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ABSTRACT 

 

 

 

 

Shear failure of a reinforced concrete beam is catastrophic because it occurs suddenly 

and without warning. Recently, CFRP sheets and bars have been rapidly employed in 

strengthening structural concrete elements including deep beams. In this research, the 

behaviour of deep beam strengthened with carbon fiber reinforced polymer (CFRP) as 

Near Surface Mounted (NSM) bars was studied. Five groups of deep beams i.e. G1, 

G2, G3, G4 and G5 were studied. Each group of deep beams has the same shear span 

to effective depth ratio at 0.864. Group G1 consists of two beams as a control 

specimens and each one differs depending on either with web and without web 

reinforcement. Groups G2 to G5 consists of initially strengthened or pre-cracked and 

repaired deep beams with CFRP NSM bars with different schemes and orientations. 

Other variables included beams with and without web reinforcements. The selected 

orientations for all CFRP NSM bars were either at 0/90 or 45/135 degrees and the two 

different spacing schemes for the stirrups were at 100 mm or 150 mm. In total, 18 

reinforced concrete deep beams with a size of 450 x140 x1200 mm were experimented. 

A simulation using finite element software ANSYS V.14 was conducted to validate 

the experimental work. Three existing theoretical equations from ACI 440, Khalifa & 

Nanni and fib were selected for comparison with the experimental findings. From the 

experimental, all deep beam specimens failed in shear. Experimental results indicated 

that all deep beams, either with or without web reinforcement, and strengthened or 

repaired with CFRP NSM bars showed increased shear capacity enhancement from 

17% to 141% compared to the control specimens. Finite element analysis by ANSYS 

software also indicated similar behaviour in terms of shear capacity, crack patterns and 

mode of failure. In addition, three existing theoretical models; ACI 440, Khalifa and 

Nanni and fib models were applied for theoretical comparison of shear capacity 

contributed by CFRP NSM bars Vf . The ACI 440 and Khalifa & Nanni model showed 

good consistency and good agreement with the experimental results. Finally, a 

modified effective strain limit based on different coefficient (R) values was proposed.  
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ABSTRAK 

 

 

Sifat kegagalan ricihan rasuk konkrit bertetulang secara tiba-tiba tanpa amaran adalah 

satu sifat yang sangat merbahaya. Oleh itu, pengunaan lembaran CFRP dan bar CFRP 

adalah kaedah yang telah kerap digunapakai dalam usaha untuk mengukuhkan elemen 

konkrit struktur termasuk rasuk dalam. Dalam kajian ini, ciri-ciri rasuk dalam yang 

diperkukuh dengan polimer bertetulang gentian karbon (CFRP) secara Near Surface 

Mounted (NSM) telah di kaji. Lima kumpulan rasuk G1, G2, G3, G4 dan G5 telah 

dilaksanakan. Setiap kumpulan rasuk mempunyai nilai rentang ricih dengan nisbah 

kedalaman yang berkesan pada 0.864. Kumpulan G1 terdiri daripada dua rasuk sebagai 

spesimen kawalan dan masing-masing berbeza bergantung sama ada dikukuh dengan 

tetulang web atau tanpa tetulang web. Kumpulan G2 hingga G5 terdiri daipada rasuk 

yang telah dikukuh awal dengan bar CFRP NSM, atau rasuk pra-retak yang kemudiannya 

diperbaiki dengan bar CFRP NSM. Pembolehubah untuk rasuk kumpulan G2 dan G5 

merangkumi rasuk bertetulang web dan rasuk tanpa tetulang web. Ini di susuli pula 

dengan pemilihan orientasi bar CFRP NSM pada sudut 0/90 darjah atau 45/135 darjah 

dan susunan jarak tetulang web pada 100 mm atau 150 mm. Lapan belas rasuk dalam 

konkrit bertetulang dengan saiz 450 mm x 140 mm x 1200 mm telah diuji. Simulasi 

dengan menggunakan perisian elemen terhingga ANSYS V.14 telah dijalankan untuk 

mengesahkan hasil kajian. Tiga teori model iaitu ACI 440, Khalifa & Nanni dan fib telah 

dipilih untuk perbandingan dengan kajian. Semua spesimen telah gagal secara ricih. 

Kajian menunjukkan bahawa semua rasuk yang bertetulang web atau rasuk tanpa 

tetulang web dan dikukuh awal atau diperbaiki dengan bar CFRP NSM menunjukkan 

peningkatan kapasiti ricih dari 17% hingga 141% berbanding spesimen kawalan. Perisian 

ANSYS menunjukkan kapasiti ricih, corak retak dan kegagalan mod yang serupa dengan 

kajian. Di samping itu, sumbangan bar CFRP NSM (Vf ) terhadap kapasiti ricih dari tiga 

teori model dari ACI 440, Khalifa dan Nanni dan fib telah dibandingkan. Dari analisis 

tersebut, model ACI 440 dan Khalifa & Nanni telah menunjukkan konsistensi dan 

persetujuan yang baik dengan keputusan kajian. Akhirnya, had keterikan berkesan yang 

diubahsuai berdasarkan nilai pekali (R) yang berbeza telah dicadangkan. 
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