM, atau rasuk pra-retak yang kemudiannya diperbaiki dengan bar CFRP NSM. Pembolehubah untuk rasuk kumpulan G2 dan G5 merangkumi rasuk bertetulang web dan rasuk tanpa tetulang web. Ini di susuli pula dengan pemilihan orientasi bar CFRP NSM pada sudut 0/90 darjah atau 45/135 darjah dan susunan jarak tetulang web pada 100 mm atau 150 mm. Lapan belas rasuk dalam konkrit bertetulang dengan saiz 450 mm x 140 mm x 1200 mm telah diuji. Simulasi dengan menggunakan perisian elemen terhingga ANSYS V.14 telah dijalankan untuk mengesahkan hasil kajian. Tiga teori model iaitu ACI 440, Khalifa & Nanni dan fib telah dipilih untuk perbandingan dengan kajian. Semua spesimen telah gagal secara ricih. Kajian menunjukkan bahawa semua rasuk yang bertetulang web atau rasuk tanpa tetulang web dan dikukuh awal atau diperbaiki dengan bar CFRP NSM menunjukkan peningkatan kapasiti ricih dari 17% hingga 141% berbanding spesimen kawalan. Perisian ANSYS menunjukkan kapasiti ricih, corak retak dan kegagalan mod yang serupa dengan kajian. Di samping itu, sumbangan bar CFRP NSM (V<sub>f</sub>) terhadap kapasiti ricih dari tiga teori model dari ACI 440, Khalifa dan Nanni dan fib telah dibandingkan. Dari analisis tersebut, model ACI 440 dan Khalifa & Nanni telah menunjukkan konsistensi dan persetujuan yang baik dengan keputusan kajian. Akhirnya, had keterikan berkesan yang diubahsuai berdasarkan nilai pekali (R) yang berbeza telah dicadangkan.

## TABLE OF CONTENT

|           | TITL  | E                              | i    |
|-----------|-------|--------------------------------|------|
|           | DECL  | ARATION                        | ii   |
|           | ACKN  | NOWLEDGEMENT                   | iii  |
|           | ABST  | TRACT                          | iv   |
|           | ABST  | RAK                            | v    |
|           | TABL  | LE OF CONTENTS                 | vi   |
|           | LIST  | OF TABLE                       | xi   |
|           | LIST  | OF FIGURES                     | xii  |
|           | LIST  | OF SYMBOLS                     | xxii |
|           | LIST  | OF ABBREVIATIONS               | XXV  |
| CHAPTER 1 | INTR  | ODUCTION                       |      |
|           | 1.1   | Introduction Problem statement | AM   |
|           | 1.2   | Problem statement              | 3    |
|           | 1.3   | Objectives                     | 5    |
|           | 1.4   | Scope of work                  | 6    |
|           | 1.5   | Research significance          | 9    |
|           | 1.6   | Layout of Thesis               | 9    |
| CHAPTER 2 | LITE: | RATURE REVIEW                  |      |
|           | 2.1   | Introduction                   | 11   |
|           | 2.2   | FRP                            | 14   |
|           | 2.3   | Type of Fiber                  | 15   |
|           |       | 2.3.1 Glass Fibers             | 15   |
|           |       | 2.3.2 Carbon Fibers            | 16   |
|           |       | 2.3.3 Armed Fibers             | 16   |
|           | 2.4   | Matrix                         | 17   |
|           | 2.5   | Mechanical properties of FRP   | 18   |
|           | 2.6   | Durability                     | 18   |

|           | 2.7  | Fatigu         | e effects       |                                | 18 |
|-----------|------|----------------|-----------------|--------------------------------|----|
|           | 2.8  | Behav          | ior and Perfor  | mance of FRP                   | 19 |
|           | 2.9  | Theor          | etical and Cod  | es Models for Shear            | 21 |
|           |      | Streng         | thening Using   | CFRP                           |    |
|           |      | 2.9.1          | ACI 440         |                                | 21 |
|           |      |                | 2.9.1.1 Limit   | s on tensile strain of shear   | 22 |
|           |      |                | reinforcemer    | nt                             |    |
|           |      |                | 2.9.1.2 Minii   | mum amount of shear            | 22 |
|           |      |                | reinforcemer    | nt                             |    |
|           |      |                | 2.9.1.3 Shear   | failure due to crushing        | 23 |
|           |      |                | of the web      |                                |    |
|           |      | 2.9.2          | Khalifa and l   | Nanni (2002)                   | 24 |
|           |      | 2.9.3 <i>f</i> | fib (2001)      |                                | 25 |
|           | 2.10 | Detail         | ing of shear st | irrups for FRP                 | 25 |
|           | 2.11 | Applio         | cations of FRP  |                                | 26 |
|           | 2.12 | Field l        | Projects        |                                | 26 |
|           | 2.13 | Resear         | rch on Beams    | using NSM technique            | 31 |
|           | 2.14 | Deep           | beams Reinfor   | ced with steel bars            | 41 |
|           | 2.15 | Deep           | Beams Reinfo    | rced with FRP Bars             | 51 |
|           | 2.16 | Design         | n Model for Sl  | near in Deep Beams             | 54 |
|           |      | 2.16.1         | Slender steel   | reinforced member CSA A23.3-04 | 54 |
|           |      | 2.16.2         | ACI 318-14      |                                | 55 |
|           |      | 2.16.3         | Euro code 2     |                                | 56 |
|           |      |                | 2.16.3.1        | Beams without Shear            | 56 |
|           |      |                |                 | Reinforcement                  |    |
|           |      |                | 2.16.3.2        | Beams without                  | 56 |
|           |      |                |                 | Shear Reinforcement            |    |
|           | 2.17 | Nume           | rical modeling  | g of reinforced concrete       | 57 |
|           |      | streng         | thened with Fl  | RP composites                  |    |
|           | 2.18 | Summ           | nary            |                                | 62 |
| CHAPTER 3 | MET  | HODO           | LOGY            |                                |    |
|           | 3.1  |                | uction          |                                | 63 |
|           | 3.2  | Exper          | iential Work    |                                | 64 |
|           |      | 3.2.1          | Deep Beams      | Description                    | 64 |

vii

| 3.2.2  | Beam Designation        |                            | 73  |
|--------|-------------------------|----------------------------|-----|
| 3.2.3  | Materials Properties    |                            | 80  |
|        | 3.2.3.1 Concrete        |                            | 80  |
|        | 3.2.3.1.1               | Cement                     | 80  |
|        | 3.2.3.1.2               | Fine Aggregate             | 81  |
|        | 3.2.3.1.3               | Coarse Aggregate           | 81  |
|        | 3.2.3.1.4               | Mix Design and             | 81  |
|        |                         | Water-Cement ratio         |     |
|        | 3.2.3.2 Steel Reinford  | cement                     | 82  |
|        | 3.2.3.3 Epoxy Resin     |                            | 83  |
|        | 3.2.3.4 Carbon Fiber    | Reinforced Polymer         | 84  |
| 3.2.4  | Specimens preparation   | on                         | 85  |
|        | 3.2.4.1 Concrete mix    |                            | 85  |
|        | 3.2.4.2 Formwork pro    | eparation                  | 87  |
|        | 3.2.4.3 Reinforcemen    | nt preparation             | 88  |
|        | 3.2.4.4 Casting Proce   | edure                      | 88  |
|        | 3.2.4.5 Curing Proceed  | dure                       | 90  |
|        | 3.2.4.6 Installation of | f strain gauge on concrete | 91  |
|        | surface and C           | FRP NSM bars               |     |
| 3.2.5  | Strengthening Proceed   | lure                       | 99  |
| 3.2.6  | Test setup and proceed  | dure                       | 104 |
| Finite | element modelling       |                            | 106 |
| 3.3.1  | Introduction to ANS     | YS V.14                    | 106 |
| 3.3.2  | Material model          |                            | 107 |
|        | 3.3.2.1 Concrete        |                            | 107 |
|        | 3.3.2.1.1 Con           | crete Representation       | 108 |
|        | 3.3.2.1.2 Elas          | tic Models                 | 108 |
|        | 3.3.2.1.3 Mod           | leling of a Crack          | 109 |
|        | 3.3.2.1.4 Mod           | leling of a Crushing       | 111 |
|        | 3.3.2.1.5 Plas          | tic Models                 | 112 |
|        | 3.3.2.2 Reinfo          | orcement                   | 112 |
|        | 3.3.2.2.1 Non           | linear Solution            | 113 |
|        | 3.3.2.2.2 Con           | vergence Criteria          | 113 |
| 3.3.3  | Mesh and boundary of    | conditions                 | 114 |

3.3

viii

|         |               |                | 3.3.3.1 Element Types                                | 116        |
|---------|---------------|----------------|------------------------------------------------------|------------|
|         |               |                | 3.3.3.2 Real constants                               | 118        |
|         |               | 3.3.4          | Loads and Boundary Conditions                        | 119        |
|         |               | 3.3.5          | Solution of nonlinear equations                      | 120        |
|         |               |                | 3.3.5.1 Introduction to Nonlinear Analysis           | 120        |
|         |               |                | 3.3.5.2 Time and Time Step                           | 124        |
|         | 3.4           | Analy          | tical work                                           | 125        |
| CHAPTED | 4 DECI        | II TO O        | OF THE EXPERIMENTAL STUDY                            |            |
| CHAPIER | 4 KESU<br>4.1 |                | uction                                               | 126        |
|         | 4.1           |                | ate load                                             | 120        |
|         |               |                |                                                      | 134        |
|         | 4.3           | Group          |                                                      |            |
|         |               | 4.3.1<br>4.3.2 | Crack development and failure mode  Load –Deflection | 134<br>135 |
|         |               |                |                                                      |            |
|         |               | 4.3.3<br>4.3.4 | NSM CFRP Strain response                             | 136        |
|         | 4.4           |                | Shear Crack Width                                    | 138        |
|         | 4.4           | Group 4.4.1    |                                                      | 138        |
|         |               | 4.4.1          | Crack development and failure mode  Load –Deflection | 142        |
|         |               | 4.4.2          | NSM CFRP Strain response                             | 142        |
|         |               | 4.4.3          | Concrete surface Strain response                     | 143        |
|         |               | 4.4.5          | Shear Crack width                                    | 148        |
|         | 4.5           |                |                                                      | 148        |
|         | 4.3           | Group 4.5.1    | Crack development and failure mode                   | 149        |
|         |               | 4.5.1          | Load – Deflection                                    | 152        |
|         |               | 4.5.3          |                                                      | 153        |
|         |               | 4.5.4          | 1                                                    | 156        |
|         |               | 4.5.4          | Concrete surface Strain response Shear Crack width   | 158        |
|         | 4.6           | Group          |                                                      | 159        |
|         | 4.0           | 4.6.1          | Crack development and failure mode                   | 159        |
|         |               | 4.6.2          | Load – Deflection                                    | 162        |
|         |               | 4.6.3          |                                                      | 163        |
|         |               | 4.6.4          | NSM CFRP Strain response                             | 166        |
|         |               |                | 1                                                    |            |
|         |               | 4.6.5          | Shear Crack Width                                    | 168        |

|           | 4./     | Group 5                                                                 | 169        |
|-----------|---------|-------------------------------------------------------------------------|------------|
|           |         | 4.7.1 Crack development and failure mode                                | 169        |
|           |         | 4.7.2 Load – Deflection                                                 | 172        |
|           |         | 4.7.3 Concrete surface Strain response                                  | 172        |
|           |         | 4.7.4 Shear Crack Width                                                 | 175        |
|           | 4.8     | Influence of strengthening and repairing scheme                         | s 175      |
|           |         | of NSM CFRP bars                                                        |            |
|           |         | 4.8.1 NSM CFRP contribution to shear                                    | 176        |
|           |         | 4.8.2 Crack patterns and failure mode                                   | 178        |
|           |         | 4.8.3 Load-deflection behaviour                                         | 182        |
|           | 4.9     | Influence of CFRP contribution to un-cracked ar                         | nd 184     |
|           |         | pre-cracked beams                                                       |            |
|           | 4.10    | Summary                                                                 | 185        |
| CHAPTER S | 5 FINIT | TE ELEMENT AND ANALYTICAL STUDY                                         |            |
|           | 5.1     | Introduction                                                            | 187        |
|           | 5.2     | Finite element analysis                                                 | 188        |
|           |         | 5.2.1 Modeling and Meshing                                              | 188        |
|           |         | 5.2.2 Loads and Boundary Conditions                                     | 190        |
|           |         | <ul><li>5.2.3 Analysis Type</li><li>5.2.4 Ultimate shear Load</li></ul> | 191<br>195 |
|           |         | 5.2.5 Diagonal crack load and cracking pattern                          |            |
|           |         | 5.2.6 Load-Deflection Profile                                           | 214        |
|           | 5.3     | Analytical study                                                        | 218        |
|           | 5.4     | Analytical Models                                                       | 224        |
|           | 5.5     | Proposed modified model                                                 | 225        |
|           |         | 5.5.1 Proposed modified ACI 440                                         | 225        |
|           |         | 5.5.2 Khalifa & Nanni (2002)                                            | 230        |
|           | 5.6     | Verifying New Formula $(V_f)$ for                                       | 232        |
|           |         | Another Dimensions                                                      |            |
|           |         | 5.6.1 Analytical analysis                                               | 232        |
|           |         | 5.6.2 Finite element analysis                                           | 234        |
| CHAPTER ( | 6 CON   | CLUSIONS AND RECOMMENDATIONS                                            |            |
|           | 6.1     | Introduction                                                            | 236        |
|           | 6.2     | Conclusions                                                             | 237        |
|           | 63      | Recommendations                                                         | 240        |

# LIST OF TABLE

| 2.1     | Comparison between properties of fibers, resin,            | 1 / |
|---------|------------------------------------------------------------|-----|
|         | and steel (typical value) (ACI 440.2R, 2008)               |     |
| 2.2     | Material properties of matrix materials (Lundqvist, 2007). | 18  |
| 3.1     | Specimens details                                          | 76  |
| 3.2     | Chemical Analysis and Main Compounds of the Used           | 80  |
|         | Ordinary Portland cement                                   |     |
| 3.3     | Physical Properties of the Used Ordinary                   | 80  |
|         | Portland cement                                            |     |
| 3.4     | Grading of the Used Sand and the Requirements of           | 81  |
|         | I.O.S 45/1984                                              |     |
| 3.5     | Selected grading of course aggregate                       | 81  |
| 3.6     | Tensile test results of the reinforcement                  | 82  |
| 3.7 ERP | Properties of the epoxy resin (Sikadur-330)                | 84  |
| 3.8     | Cylinder and Cubes compression test result                 | 87  |
| 3.9     | Element types for working models                           | 116 |
| 3.10    | Material real constant properties                          | 118 |
| 4.1     | Experimental results of Group 1 (Control Beams)            | 129 |
| 4.2     | Experimental results of Group 2 (with Stirrups)            | 130 |
| 4.3     | Experimental results of Group 3 (without Stirrups)         | 131 |
| 4.4     | Experimental results of Group 4 (without Stirrups)         | 132 |
| 4.5     | Experimental results of Group 5 (with stirrups)            | 133 |
| 4.6     | The shear force at different stages for all beam specimens | 180 |
| 4.7     | Deflection comparison between specimens                    | 183 |
| 5.1     | Mesh attributes for the models                             | 189 |
| 5.2     | Commands used to control nonlinear analysis                | 192 |

xii

## LIST OF FIGURES

| 1.1  | Research Flow Chart                                         | C  |
|------|-------------------------------------------------------------|----|
| 2.1  | Near surface mounted bar                                    | 13 |
| 2.2  | Composition of FRP (Tan, 2003)                              | 14 |
| 2.3  | Most used shapes of fibers (An The Vinh, 2009)              | 15 |
| 2.4  | Stress-strain profile of fibres and steel (Caroline, 2003)  | 17 |
| 2.5  | Glass and carbon fibers and FRPs used in structural         | 26 |
|      | engineering (Noorliyana, 2008)                              |    |
| 2.6  | Shear strengthening by using NSM FRP bars embedded          | 27 |
|      | in vertical grooves (Hogue et al., 1999)                    |    |
| 2.7  | face of member with grooves (Nanni, 1998)                   | 27 |
| 2.8  | Filling of Grooves with Epoxy Paste (Nanni, 1998)           | 28 |
| 2.9  | Embedding CFRP Rods in the Top Surface of the Deck          | 29 |
|      | (Warren, 1998)                                              |    |
| 2.10 | Installation of NSM CFRP Rods in the Bridge Deck            | 30 |
|      | (Alkhrdaji et al., 1999)                                    |    |
| 2.11 | Columns Strengthened with NSM Rods (Alkhrdaji et al., 1999) | 31 |
| 2.12 | Different components of strut-and-tie                       | 42 |
| 2.13 | Effect of web reinforcement on strut strength               | 42 |
|      | (Brown and Bayrak, 2006)                                    |    |
| 2.14 | Details for web reinforced tested by (Kong et al.,1970)     | 43 |
| 2.15 | Effect of Load on Deep Beams Models by                      | 45 |
|      | (Ramakrishnan and Ananthanarayana, 1968)                    |    |
| 2.16 | Beam geometry for specimens tested by                       | 52 |
|      | (Andermatt and Lubell, 2013)                                |    |
| 2.17 | Deflection response of specimens tested by                  | 53 |

|      |                                                       | xiv |
|------|-------------------------------------------------------|-----|
|      | (A 1                                                  |     |
|      | (Andermatt and Lubell, 2013)                          |     |
| 2.18 | Dimensions of deep beam with large opening            | 59  |
|      | (Moayad et al., 2015)                                 |     |
| 2.19 | Meshing of deep beam with large opening               | 59  |
|      | (Moayad et al., 2015)                                 |     |
| 3.1  | Group 1 - Control beam C1 (with stirrups)             | 65  |
| 3.2  | Group 1 - Control beam C2 (no stirrups)               | 65  |
| 3.3  | Group 2 - beam C3(0/90-100) initially strengthened    | 66  |
|      | by CFRP NSM bars spaced at 100 mm with 0/90 degree    |     |
|      | orientation.                                          |     |
| 3.4  | Group 2 - beam C4(0/90-150) initially strengthened    | 66  |
|      | by CFRP NSM bars spaced at 150 mm with 0/90 degree    |     |
|      | orientation.                                          |     |
| 3.5  | Group 2 - beam C5(45/135-100) initially strengthened  | 67  |
|      | by CFRP NSM bars spaced at 100 mm c/c with 45/135     |     |
|      | degree orientation.                                   |     |
| 3.6  | Group 2 - beam C6(45/135-150) initially strengthened  | 67  |
|      | by CFRP NSM bars spaced at 150 mm c/c with 45/135     |     |
|      | degree orientation.                                   |     |
| 3.7  | Group 3 - beam ST1(0/90-100) initially strengthened   | 68  |
|      | by CFRP NSM bars spaced at 100 mm c/c with 0/90       |     |
|      | degree orientation.                                   |     |
| 3.8  | Group 3 - beam ST2(0/90-150) initially strengthened   | 68  |
|      | by CFRP NSM bars spaced at 150 mm c/c with 0/90       |     |
|      | degree orientation.                                   |     |
| 3.9  | Group 3 - beam ST3(45/135-100) initially strengthened | 69  |
|      | by CFRP NSM bars spaced at 100 mm c/c with 45/135     |     |

Group 3 - beam ST4(45/135-150) initially strengthened

69

degree orientation.

3.10

|      | by CFRP NSM bars spaced at 150 mm c/c with 45/135      |    |
|------|--------------------------------------------------------|----|
|      | degree orientation.                                    |    |
| 3.11 | Group 4 - beam R1(0/90-100) pre-cracked and repaired   | 70 |
|      | by CFRP NSM bars spaced at 100 mm c/c with 0/90        |    |
|      | degree orientation.                                    |    |
| 3.12 | Group 4 - beam R2(0/90-150) pre-cracked and repaired   | 70 |
|      | by CFRP NSM bars spaced at 150 mm c/c with 0/90        |    |
|      | degree orientation.                                    |    |
| 3.13 | Group 4 - beam R3(45/135-100) pre-cracked and repaired | 71 |
|      | by CFRP NSM bars spaced 100 mm c/c with 45/135         |    |
|      | degree orientation.                                    |    |
| 3.14 | Group 4 - beam R4(45/135-150) pre-cracked and repaired | 71 |
|      | by CFRP NSM bars spaced at 150 mm c/c with 45/135      |    |
|      | degree orientation.                                    |    |
| 3.15 | Group 5 - beam R5(0/90-100) and R6(0/90-100) initially | 72 |
|      | strengthened by CFRP NSM anchoring bars spaced at      |    |
|      | 100 mm c/c with 0/90 degree orientation.               |    |
| 3.16 | Group 5 - beam R7(0/90-150) and R8(0/90-150) initially | 72 |
|      | strengthened by CFRP NSM anchoring bars spaced at      |    |
|      | 150 mm c/c with 0/90 degree orientation.               |    |
| 3.17 | Groups and beam specimens                              | 79 |
| 3.18 | Digital WP 300 20 Machine                              | 83 |
| 3.19 | Two component of epoxy resin                           | 83 |
| 3.20 | Aslan 200 CFRP Bar                                     | 84 |
| 3.21 | Concrete cube preparation                              | 85 |
| 3.22 | Concrete cubes and cylinder                            | 86 |
| 3.23 | Testing of concrete cube and cylinder                  | 86 |
| 3.24 | Stress-strain curve                                    | 86 |
| 3.25 | Plywood formworks                                      | 87 |
| 3.26 | Link bending & cage reinforcement                      | 88 |

|       |                                                           | xvi |
|-------|-----------------------------------------------------------|-----|
| 3.27  | Concrete process and pouring into formwork                | 89  |
| 3.28  | Specimens curing                                          | 90  |
| 3.29  | Specimens after remove plywood cage                       | 90  |
| 3.30  | Control (C1) strain gauge locations for concrete surface  | 91  |
|       | and CFRP bars                                             |     |
| 3. 31 | Control (C2) strain gauge locations for concrete surface  | 92  |
|       | and CFRP bars                                             |     |
| 3.32  | Beam C3 (0/90-100) strain gauge locations for concrete    | 92  |
|       | surface and CFRP bars                                     |     |
| 3.33  | Beam C4 (0/90-150) strain gauge locations for concrete    | 93  |
|       | surface and CFRP bars.                                    |     |
| 3.34  | Beam C5 (45/135-100) strain gauge locations for concrete  | 93  |
|       | surface and CFRP bars.                                    |     |
| 3. 35 | Beam C6 (45/135-150) strain gauge locations for concrete  | 94  |
|       | surface and CFRP bars                                     |     |
| 3.36  | Beam ST1 (0/90-100) strain gauge locations for concrete   | 94  |
|       | surface and CFRP bars                                     |     |
| 3.37  | Beam ST2 (0/90-150) strain gauge locations for concrete   | 95  |
|       | surface and CFRP bars                                     |     |
| 3.38  | Beam ST3 (45/135-100) strain gauge locations for concrete | 95  |
|       | surface and CFRP bars                                     |     |
|       |                                                           |     |
| 3.39  | Beam ST4 (45/135-150) strain gauge locations for concrete | 96  |
|       | surface and CFRP bars.                                    |     |
| 3.40  | Beam R1 (0/90-100) strain gauge locations for concrete    | 96  |
|       | surface and CFRP bars.                                    |     |
| 3.41  | Beam R2 (0/90-150) strain gauge locations for concrete    | 97  |
|       | surface and CFRP bars                                     |     |
| 3.42  | Beam R3 (45/135-100) strain gauge locations for concrete  | 97  |
|       | surface and CFRP bars                                     |     |

|          |                                                          | xvii |
|----------|----------------------------------------------------------|------|
| 3.43     | Beam R4 (45/135-150) strain gauge locations for concrete | 98   |
|          | surface and CFRP bars.                                   |      |
| 3.44     | Deep beam R5&R6 (0/90-100) strain gauge locations        | 98   |
|          | for concrete surface.                                    |      |
| 3.45     | Deep beam R7&R8 (0/90-150) strain gauge locations        | 99   |
|          | for concrete surface.                                    |      |
| 3.46     | Groove form work                                         | 100  |
| 3.47     | Groove cleaning                                          | 100  |
| 3.48     | Mixing of epoxy paste                                    | 100  |
| 3.49     | Specimens filling with epoxy paste                       | 101  |
| 3.50     | Specimens painting                                       | 101  |
| 3.51     | Strain gauges PFL-30-11-3L for concrete                  | 102  |
| 3.52     | Strain gauges BFLA-2 strain gauge for CFRP               | 102  |
| 3.53     | Specimens test set-up                                    | 103  |
| 3.54     | CN-E cyanoacrylate adhesive.                             | 104  |
| 3.55     | Strain gauges instilling steps.                          | 104  |
| 3.56     | Data Taker (DT85)                                        | 105  |
| 3.57     | DT85 Data Logger Programming and Configuration           | 105  |
| 3.58 ERP | 3-D reinforced concrete solid SOLID65                    | 108  |
| 3.59     | Adopted tension stiffening model                         | 111  |
|          | (ANSYS Theory Manual 2014)                               |      |
| 3.60     | Idealized bilinear stress-strain curve for steel         | 113  |
|          | (ANSYS Theory Manual 2014).                              |      |
| 3.61     | LINK180 used to model CFRP and steel rebar               | 113  |
|          | (ANSYS help 2014).                                       |      |
| 3.62     | Half beam in three-dimension (3D).                       | 114  |
| 3.63     | Reinforcement mesh, element mesh, materials attributes   | 115  |
|          | and configuration                                        |      |
| 3.64     | Element SOLID65 used to model concrete                   | 116  |
| 3.65     | SOLID185 used to model steel plates and supports         | 117  |

|         |                                                           | xviii |
|---------|-----------------------------------------------------------|-------|
| 3.66    | LINK180 used to model CFRP and steel rebar                | 117   |
| 3.67    | Representation of reinforcement in reinforced concrete    | 119   |
|         | (ANSYS help)                                              |       |
| 3.68    | Boundary conditions for plane of symmetry in x-direction. | 120   |
| 3.69    | stress - strain relationship.                             | 121   |
| 3.70    | Displacement vs External load                             | 121   |
| 3.71    | Load-deflection curve                                     | 122   |
| 3.72    | Newton-Raphson load-deflection curve.                     | 123   |
| 3.73    | Load-time subset                                          | 123   |
| 3.74    | Load-time sub step                                        | 124   |
| 4.1     | Crack pattern and failure mode for control beam C1        | 134   |
| 4.2     | Crack pattern and failure mode for control beam C2        | 135   |
| 4.3     | Deflection profile for beams in Group 1                   | 136   |
| 4.4     | Concrete surface-strain profile for control beam C1       | 137   |
| 4.5     | Concrete surface-strain profile for control beam C2       | 137   |
| 4.6     | Crack width profile for control beam C1 and C2            | 138   |
| 4.7     | Crack patterns and failure mode for beam C3 (0/90-100)    | 139   |
| 4.8     | Crack patterns and failure mode for beam C4 (0/90-150)    | 140   |
| 4.9 ERP | Crack patterns and failure mode for beam C5 (45/135-100)  | 141   |
| 4.10    | Crack patterns and failure mode for beam C6 (45/135-150)  | 141   |
| 4.11    | Deflection profile for beams in Group 2                   | 142   |
| 4.12    | NSM CFRP-strain profile for beam C3 (0/90-100)            | 144   |
| 4.13    | NSM CFRP-strain profile for beam C4 (0/90-150)            | 144   |
| 4.14    | NSM CFRP-strain profile for beam C5 (45/135-100)          | 145   |
| 4.15    | NSM CFRP-strain profile for beam C6 (45/135-150)          | 145   |
| 4.16    | Concrete surface-strain profile for beam C3 (0/90-100)    | 146   |
| 4.17    | Concrete surface-strain profile for beam C4 (0/90-150)    | 147   |
| 4.18    | Concrete surface-strain profile for beam C5 (45/135-100)  | 147   |
| 4.19    | Concrete surface-strain profile for beam C6 (45/150-150)  | 148   |
| 4.20    | Crack width profile for beams in Group 2                  | 149   |

| 4.21     | Crack pattern and failure mode for beam ST1 (0/90-100).   | 150 |
|----------|-----------------------------------------------------------|-----|
| 4.22     | Rupturing of CFRP bar at failure for beam ST1 (0/90-100). | 150 |
| 4.23     | Crack pattern and failure mode for beam ST2(0/90-150)     | 151 |
| 4.24     | Crack pattern and failure mode for beam ST3 (45/135-100)  | 151 |
| 4.25     | Concrete failure of beam ST3 (45/135-100)                 | 152 |
| 4.26     | Crack patterns and failure mode for beam ST4 (45/135-150) | 152 |
| 4.27     | Deflection profile for beams in Group 3                   | 153 |
| 4.28     | NSM CFRP strain profile for beam ST1 (0/90-100)           | 154 |
| 4.29     | NSM CFRP strain profile for beam ST2 (0/90-150)           | 154 |
|          |                                                           |     |
| 4.30     | NSM CFRP strain profile for beam ST3 (45/135-100)         | 155 |
| 4.31     | NSM CFRP strain profile for beam ST4 (45/135-150)         | 155 |
| 4.32     | Concrete surface-strain profile for beam ST1 (0/90-100)   | 156 |
| 4.33     | Concrete surface-strain profile for beam ST2 (0/90-150)   | 157 |
| 4.34     | Concrete surface-strain profile for beam ST3 (45/135-100) | 157 |
| 4.35     | Concrete surface-strain profile for beam ST4 (45/135-150) | 158 |
| 4.36     | Crack width profile for beams in Group 3                  | 159 |
| 4.37     | Crack pattern and failure mode for beam R1 (0/90-100)     | 160 |
| 4.38 ERP | Crack pattern and failure mode for beam R2 (0/90-150)     | 160 |
| 4.39     | Crack pattern and failure mode for beam R3 (45/135-100)   | 161 |
| 4.40     | De-bonding of CFRP bar for beam R3 (45/135-100)           | 161 |
| 4.41     | Crack pattern and failure mode for beam R4 (45/135-150)   | 162 |
| 4.42     | Deflection profile for beams in Group 4                   | 163 |
| 4.43     | NSM CFRP- strain profile for beam R1 (0/90-100)           | 164 |
| 4.44     | NSM CFRP- strain profile for beam R2 (0/90-150)           | 164 |
| 4.45     | NSM CFRP- strain profile for beam R3 (45/135-100)         | 165 |
| 4.46     | NSM CFRP- strain profile for beam R4 (45/135-150)         | 165 |
| 4.47     | Concrete surface-strain profile for beam R1 (0/90-100)    | 166 |
| 4.48     | Concrete surface-strain profile for beam R2 (0/90-150)    | 167 |
| 4.49     | Concrete surface-strain profile for beam R3 (45/135-100)  | 167 |

| 4.50 | Concrete surface-strain profile for beam R4 (45/135-150)      | 168 |
|------|---------------------------------------------------------------|-----|
| 4.51 | Crack width profile for beams in Group 4                      | 169 |
| 4.52 | Crack pattern and failure mode for beam R5 (0/90-100)         | 170 |
| 4.53 | Crack pattern and failure mode for beam R6 (0/90-100)         | 170 |
| 4.54 | Crack pattern and failure mode for beam R7 (0/90-150)         | 171 |
| 4.55 | Crack pattern and failure mode for beam R8 (0/90-150)         | 171 |
| 4.56 | Concrete crushing and splitting of beam R8 (0/90-150)         | 171 |
| 4.57 | Deflection profile for beams in Group 5                       | 172 |
| 4.58 | Concrete surface-strain profile for beam R5 (0/90-100)        | 173 |
| 4.59 | Concrete surface-strain profile for beam R6 (0/90-100)        | 173 |
| 4.60 | Concrete surface-strain profile for beam R7 (0/90-150)        | 174 |
| 4.61 | Concrete surface-strain profile for beam R8 (0/90-150)        | 174 |
| 4.62 | Crack width profile for beams in Group 5                      | 175 |
| 4.63 | Ultimate shear force for each specimens in Group (G2&G5)      | 177 |
| 4.64 | Ultimate shear force for each specimens in Group (G3&G4)      | 178 |
| 4.65 | Shear force at first flexural & shear crack for all specimens | 181 |
|      | in (G2&G5)                                                    |     |
| 4.66 | Shear force at first flexural & shear crack for all specimens | 181 |
|      | in (G3&G4)                                                    |     |
| 4.67 | Deflection at shear failure of each specimens                 | 184 |
| 5.1  | Mesh of the model used to represent the deep beams            | 189 |
| 5.2  | Reinforcement and strengthening Mesh                          | 190 |
| 5.3  | Boundary conditions at support and applied load on the model  | 191 |
| 5.4  | Commands used to control nonlinear analysis                   | 192 |
| 5.5  | Commands Used to Control Output                               | 193 |
| 5.6  | Nonlinear Algorithm                                           | 194 |
| 5.7  | Convergence Criteria Parameters                               | 194 |
| 5.8  | Experimental and numerical crack pattern for beam C1          | 198 |
| 5.9  | Experimental and numerical crack pattern for beam C2          | 199 |
| 5.10 | Experimental and numerical crack pattern for beam             | 200 |

xxi

|      | C3(0/90-100)C3                                        |     |
|------|-------------------------------------------------------|-----|
| 5.11 | Experimental and numerical crack pattern for beam     | 201 |
|      | C4(0/90-150)                                          |     |
| 5.12 | Experimental and numerical crack pattern for beam     | 202 |
|      | C5(45/135-100)                                        |     |
| 5.13 | Experimental and numerical crack pattern for beam     | 203 |
|      | C6(45/135-150)                                        |     |
| 5.14 | Experimental and numerical crack pattern for beam     | 204 |
|      | ST1(0/90-100)                                         |     |
| 5.15 | Experimental and numerical crack pattern for beam     | 205 |
|      | ST2(0/90-150)                                         |     |
| 5.16 | Experimental and numerical crack pattern for beam     | 206 |
|      | ST3(45/135-100)                                       |     |
| 5.17 | Experimental and numerical crack pattern for beam     | 207 |
|      | ST4(45/135)                                           |     |
| 5.18 | Experimental and numerical crack pattern for beam     | 208 |
|      | R1(0/90-100)                                          |     |
| 5.19 | Experimental and numerical crack pattern for beam     | 209 |
|      | R2(0/90-100)                                          |     |
| 5.20 | Experimental and numerical crack pattern for beam     | 210 |
|      | R3(45/135-100)                                        |     |
| 5.21 | Experimental and numerical crack pattern for beam     | 211 |
|      | R4(45/135-150)                                        |     |
| 5.22 | Experimental and numerical crack pattern for beam     | 212 |
|      | R5(0/90-100) and R6(0/90-100)                         |     |
| 5.23 | Experimental and numerical crack pattern for beam     | 213 |
|      | R7(0/90-150) and R8(0/90-150)                         |     |
| 5.24 | Shear Force – Deflection profile between experimental | 214 |
|      | and simulation for Group 1                            |     |
| 5.25 | Shear Force – Deflection profile between experimental | 215 |

|      |                                                                | XX11 |
|------|----------------------------------------------------------------|------|
|      | and simulation for Group 2                                     |      |
| 5.26 | Shear Force – Deflection profile between experimental          | 216  |
|      | and simulation for Group 3                                     |      |
| 5.27 | Shear Force – Deflection profile between experimental          | 217  |
|      | and simulation for Group 4                                     |      |
| 5.28 | Shear Force – Deflection profile between experimental          | 217  |
|      | and simulation for Group 5                                     |      |
| 5.29 | Comparison of shear contributed by CFRP NSM bars               | 225  |
|      | between experiential results and theoretical models            |      |
|      | (ACI 440, Khalifa & Nanni and fib)                             |      |
| 5.30 | The comparison of shear capacity contributed by CFRP           | 226  |
|      | NSM bars between experimental results and ACI 440              |      |
|      | as a theoretical results before modify.                        |      |
| 5.31 | The comparison of shear capacity contributed by CFRP           | 227  |
|      | NSM bars between experimental results and ACI 440              |      |
|      | as a theoretical results after modify.                         |      |
| 5.32 | as a theoretical results after modify.  New model of deep beam | 231  |
| 5.33 | Numerical deformation and stress of Deep Beam                  | 234  |
|      |                                                                |      |
|      |                                                                |      |

xxiii

## LIST OF SYMBOLS

| 0                            | Degree of angle                                      |
|------------------------------|------------------------------------------------------|
| Ψ                            | FRP strength reduction factor                        |
| Φ                            | Strength reduction factor                            |
| γf                           | Partial safety factor                                |
| $\alpha$                     | Angle of orientation of shear reinforcement          |
| θ                            | Angle of orientation of FRP reinforcement            |
| β                            | Angle of orientation of FRP reinforcement            |
| 8                            | Strain                                               |
| E fu                         | The ultimate strain in the FRP                       |
| E fe                         | The effective strain in the FRP                      |
| Δ                            | Deflection                                           |
| $\mu$                        | Micro TUNKU TUN                                      |
| $ ho_{\scriptscriptstyle W}$ | Steel reinforcement ratio                            |
| PERPUS                       | FRP reinforcement ratio                              |
| a <sub>v</sub> /d            | Shear span to effective depth ratio                  |
| As                           | Area of longitudinal tension reinforcement           |
| $A_s$                        | Area of shear reinforcement                          |
| $A_f$                        | The area of FRP shear reinforcement                  |
| $A_{fv}$                     | The area of FRP shear reinforcement                  |
| b                            | Width of section                                     |
| $b_{\rm w}$                  | Web width                                            |
| C                            | Celsius                                              |
| d                            | Effective height of section                          |
| $d_f$                        | The effective depth of FRP at section                |
| $E_f$                        | The modulus of elasticity of the FRP                 |
| I                            | Moment of inertia                                    |
| fc'                          | Concrete compressive stress                          |
| fy                           | Yield strength of longitudinal tension reinforcement |

 $f_{\nu}$  Yield strength of shear reinforcement

 $f_{fe}$  The effective stress in the FRP  $f_{fu}$  The ultimate stress in the FRP

Gpa Giga Pascal Kg Kilo grams

K<sub>ν</sub> The bond-reduction coefficient

 $K_{vm}$  The modified bond-reduction coefficient  $k_1$  Modification factor for concrete strength  $k_2$  Modification factor for wrapping scheme

kN Kilo-Newton

Le The effective length of FRP reinforcement

Number of layer of FRP reinforcement

M Bending moment
m³ meter of cube
Mpa Mega Pascal

*Mu* Factored moment at section

Pu,FEM Ultimate load of simulation results

 $P_{u,exp}$  Ultimate load of experimental results

Spacing centre-to-centre between reinforcement

Spacing centre-to-centre between FRP strips reinforcement

Thickness of FRP sheet

Shear force

 $V_c$  Shear resistance of the uncracked concrete

 $V_a$  Aggregate interlock force

V<sub>d</sub> Dowel action

 $V_n$  Nominal shear strength

 $V_c$  Shear strength contributed by concrete

 $V_s$  Shear strength contributed by shear reinforcement

Vf Shear strength contributed by CFRP

 $V_{cz}$  Shear resistance of uncracked concrete

Va Interface shear transfer

Vus Ultimate shear strength of web steel

V<sub>Rd</sub> The shear resistance of a member with shear reinforcement

V<sub>fd</sub> The FRP contribution to shear capacity

 $V_u$  Factored shear force at section



S

VFEM Shear strength of simulation results

Vexp Shear strength of experimental results

V<sub>theory</sub> Shear strength of theoretical value

 $V_u$  Ultimate shear strength

V<sub>f,exp</sub> Shear strength of experimental results contributed by CFRP

V<sub>f,theory</sub> Shear strength of theoretical value contributed by CFRP

*wf* Width of FRP strips

Wfe The effective width of FRP strips

SC1- SC6 Strain gauge at concrete surface

SF1-SF8 Strain gauge at CFRP bars



#### REFERENCES

- ACI Committee 318 (2005). *Building Code Requirements for Structural Concrete and Commentary*. Farmington Hills, USA: American Concrete Institute.
- ACI Committee 318 (2008). Building Code Requirements for Structural Concrete (ACI 318-08) and Commentary (ACI 318R-08). Farmington Hills, USA: American Concrete Institute.
- ACI Committee 440 (2006). Guide for the Design and Construction of Structural Concrete Reinforced with FRP Bars, ACI 440.1R-06. Farmington Hills, USA: American Concrete Institute.
- ACI Committee 440 (2006). Report on Fiber-Reinforced Polymer (FRP) Reinforcement for Concrete Structures. Farmington Hills, USA: American Concrete Institute.
- ACI Committee 440 (2008). Guide for the Design and Construction of Externally Bonded FRP Systems for Strengthening Concrete Structures. Farmington Hills, USA: American Concrete Institute.
- Adhikary, B.B., & Mutsuyoshi, H. (2004). Behavior of concrete beams strengthened in shear with carbon-fiber sheets. *Journal of composites for construction*. 8(3), pp.258-264.
- Adhikary, B.B., Mutsuyoshi, H. & Ashraf, M. (2004) Shear Strengthening of Reinforced Concrete Beams using Fiber Reinforced Polymer Sheets with Bonded Anchorage. *ACI Structural Journal*. 101(5), pp. 660-668.
- Aguilar, G., Matamoros, A.B., Parra-Montesinos, G.J., Ramírez, J.A. & Wight, J.K. (2004). Experimental Evaluation of Design Procedures for Shear Strength of Deep Reinforced Concrete Beams. *ACI Structural Journal*. 99(4), pp. 539-548.
- Ali, A., & Mezher, T. (2015). Shear Strengthening of RC without Stirrups for Deep Beams with Near Surface Mounted CFRP Rods. *International Journal of Engineering Research and Technology*. 4(6), pp. 545-47.
- Alkhrdaji, T., Nanni, A., Chen, G., & Barker, M. (1999). Upgrading the transportation infrastructure: solid RC decks strengthened with FRP. *Concrete International*, 21(10), pp. 37-41.
- Alkhrdaji, T., Wideman, M., Belarbi, A., & Nanni, A. (2001). Shear strength of GFRP RC beams and slabs. Proceedings of the international conference, *composites in construction-CCC*. 2001, pp. 409-414.

- Al-Zahrani, M.M., Nanni, A., Al-Dulaijan, S.U., & Bakis, C.E. (1996). Bond of FRP to concrete for bars with axisymmetric deformations. *Proceedings of the Second International Conference on Advanced Composite Materials in Bridges and Structures (ACMBS-II)*. pp. 853-860.
- Andermatt, M. F., & Lubell, A. S. (2013). Behavior of concrete deep beams reinforced with internal fiber-reinforced polymer-experimental study. *ACI Structural Journal*, 110(4), pp. 585.
- Ashour, A.F., Alvarez, L.F., & Toropov, V.V. (2003). Empirical modelling of shear strength of RC deep beams by genetic programming. *Computers & structures*. 81(5), pp. 331-338.
- Ashour, A.F., El-Refaie, S.A. & Garrity, S.W. (2004). Flexural Strengthening of RC Continuous Beams using CFRP Laminates. *Cement and Concrete Composites*. 26(7), pp. 765 775.
- ASTM (2010). Test for Splitting Tensile Strength of Cylindrical Concrete Specimens. ASTM Standard (C496-2010), American Society for Testing and Materials (ASTM), West Conshohocken, Pennsylvania.
- ASTM Standards (2001). Standard test method for compressive strength of cylindrical concrete specimens. Annual Book of ASTM Standards (ASTM C 39-01). Philadelphia, USA: American Society for Testing and Materials, 5 pp.
- ASTM. (2005). Standard test method for compressive strength of cylindrical concrete specimens. C39-05, West Conshohocken, Pennsylvania.
- ASTM. (2007). Standard practice for making and curing concrete test specimens in the laboratory. C192-07, West Conshohocken, Pennsylvania.
- Baggio, D., Soudki, K., & Noël, M. (2014). Strengthening of shear critical RC beams with various FRP systems. *Construction and Building Materials*. 66, pp. 634-644.
- Bakir, P.G., & Boduroğlu, H.M. (2005). Mechanical behaviour and non-linear analysis of short beams using softened truss and direct strut & tie models. *Engineering Structures*. 27(4), pp. 639-651.
- Bakis, C. E., Ganjehlou, A., Kachlakev, D. I., Schupack, M., Balaguru, P. N., Gee, D. J., Karbhari, V.M., Scott, D.W., Ballinger, C.A., Gentry, T.R., Kliger, H.S., & Kliger, H.S. (2002). Guide for the design and construction of externally bonded FRP systems for strengthening concrete structures. *Reported by ACI Committee* 440(2002).
- Balaguru, P., Nanni, A. & Giancaspro. J. (2009). FRP Composites for Reinforced and Prestress Concrete Structures. *USA: Taylor & Francis Group*.

- Barros J, Sena-Cruz J, Dias S, Ferreira D and Fortes A. (2007). Near surface mounted CFRP-based technique for the strengthening of concrete structures. *Jornada Techica en Honor a Ravindra Gettu*. 5, pp.1-13.
- Barros, J., Cruz, S., Dias, S., Ferreira, D., & Fortes, A. (2004). Near surface mounted CFRP-based technique for the strengthening of concrete structures. *Workshop on R+ D+ I in Technology of Concrete Structures: a tribute to Dr. Ravindra Gettu= Jornada Técnica en Honor a Ravindra Gettu*. pp. 205-217.
- Barros, J.A., & Dias, S.J. (2003). Shear strengthening of reinforced concrete beams with laminate strips of CFRP. *International Conference Composites in Constructions (CCC2003)*. D. Bruno, G. Spadea, and N. Swamy (eds.), Cosenza, Italy, pp. 289-294.
- Barros, J.A., & Fortes, A.S. (2005). Flexural strengthening of concrete beams with CFRP laminates bonded into slits. *Cement and Concrete Composites*. 27(4), pp. 471-480.
- Barros, J.A., Dias, S.J., & Lima, J.L. (2007). Efficacy of CFRP-based techniques for the flexural and shear strengthening of concrete beams. *Cement and Concrete Composites*. 29(3), pp. 203-217.
- Belarbi, A. (2011). Behaviour of Full-scale RC-T Beams Strengthened in Shear with Externally Bonded FRP Sheets. *Constr Build Mater*,
- Belarbi, A., Bae, S.W., & Brancaccio, A. (2012). Behavior of full-scale RC T-beams strengthened in shear with externally bonded FRP sheets. *Construction and Building Materials*. 32, pp. 27-40.
- Bianco, V., Barros, J.A., & Monti, G. (2006). Shear Strengthening of RC beams by means of NSM laminates: experimental evidence and predictive models. Universidade do Minho. *Technical Rep 06-DEC (2006), Departamento de Engenharia Civil*.
- Bianco, V., Barros, J.A., & Monti, G. (2007). A new approach for modelling the NSM shear strengthening contribution in reinforced concrete beams. *FRPRCS-8*, *Univ. Patras, Greece* (2007): 16-18.
- Bianco, V., Barros, J.A., & Monti, G. (2007). Influence of the concrete mechanical properties on the efficacy of the shear strengthening intervention on RC beams by NSM technique. *Asia-Pacific Conference on FRP in Structures*.
- Bianco, V., Barros, J.A., & Monti, G. (2007). Shear Strengthening of RC beams by means of NSM CFRP strips: a proposal for modeling debonding. Shear strengthening of RC beams by means of NSM CFRP strips: a proposal for modeling debonding. pp. 1-48.
- Bianco, V., Barros, J.A., & Monti, G. (2010). New approach for modeling the contribution of NSM FRP strips for shear strengthening of RC beams. *Journal of Composites for Construction*. 14(1), pp. 36-48.

- Bilotta, A., Ceroni, F., Di Ludovico, M., Nigro, E., Pecce, M., & Manfredi, G. (2011). Bond efficiency of EBR and NSM FRP systems for strengthening concrete members. *Journal of Composites for Construction*. 15(5), pp. 757-772.
- Blaschko, M. (2003). Bond behaviour of CFRP strips glued into slits. *Fibre-Reinforced Polymer Reinforcement for Concrete Structures*. 2, pp. 205-214.
- Blaschko, M., & Zilch, K. (1999). Rehabilitation of concrete structures with CFRP strips glued into slits. *Proceedings of the 12th international conference on composite materials, ICCM*, 12, pp 5-9.
- Bousalem, B., Chikh, N., & Benzaid, R. (2009). Flexural Strengthening of Reinforced Concrete Beams with NSM Fiber-Reinforced Polymer Strips. *International Conference on Sustainable Built Environment Infrastructures in Developing Countries. ENSET Oran, Algeria.* pp. 12-14.
- Bousselham A. & Chaallal O. (2004). Shear Strengthening Reinforced Concrete Beams with Fiber-Reinforced Polymer: Assessment of Influencing Parameters and Required Research. *ACI Structural Journal*. 101(2), pp. 210 227.
- Bousselham, A. & Chaallal, O. (2008). Mechanisms of Shear Resistance of Concrete Beams Strengthened in Shear with Externally Bonded FRP. *Journal of Composites for Construction*. 12(5), pp. 499 512.
- Bousselham, A., & Chaallal, O. (2006). Behavior of reinforced concrete T-beams strengthened in shear with carbon fiber-reinforced polymer-an experimental study. *ACI structural Journal*, 103(3), pp. 339.
- Brown, M. D., Sankovich, C. L., Bayrak, O., Jirsa, J. O., Breen, J. E., & Wood, S. L. (2006). Design for Shear in Reinforced Concrete Using Strut-and-Tie Models (No. FHWA/TX-06/0-4371-2).
- Cao, S.Y., Chen, J.F., Teng, J.G., Hao, Z., & Chen, J. (2005). Debonding in RC beams shear strengthened with complete FRP wraps. *Journal of Composites for Construction*. 9(5), pp. 417-428.
- Carolin, A., (2003). "Carbon Fiber Reinforced Polymers for Strengthening of Structural Elements", Ph.D. *Thesis, Lulea University of Technology, Lulea, Sweden.*
- Chaallal, O., Nollet, M.J., & Perraton, D. (1998). Shear strengthening of RC beams by externally bonded side CFRP strips. *Journal of Composites for Construction*. 2(2), pp. 111-113.
- Chaallal, O., Nollet, M.J., & Perraton, D. (1998). Strengthening of reinforced concrete beams with externally bonded fiber-reinforced-plastic plates: design guidelines for shear and flexure. *Canadian Journal of Civil Engineering*, 25(4), pp. 692-704.

- Chajes, M.J., Januszka, T.F., Mertz, D.R., Thomson, T.A., & Finch, W.W. (1995). Shear strengthening of reinforced concrete beams using externally applied composite fabrics. *ACI Structural Journal*. 92(3), pp. 295-303.
- Chen, J.F., & Teng, J.G. (2003). Shear capacity of FRP-strengthened RC beams: FRP debonding. *Construction and Building Materials*. 17(1), pp. 27-41.
- Choi, H.T., West, J.S., & Soudki, K.A. (2011). Partially bonded near-surface-mounted CFRP bars for strengthened concrete T-beams. *Construction and Building Materials*. 25(5), pp. 2441-2449.
- Choi, Y.W., Kim, Y.J., & Kang, H.J. (2008). A study on the flowability properties of the high flowing self-compacting concrete for members of bridge precast. *Journal of The Korean Society of Civil Engineers*. 28(1A), pp. 155-163.
- Choi, Y.W., Lee, H.K., Chu, S.B., Cheong, S.H., & Jung, W.Y. (2012). Shear behavior and performance of deep beams made with self-compacting concrete. *International Journal of Concrete Structures and Materials*. 6(2), pp. 65-78.
- Choulli, Y., Marí, A.R., & Cladera, A. (2008). Shear behaviour of full-scale prestressed i-beams made with self-compacting concrete. *Materials and Structures*. 41(1), pp. 131-141.
- Cruz, J.D.S., & Barros, J.A.O.D. (2004). Bond between near-surface mounted carbon-fiber-reinforced polymer laminate strips and concrete. *Journal of composites for construction*. 8(6), pp. 519-527.
- De Lorenzis, L. (2004). Anchorage length of near-surface mounted fiber-reinforced polymer rods for concrete strengthening—Analytical modeling. *Structural Journal*. 101(3), pp. 375-386.
- De Lorenzis, L., & Nanni, A. (2001). Shear strengthening of reinforced concrete beams with near-surface mounted fiber-reinforced polymer rods. *Structural Journal*. 98(1), pp. 60-68.
- De Lorenzis, L., & Nanni, A. (2001). Shear strengthening of reinforced concrete beams with near-surface mounted fiber-reinforced polymer rods. *Structural Journal*. 98(1), pp. 60-68.
- De Lorenzis, L., & Nanni, A. (2002). Bond between near-surface mounted fiber-reinforced polymer rods and concrete in structural strengthening. *Structural Journal*. 99(2), pp. 123-132.
- De Lorenzis, L., & Rizzo, A. (2006). Behaviour and capacity of RC beams strengthened in shear with NSM FRP reinforcement. *In 2nd International fib Congress, Naples, June.* pp. 5-8.
- De Lorenzis, L., & Teng, J. G. (2007). Near-surface mounted FRP reinforcement: An emerging technique for strengthening structures. *Composites Part B: Engineering*. 38(2), pp. 119-143.

- De Lorenzis, L., Lundgren, K., & Rizzo, A. (2004). Anchorage length of near-surface mounted fiber-reinforced polymer bars for concrete strengthening-experimental investigation and numerical modeling. *ACI Structural Journal*. 101(2), pp. 269-278.
- De Lorenzis, L., Miller, B., & Nanni, A. (2001). Bond of FRP laminates to concrete. *ACI Materials Journal*. 98(3), pp. 256-264.
- De Lorenzis, L., Nanni, A., & La Tegola, A. (2000). Strengthening of reinforced concrete structures with near surface mounted FRP rods. *International Meeting on Composite Materials, PLAST 2000, Proceedings, Advancing with Composites. Milan, Italy*, pp. 9-11.
- De Lorenzis, L., Rizzo, A., & La Tegola, A. (2002). A modified pull-out test for bond of near-surface mounted FRP rods in concrete. *Composites Part B: Engineering*. 33(8), pp. 589-603.
- De Paiva, H.A., & Siess, C.P. (1965). Strength and behavior of deep beams in shear. *Journal of the Structural Division*. 91(5), pp. 19-41.
- De Sena Cruz, J.M., & Oliveira de Barros, J.A. (2004). Bond between near-surface mounted carbon-fiber-reinforced polymer laminate strips and concrete. *Journal of Composites for Construction*. 8(6), pp. 519-527.
- Dias, S.J., & Barros, J.A. (2008). Shear strengthening of T cross section reinforced concrete beams by near-surface mounted technique. *Journal of Composites for Construction*. 12(3), pp. 300-311. doi:10.1016/j.conbuildmat.2010.11.102.
- El-Ariss, B (2007). Behaviour of Beams with Dowel Action. *Engineering Structures*. 29, pp. 899 903
- El-Hacha, R., & Rizkalla, S.H. (2004). Near-surface-mounted fiber-reinforced polymer reinforcements for flexural strengthening of concrete structures. *Structural Journal*. 101(5), pp. 717-726.
- El-Refaie, S.A., Ashour, A.F. & Garrity, S.W. (2001). Strengthening of Reinforced Concrete Continuous Beams with CFRP Composites. *Proceedings of the International Conference on Structural Engineering, Mechanics and Computation. Cape Town, South Africa: Elsevier.* pp. 1591 1598.
- El-Sayed, A. K., El-Salakawy, E. F., & Benmokrane, B. (2006). Shear strength of FRP-reinforced concrete beams without transverse reinforcement. *ACI Structural Journal*. 103(2), pp. 235.
- El-Sayed, A., El-Salakawy, E., & Benmokrane, B. (2005). Shear strength of one-way concrete slabs reinforced with fiber-reinforced polymer composite bars. *Journal of Composites for Construction*. 9(2), pp. 147-157.

- El-Sayed, A.K. & Soudki, K. (2010). Evaluation of Shear Design Equation of Concrete Beam with FRP Reinforcement. *Journal of Composites for Construction* 15(1), pp. 9-20
- Enem, J.I. (2012). Analysis of deep beam using Finite Element Method. *International Journal of Applied Science and Engineering Research*. 1(2), pp. 348-356.
- Esfahani, M. R., Kianoush, M. R., & Tajari, A. R. (2007). Flexural behaviour of reinforced concrete beams strengthened by CFRP sheets. *Engineering structures*, 29(10), pp. 2428-2444.
- fib. (2001). Externally Bonded FRP Reinforcement for RC Structures. Switzerland: *International Federation for Structural Concrete*.
- Firmo, J. P., Correia, J. R., & França, P. (2012). Fire behaviour of reinforced concrete beams strengthened with CFRP laminates: Protection systems with insulation of the anchorage zones. *Composites Part B: Engineering*, 43(3), pp. 1545-1556.
- Foster, S.J. and R.I. Gilbert (1998). "Experimental studies on high-strength concrete deep beams. *ACI structural Journal*. 95(4).
- Gamage, K., Al-Mahaidi, R., & Wong, B. (2010). FE Modelling of CFRP-Concrete Interface Subjected to Cyclic Temperature, Humidity and Mechanical Stress. *Composite Structures*. 92(4), pp. 826-834.
- Godat, A., Neale, K.W. & Labossiere, P. (2007). Numerical Modeling of FRP Shear Strengthened Reinforced Concrete Beams. *Journal of Composites for Construction*. 11(6), pp. 640 649.
- Gogate, A.B., & Bishara, A.G. Finite Element Analysis of Deep Concrete Beams. *Indian Concrete Journal*. 53, pp. 326-333.
- Grace, N.F., Sayed, G.A., Soliman, A.K., & Saleh, K.R. (1999). Strengthening reinforced concrete beams using fiber reinforced polymer (FRP) laminates. *ACI Structural Journal-American Concrete Institute*. 96(5), pp. 865-874.
- Grace, N.F., Soliman, A.K. Abdel Sayed, G & Saleh K.R. (1998). Behaviour and Ductility of Simply and Continuous FRP Reinforced Beams. *Journal of Composites for Construction*. 2(4), pp. 186 194.
- Gravina, R.J. & Smith, S.T. (2008). Flexural Behaviour of Indeterminate Concrete Beams Reinforced with FRP Bars. *Engineering Structures*. 30(9), pp. 2370-2380.
- Guide, A. F. U. (2011). Release 14.0, ANSYS. Inc., USA, November.
- Hanus, J.P, Bank, L.C. & Oliva, M.G. (2009). Combined Loading of a Bridge Deck Reinforced with a Structural FRP Stay-in-Place From. *Construction and Building Materials*. 23(4), pp. 1605-1619.

- Hassan, T., & Rizkalla, S. (2003). Investigation of bond in concrete structures strengthened with near surface mounted carbon fiber reinforced polymer strips. *Journal of composites for construction*. 7(3), pp. 248-257.
- Hensher, D.A. (2016). Fiber-reinforced-plastic (FRP) reinforcement for concrete structures: properties and applications. 42. *Elsevier*.
- Hollaway, L. C., & Leeming, M. (Eds.). (1999). Strengthening of reinforced concrete structures: Using externally-bonded FRP composites in structural and civil engineering. *Elsevier*.
- Hollaway, L.C. (2001). Advanced polymer composites and polymers in the civil infrastructure. *Elsevier*.
- Hong, K.N., Han, J.W., Seo, D.W., & Han, S.H. (2013). Flexural response of reinforced concrete members strengthened with near-surfaced-mounted CFRP strips. *International Journal of Physical Sciences*. 6(5), pp. 948-961.
- Huo, B., & Zhang, X. (2011). Experimental study of mechanical properties of the BFRP bar in different diameters. *Journal of Shenyang Jianzhu University* (*Natural Science*). 27(4), pp. 626-630.
- Ianniruberto, U. & Imbimbo, M. (2004). Role of Fiber Reinforced Plastic Sheets in Shear Response of Reinforced Concrete Beams: Experimental and Analytical Results. *Journal of Composites for Construction*. 8(5), pp. 415 424.
- Inc, P. A. D. T., Miller, E., & Strain, J. (2016). *Introduction to the ANSYS Parametric Design Language (APDL)*.
- Iraqi Code Committee (1987). Iraqi Building Code Requirements for Reinforced Concrete-Code 1. Building Research Center, Scientific Research Council, Baghdad.
- Iraqi Specification No. 45, (1984). *Natural Sources for Gravel that is used in Concrete and Construction*. Baghdad.
- Iraqi Specification No. 5, (1984). Portland cement. Baghdad.
- Islam, A.A. (2009). Effects of NSM CFRP bars in shear strengthening of concrete members. *Structures Congress* 2009: *Don't Mess with Structural Engineers: Expanding Our Role*. pp. 1-14.
- Islam, M.R., Mansur, M.A., & Maalej, M. (2005). Shear strengthening of RC deep beams using externally bonded FRP systems. *Cement and Concrete Composites*. 27(3), pp. 413-420.
- Jalali, M., Sharbatdar, M.K., Chen, J.F., & Alaee, F.J. (2012). Shear strengthening of RC beams using innovative manually made NSM FRP bars. *Construction and building materials*. 36, pp. 990-1000.

- Jung, W.T., Park, Y.H., Park, J.S., Kang, J.Y., & You, Y.J. (2005). Experimental investigation on flexural behavior of RC beams strengthened by NSM CFRP reinforcements. *Special Publication*. 230, pp. 795-806.
- Kachlakev, D., & McCurry, D.D. (2000). Behavior of full-scale reinforced concrete beams retrofitted for shear and flexural with FRP laminates. *Composites Part B: Engineering*. 31(6), pp. 445-452.
- Kalupahana, W.K.K.G., Ibell, T.J., & Darby, A.P. (2013). Bond characteristics of near surface mounted CFRP bars. *Construction and Building Materials*. 43, pp. 58-68.
- Kang, J.Y., Park, Y.H., Park, J.S., You, Y.J., & Jung, W.T. (2005). Analytical evaluation of RC beams strengthened with near surface mounted CFRP laminates. *International Symposium: Fiber-Reinforced Polymer (FRP) Reinforcement for Concrete Structures*. pp. 779-794.
- Kassim, M. M., Salahaldin, A. I., & Ali, M. K. (2015) Analysis of Fiber Reinforced Concrete Deep Beams with Large Opening Strengthened by CFRP Laminates.
- Katz, A. (1999). Bond mechanism of FRP rebars to concrete. *Materials and structures*. 32(10), pp. 761-768.
- Khalifa, A. & Nanni, A. (2000). Improving Shear Capacity of Existing RC T-Section Beams using CFRP Composites. *Cement and Concrete Composites*. 22, pp. 165-174.
- Khalifa, A. & Nanni, A. (2002). Rehabilitation of Rectangular Simply Supported RC Beams with Shear Deficiencies using CFRP Composites. *Construction and Building Materials*. 16, pp. 135-146.
- Khalifa, A. Gold, W.J., Nanni, A. & Abdel Aziz, M.I. (1998). Contribution of Externally Bonded FRP to Shear Capacity of RC Flexural Members. *Journal of Composites for Construction*. 2(4), pp. 195 202.
- Khalifa, A., Belarbi, A & Nanni, A. (2000). Shear Performance of RC Members Strengthened with Externally Bonded FRP Wraps. *Proceeding of 12th World Conference on Earthquake Engineering. Auckland, New Zealand: American Concrete Institute.* pp. 10 18.
- Khalifa, A., De Lorenzis, L., & Nanni, A. (2000). FRP composites for shear strengthening of RC beams. *In Proc.*, 3rd Int. Conf. on Advanced Composites Materials in Bridges and Structures, Ottawa. pp. 137-144.
- Khalifa, A., Gold, W.J., Nanni, A., & MI, A.A. (1998). Contribution of externally bonded FRP to shear capacity of RC flexural members. *Journal of composites for construction*. 2(4), pp. 195-202.

- Khalifa, A., Tumialan, G., Nanni, A. & Belarbi, A. (1999). Shear Strengthening of Continuous RC Beams using Externally Bonded CFRP Sheets. Proceedings of 4th International Symposium on FRP for Reinforcement of Concrete Structures (FRPRCS4). *Baltimore: American Concrete Institute*. pp. 995 1008.
- Khorramabadi, M.T., & Burgoyne, C.J. (2011). Differences between FRP bond behavior in cracked and uncracked regions. *Special Publication*. 275, pp. 1-18.
- Kim, G., Sim, J. & Oh, H. (2008). Shear Strength of Strengthened RC Beams with FRPs in Shear. Construction and Building Materials. 22, pp. 1261-1270.
- Kim, S.W. & Vecchio, F.J. (2008). Modeling of Shear-Critical Reinforced Concrete Structures Repaired with Fiber-Reinforced Polymer Composites. *Journal of Structural Engineering*. 134(8), pp. 1288 1299.
- Kishi, N., Zhang, G., & Mikami, H. (2005). Numerical Cracking and Debonding Analysis of RC Beams Reinforced with FRP Sheet. *Journal of Composites for Construction*. 9(6), pp. 507-514.
- Kobraei, M., Jumaat, M.Z., & Shafigh, P. (2011). An experimental study on shear reinforcement in RC beams using CFRP-bars. *Scientific Research and Essays*. 6(16), pp. 3447-3460.
- Kong, F.K., Robins, P.J., & Cole, D.F. (1970). Web reinforcement effects on deep beams. *Journal Proceedings*. 67(12), pp. 1010-1018.
- Kotsovos, M.D. (1988). Design of reinforced concrete deep beams. *The Structure Eng.* 62(2), pp.28-32.
- Lee, H.K., Kim, B.R. & Ha, S.K. (2008). Numerical Evaluation of Shear Strengthening Performance of CFRP Sheets/Strips and Sprayed Epoxy Coating Repair Systems. *Composites: Part B*. 39, pp. 851 862.
- Lee, J-Y, Hwang, H-B & Doh, J-H (2012). Effective Strain of RC Beams Strengthened in Shear with FRP. *Composites: Part B.* 43, pp. 754-765.
- Leonhardt, F. (1966). Discussion on strength and behaviour of deep beams in shear. *Journal of Structural Division*. ASCE 92(ST2). pp. 426–432.
- Leung, C.K.Y. & Pan, J (2005). Effect on Concrete Composition on FRP/Concrete Bond Capacity. *Proceedings of the International Symposium on Bond Behaviour of FRP in Structure. HKUST*.
- Li, G., Maricherla, D., Singh, K., Pang, S.S. & John, M. (2006). Effect of Fiber Orientation on the Structural Behavior of FRP Wrapped Concrete Cylinders. *Composite Structures*. 74, pp. 475-483.

- Li, L.J., Guo, Y.C., Liu, F. & Bungey, J.H. (2006). An Experimental and Numerical Study of the Effect of Thickness and Length of CFRP on Performance of Repaired Reinforced Concrete Beams. *Construction and Building Materials*. 20, pp. 901 909.
- Li. A, Diagana, C. & Delmas, Y. (2002). Shear Strengthening Effect by Bonded Composite Fabrics on RC Beams. *Composites: Part B.* 33, pp. 225-239.
- Liu, H., Wang, X., & Wang, X. (2012). Study on the Shear Behavior of RC deep beam strengthening by FRP. *International Conference on Electronic & Mechanical Engineering and Information Technology*. *Atlantis Press*. pp. 0445-0448.
- Lorenzis, L.D., & Nanni, A. (2001). Characterization of FRP rods as near-surface mounted reinforcement. *Journal of Composites for Construction*. 5(2), pp. 114-121.
- Lubell, A., Sherwood, T., Bentz, E., & Collins, M. (2004). Safe shear design of large wide beams. *Concrete International*. 26(1), pp. 66-78.
- Lundqvist, J. (2007). Numerical analysis of concrete elements strengthened with carbon fiber reinforced polymers, *Luleå University of Technology*.
- Lundqvist, J., Nordin, H., Täljsten, B., & Olofsson, T. (2005). Numerical analysis of concrete beams strengthened with CFRP: a study of anchorage lengths. *International Symposium on Bond Behaviour of FRP in Structures:* 07/12/2005-09/12/2005. *International Institute for FRP in Construction*. pp. 239-246.
- Malvar, L.J., Cox, J.V., & Cochran, K.B. (2003). Bond between carbon fiber reinforced polymer bars and concrete. I: Experimental study. *Journal of composites for construction*. 7(2), pp. 154-163.
- Mau, S.T., & Hsu, T.T. (1987). Shear strength prediction for deep beams with web reinforcement. *Structural Journal*. 84(6), pp. 513-523.
- Mau, S.T., & Hsu, T.T. C. (1989). Formula for the shear design of deep beam. *Structural Journal of the American Concrete Institute*. 86, pp. 516–523.
- Meier, U. (1992). Strengthening of structures with CFRP laminates. *Research and Application in Switzerland*. pp. 243-251.
- Michaluk, C.R., Rizkalla, S.H., Tadros, G., & Benmokrane, B. (1998). Flexural behavior of one-way concrete slabs reinforced by fiber reinforced plastic reinforcements. *ACI Structural Journal*, 95, pp. 353-365.
- Mihaylov, B. I., Bentz, E. C., & Collins, M. P. (2010). Behavior of large deep beams subjected to monotonic and reversed cyclic shear. *ACI Structural Journal*, 107(6), pp. 726.

- Mofidi, A., & Chaallal, O. (2010). Shear strengthening of RC beams with EB FRP: Influencing factors and conceptual debonding model. *Journal of Composites for Construction*, 15(1), pp. 62-74.
- Monti, G. & Liotta, M.A. (2007). Tests and Design Equations for FRP-Strengthening in Shear. *Construction and Building Materials* 21(4), pp. 799-809.
- Mosallam, A. S., & Banerjee, S. (2007). Shear Enhancement of Reinforced Concrete Beams Strengthened with FRP Composite Laminates. *Composites Part B: Engineering*, 38(5), pp. 781 -793.
- Nagasaka, T., Fukuyama, H., & Tanigaki, M. (1993). Shear performance of concrete beams reinforced with FRP stirrups. Special publication, 138, pp. 789-812.
- Nakaba, K., Kanakubo, T., Furuta, T., & Yoshizawa, H. (2001). Bond behavior between fiber-reinforced polymer laminates and concrete. *Structural Journal*, 98(3), pp. 359-367.
- Nanni, A., Ed. (1993), Fiber-Reinforced-Plastic (FRP) Reinforcement for Concrete Structures: Properties and Applications, Developments in Civil Engineering, Elsevier, Amsterdam, the Netherlands, 42, pp. 45.
- Nanni, A., Ludovico, M. D., & Parretti, R. (2004). Shear strengthening of a PC bridge girder with NSM CFRP rectangular bars. *Advances in Structural Engineering*, 7(4), pp. 297-309.
- Nethercot, D.A. (2002). The importance of combining experimental and numerical study in advancing structural engineering understanding. *Journal of Constructional Steel Research*, 58(10), pp. 1283-1296.
- Nordin, H., & Täljsten, B. (2006). Concrete beams strengthened with prestressed near surface mounted CFRP. *Journal of composites for construction*, 10(1), pp. 60-68.
- Norris, T., Saadatmanesh, H. & Ehsani, M.R. (1997). Shear and Flexural Strengthening of R/C Beams with Carbon Fiber Sheets. *Journal of Structural Engineering*. 123(7), pp. 903 911.
- Oh, J. K., & Shin, S. W. (2001). Shear strength of reinforced high-strength concrete deep beams. *Structural Journal*, 98(2), pp. 164-173.
- Omeman, Z., Nehdi, M., & El-Chabib, H. (2008). Experimental study on shear behavior of carbon-fiber-reinforced polymer reinforced concrete short beams without web reinforcement. *Canadian Journal of Civil Engineering*. 35(1), pp. 1-10.
- Parra-Montesinos, G.J. (2008). Strut-and-Tie Models for Deep Beam Design. *Concrete international*, 30(12), pp. 41-46.

- Parretti, R., & Nanni, A. (2004). Strengthening of RC members using near-surface mounted FRP composites: Design overview. *Advances in Structural Engineering*, 7(6), pp. 469-483.
- Parvin, A., & Brighton, D. (2014). FRP composites strengthening of concrete columns under various loading conditions. *Polymers*, 6(4), pp. 1040-1056.
- Patil, S.S., Swami, P.S., & Kore, P.N. Behavior of Concrete Deep Beams with High Strength Reinforcement. *International Journal of Current Engineering and Technology*. 5(5), pp. 3122-3125.
- Pellegrino, C & Modena, C. (2006). Fibre-Reinforced Polymer Shear Strengthening of Reinforced Concrete Beams: Experimental Study and Analytical Modeling. *ACI Structural Journal*. 103(5), pp 720-728.
- Pellegrino, C. (2009). Flexural strengthening of reinforced concrete beams with prestressed FRP laminates (*Master's thesis*, *Universitat Politècnica de Catalunya*).
- Pellegrino, C., & Modena, C. (2002). Fiber reinforced polymer shear strengthening of reinforced concrete beams with transverse steel reinforcement. *Journal of Composites for Construction*, 6(2), pp. 104-111.
- Pellegrino, C., & Modena, C. (2006). Fiber-reinforced polymer shear strengthening of reinforced concrete beams: Experimental study and analytical modeling. *ACI Structural Journal*, 103(5), pp. 720.
- Pellegrino, C., Tinazzi, D., & Modena, C. (2008). Experimental study on bond behavior between concrete and FRP reinforcement. *Journal of Composites for Construction*, 12(2), pp. 180-189.
- Perera, R., Tarazona, D., Ruiz, A., & Martín, A. (2014). Application of artificial intelligence techniques to predict the performance of RC beams shear strengthened with NSM FRP rods. Formulation of design equations. *Composites Part B: Engineering*, 66, pp. 162-173.
- Perera, W.K.K.G., Ibell, T.J., Darby, A.P., & Denton, S.R. (2008). Anchorage and bond behaviour of near surface mounted carbon fibre reinfoced polymer bars. *ACMBS V, Advanced Composites Materials in Bridges and Structures*.
- Pham, H. B., Al-Mahaidi, R., & Saouma, V. (2006). Modelling of CFRP-Concrete Bond using Smeared and Discrete Cracks. *Composite structures*, 75(1), pp. 145-150.
- Rahal, K. N., & Rumaih, H. A. (2011). Tests on reinforced concrete beams strengthened in shear using near surface mounted CFRP and steel bars. *Engineering Structures*, 33(1), pp. 53-62.

- Ramadan, A., Abd-Elshafy, A. G. A., Ahmed, M. H., & Abdel-Hafez, A. M. (2012). Shear response investigation of HSRC deep beams without web reinforcement. *Part I: design equations*, 5(5), pp. 44-55.
- Ramakrishnan, V., & Ananthanarayana, Y. (1968). Ultimate strength of deep beams in shear. *ACI Journal Proceedings*. 65(2), pp. 87-98.
- Rao, G. A., Kunal, K., & Eligehausen, R. (2007). Shear strength of RC deep beams. Proceedings of the 6th International Conference on Fracture Mechanics of Concrete and Concrete Structures. 2, pp. 693-699.
- Razaqpur, A. G., & Isgor, O. B. (2006). Proposed shear design method for FRP-reinforced concrete members without stirrups. *ACI Structural Journal*, 103(1), pp. 93.
- Razaqpur, A. G., Isgor, B. O., Greenaway, S., & Selley, A. (2004). Concrete contribution to the shear resistance of fiber reinforced polymer reinforced concrete members. *Journal of Composites for Construction*, 8(5), pp. 452-460.
- Razaqpur, A., Ghani, Isgor & O Burkan (2006). Proposed Shear Design Method for FRP-Reinforced Concrete Members without Stirrups. *ACI Materials Journal*.
- Reddy, S. L., Rao, R. N., & Rao, G. T. (2010). Shear resistance of high strength concrete beams without shear reinforcement. *International journal of civil and structural engineering*, 1(1), pp. 101.
- Rizzo, A., & De Lorenzis, L. (2009). Behavior and capacity of RC beams strengthened in shear with NSM FRP reinforcement. *Construction and Building Materials*, 23(4), pp. 1555-1567.
- Sas, G., Dăescu, C., Popescu, C., & Nagy-György, T. (2014). Numerical optimization of strengthening disturbed regions of dapped-end beams using NSM and EBR CFRP. *Composites Part B: Engineering*, 67, pp. 381-390.
- SAS, I (2014). ANSYS Manual-Mechanical APDL/Theory [13] reference/15.7. 11.4. Equivalent Stress Mean.
- Sayed, A. M., Wang, X., & Wu, Z. (2014). Finite element modeling of the shear capacity of RC beams strengthened with FRP sheets by considering different failure modes. *Construction and Building Materials*, 59, pp. 169-179.
- Sena-Cruz, J. (2005). Strengthening of concrete structures with near-surface mounted CFRP laminate strips.
- Seo, S. Y., Yoon, S. J., & Lee, W. J. (2004, August). Structural Behaviour of R/C Deep Beam with Headed Longitudinal Reinforcements. 13th World Conference on Earthquake Engineering, Vancouver, BC, Canada.

- Shah, R. H., & Mishra, S. V. (2004). Crack and deformation characteristics of SFRC deep beams. Journal of the Institution of Engineers. *India Civil Engineering Division*, 85(5), pp. 44-48.
- Shehata, E., Morphy, R., & Rizkalla, S. (1998). Use of FRP as shear reinforcement for concrete structures. Saadatmanesh and MR Ehsanim, *ISIS Canada*, *University of Manitoba*, *Winnipeg*, *Manitoba*, *Canada*, pp. 300-314.
- Shioya, T., Iguro, M., Nojiri, Y., Akiyama, H., & Okada, T. (1990). Shear strength of large reinforced concrete beams. *Special Publication*, 118, pp. 259-280.
- Sika Kimia Sdn. Bhd. (2007). Sika Wrap®- 160 BI-C/15. Woven Carbon Fiber Fabric for Structural Strengthening. *Switzerland: Sika Manufacturer's Product Data Sheet*.
- Sika Kimia Sdn. Bhd. (2007). Sika Wrap®-330. 2-Party Epoxy Impregnation Resin. Switzerland: Sika Manufacturer's Product Data Sheet.
- Sika, (2006), Sikadur 30, Technical data sheet, 05/12/2006 edition, Sika Corporation. Singh, S. B. (2013). Shear response and design of RC beams strengthened using CFRP laminates. *International Journal of Advanced Structural Engineering*, 5(1), pp 1-16.
- Sinha, S.N. (2002). Reinforced Concrete Design. 2nd ed. Tata McGraw-Hill.
- Smith, K. N., & Vantsiotis, A. S. (1982). Shear strength of deep beams. *ACI Journal Proceedings*. 79(3), pp. 201-213.
- Smith, K.N., & Vantsiotis, A.S. (1982). Shear strength of deep beams. *Journal Proceedings*. 79(3), pp. 201-213.
- Soliman, S. M., El-Salakawy, E., & Benmokrane, B. (2010). Flexural behaviour of concrete beams strengthened with near surface mounted fibre reinforced polymer bars. *Canadian Journal of Civil Engineering*, 37(10), pp. 1371-1382.
- Stephen, J.F., & Gilbert, R.I. (1998). Experimental studies on high-strength concrete deep beams. *ACI Structural Journal*. 95(4), pp. 382–390.
- Stratford, T. & Burgoyne, C (2003). Shear Analysis of Concrete with Brittle Reinforcement. *Journal of Composites for Construction*, 7(4), pp. 323-330.
- Subedi, N. K. (1998). Reinforced concrete two-span continuous deep beams. *Proceedings of the Institution of Civil Engineers. Structures and buildings*, 128(1), pp. 12-25.
- Subedi, N. K. (2002). Reinforced concrete two-span continuous deep beams. *Proceedings of the Institution of Civil Engineers, Structures and Buildings*, 152(1), pp. 85-86.

- Subedi, N. K., Vardy, A. E., & Kubotat, N. (1986). Reinforced concrete deep beams some test results. *Magazine of concrete Research*, 38(137), pp. 206-219.
- Taher Khorramabadi, M., & Burgoyne, C.J. (2011). Differences between FRP bond behavior in cracked and uncracked regions. *American Concrete Institute, ACI Special Publication*. 1, pp. 335-351.
- Taljsten, B. & Blanksvard, T. (2007). Mineral-Based Bonding of Carbon FRP to Strengthen Concrete Structures. *Journal of Composites for Construction*. 11(2), pp. 120-128.
- Taljsten, B. (2003). Strengthening Concrete Beams for Shear with CFRP Sheets. *Construction and Building Materials* 17, pp. 15-26.
- Tan, K. H., & Lu, H. Y. (1999). Shear behavior of large reinforced concrete deep beams and code comparisons. *Structural Journal*, 96(5), pp. 836-846.
- Tan, K. H., Kong, F. K., Teng, S., & Guan, L. (1995). High-strength concrete deep beams with effective span and shear span variations. *ACI Structural Journal*, 92(4), pp. 395-405.
- Tan, K. H., Tong, K., & Tang, C. Y. (2003). Consistent strut-and-tie modelling of deep beams with web openings. *Magazine of Concrete Research*, 55(1), pp. 65-75.
- Tan, K., Tumialan, G., & Nanni, A. (2002). Evaluation of CFRP-Systems for the Strengthening Of RC Slabs. *Interim Report*. pp 120.
- Tavakkolizadeh, M., & Saadatmanesh, H. (2003). Strengthening of steel-concrete composite girders using carbon fiber reinforced polymers sheets. *Journal of Structural Engineering*, 129(1), pp. 30-40.
- Teng, J. G., De Lorenzis, L., Wang, B., Li, R., Wong, T. N., & Lam, L. (2006). Debonding failures of RC beams strengthened with near surface mounted CFRP strips. *Journal of composites for construction*, 10(2), pp. 92-105.
- Thomas, J. (1998). FRP strengthening-experimental or mainstream technology. *Concrete international*, 20(6), pp. 57-58.
- Toutanji, H., Saxena, P., Zhao, L., & Ooi, T. (2007). Prediction of interfacial bond failure of FRP–concrete surface. *Journal of composites for construction*, 11(4), pp. 427-436.
- Triantafilliou T.C. (1998). Shear Strengthening of Reinforced Concrete Beams using Epoxy-Bonded FRP Composites. *ACI Structural Journal*. 95(2), pp. 107 115.
- Triantafillou, T.C. & Antonopoulus C.P. (2000). Design of Concrete Flexural Members Strengthened in Shear with FRP. *Journal of Composites for Construction*. 4(4), pp. 198 205.

- Tumialan, J. G., Morbin, A., Nanni, A., & Modena, C. (2001). Shear strengthening of masonry walls with FRP composites. *Composites*, pp. 3-6.
- Uribe, C.M., & Alcocer, S.M. (2002). Deep beam design in accordance with ACI 318-2002. *Special Publication*. 208, pp. 65-80.
- Valerio, P., & Ibell, T. J. (2003). Shear strengthening of existing concrete bridges. *Proceedings of the Institution of Civil Engineers-Structures and Buildings*, 156(1), pp. 75-84.
- Wang, C.K., Salmon, C.G. & Pincheira, J.A. (2007). Reinforced Concrete Design. 7th ed. New Jersey, USA: John Wiley.
- Wang, W., Jiang, D. H., & Hsu, C. T. T. (1993). Shear strength of reinforced concrete deep beams. *Journal of Structural Engineering*, 119(8), pp. 2294-2312.
- Wight, J.K., & Parra-Montesinos, G. (2003). Strut and Tie Model for Deep Beam Design. *Concrete international*, 25(5), pp. 63-70.
- Yan, X., Miller, B., Nanni, A., & Bakis, C. E. (1999). Characterization of CFRP rods used as near surface mounted reinforcement. *In 8th International conference on structural faults and repair*, pp 1-12.
- Yang, K. H., & Ashour, A. F. (2008). Load capacity of reinforced concrete continuous deep beams. *Journal of structural engineering*, 134(6), pp. 919-929.
- Yang, K. H., Chung, H. S., Lee, E. T., & Eun, H. C. (2003). Shear characteristics of high-strength concrete deep beams without shear reinforcements. *Engineering Structures*, 25(10), pp. 1343-1352.
- Yang, K.H., Chung, H.S., Lee, E. T., & Eun, H.C. (2003). Shear characteristics of high-strength concrete deep beams without shear reinforcements. *Engineering Structures*. 25(10), pp. 1343-1352.
- Yang, Y. X., Yue, Q. R., & Hu, Y. (2001). Experimental study on bond performance between carbon fiber sheets and concrete. *Journal of building structures*, 3, pp. 36-41.
- Yost, J. R., Goodspeed, C. H., & Schmeckpeper, E. R. (2001). Flexural performance of concrete beams reinforced with FRP grids. *Journal of composites for construction*, 5(1), pp. 18-25.
- Yost, J. R., Gross, S. P., Dinehart, D. W., & Mildenberg, J. J. (2007). Flexural behavior of concrete beams strengthened with near-surface-mounted CFRP strips. *ACI structural journal*, 104(4), pp. 430-437.
- Zhang, N., & Tan, K. H. (2007). Size effect in RC deep beams: Experimental investigation and STM verification. *Engineering Structures*, 29(12), pp. 3241-3254.

- Zhang, Z., Hsu, C. T. T., & Moren, J. (2004). Shear strengthening of reinforced concrete deep beams using carbon fiber reinforced polymer laminates. *Journal of Composites for Construction*, 8(5), pp. 403-414.
- Zhang, Zhicao & Hsu, C.T.T. (2005). Shear Strengthening of Reinforced Concrete Beams Using Carbon-Fiber-Reinforced Polymer Laminates. *Journal of Composites for Construction*. 9(2), pp. 158 169.
- Zou, P.X. (2003). Flexural Behaviour and Deformability of Fiber Reinforced Polymer Prestressed Concrete Beam. *Journal of Composites for Construction*, 7(4), pp. 275-284.

