TITLE

MAXIMUM TORQUE OF COMBINATION THREATS FOR SPUR GEAR BASED ON AGMA AND JGMA STANDARDS

WU JIA HANG

A project report submitted in partial fulfilment of the requirement for the award of the Degree of Master of Mechanical Engineering

Faculty of Mechanical and Manufacturing Engineering Universiti Tun Hussein Onn Malaysia

JANUARY 2014

ACKNOWLEDGEMENT

I would like to express my utmost gratitude to my supervisor Dr Sia Chee Kiong for his guidance, advice and knowledge throughout the two semesters. His motivation, patience and valuable time spent had helped me to complete the thesis successfully. I would also like to thank my fellow course mates especially Andy Buja and Lau Ong Yee for their support and assistance. Not forgetting other friends and course mates of MDM PERSISIR KUCHING for their encouragement and assistance during the past two and a half years. I thank all the other lecturers from Faculty of Mechanical Engineering & Manufacturing who has taught me before for their invaluable knowledge and lessons while not forgetting my friend Ong Tze Ching for all his help in Johor. Lastly, my appreciation and love goes to my parents and other family members for supporting me in difficult times and all the decisions in my life.

ABSTRACT

This thesis is an approach to investigate the transformation curve of gearing safety. Two types of tooth failures are known to happen to spur gears. There are tooth bending failure (breakage) and tooth surface pitting failure. The focus of this study however will be on the JGMA and AGMA standards of gearing. Different methods were used to gather relevant data from both standards. JGMA data were gathered from a source in the internet while AGMA data were calculated with the aid of Autodesk Inventor spur gear component generator 2013. The most important data is the allowable torque applied on the gear tooth which can be distinguished into causing either one of the tooth failures mentioned above. Several materials selected from the JGMA and AGMA standards with high value of allowable contact stress compared to its allowable bending stress have a transformation curve from surface durability to bending strength when its torque values are plotted against number of teeth. This allows the forming of a combination threats curve for the material. The curves are useful in determining the maximum torque that can be applied on the spur gear before failures occur. The threat combination curves are then further developed into charts that include other parameters like power, angular velocity and pitch diameters.

ABSTRAK

Tesis ini merupakan satu pendekatan untuk mengkaji lengkung perubahan keselamatan bagi gear taji. Dua jenis kegagalan yang boleh berlaku pada gigi gear taji telahpun dikenalpasti. Kegagalan tersebut adalah tooth bending failure (patah) dan *tooth surface pitting failure*. Fokus kajian ini walabagaimanapun adalah kepada standard gear JGMA dan AGMA sahaja . Kaedah yang berbeza yang digunakan untuk mendapatkan data yang relevan dari kedua-dua standard. Data JGMA telah dikumpulkan dari sumber di internet manakala data AGMA dikira dengan bantuan Autodesk Inventor spur gear component generator 2013. Data yang paling penting ialah daya kilasan maksimum yang dikenakan pada gigi gear yang boleh dibezakan kepada daya yang akan menyebabkan salah satu daripada kegagalan gigi yang dinyatakan di atas . Beberapa bahan yang dipilih dari standard JGMA dan AGMA dengan nilai allowable contact stress yang tinggi berbanding dengan allowable bending stress mempunyai lengkung transformasi daripada surface durability kepada bending strength apabila nilai kilasannya diplot terhadap jumlah gigi gear. Ini membolehkan pembentukan lengkung ancaman gabungan untuk bahan-bahan tersebut. (combination threats curve) . Lengkung ini adalah berguna dalam menentukan daya kilas maksimum yang boleh digunakan pada gear taji sebelum kegagalan berlaku. Lengkung ancaman gabungan ini kemudiannya akan dibangunkan seterusnys ke dalam bentuk carta yang akan menggabungkan parameter- parameter lain seperti kuasa , halaju sudut dan pitch diameter gear.

TABLE OF CONTENTS

STUDENT DECLARATION	ii
ACKNOWLEDGEMENTS	iii
ABSTRACT	iv
ABSTRAK	V
TABLE OF CONTENT	vi
LIST OF TABLES	ix
LIST OF FIGURES	xii
LIST OF SYMBOLS	xviii
LIST OF APPENDICES	xxi
INTRODUCTION	

CHAPTER 1	INTR	ODUCTION	
	1.1	Introduction to gears	1
	1.2	Background of study	5
	1.3	Problem statement	5
	1.4	Objectives of study	6
	1.5	Scopes and limitations of study	7
	1.6	Project planning	7
CHAPTER 2	LITE	RATURE REVIEW	
	2.0	Introduction	10
	2.1	Gear standards	11

- 2.2 Gear tooth rating according to AGMA and JGMA 12
- 2.3 Spur gear failures 13

3.1	Gear tooth calculations	15
3.2	AGMA stress equations	16
3.3	JGMA stress equations	19
3.4	The Autodesk Inventor 2013	
	Gear component generator	22
3.5	Project flowchart	24
3.6	Expected outcome	25

CHAPTER 4 RESULTS AND DISCUSSION

4.1	JGMA	A Results	26
	4.1.1	Material selection and properties	26
	4.1.2	Material i) SCM 415 Alloy Steel	27
	4.1.3	Material ii) S45C Carbon Steel	32
	4.1.4	Material iii) SUS303 Stainless Steel	36
	4.1.5	Material iv) S45C Carbon Steel	
		(No heat treatment)	38
	4.1.6	Discussion for JGMA results	40
4.2	AGM	A results	42
	4.2.1	Material selection and properties	42
	4.2.2	A576-1050 Carbon Structured Steel	
		(1500 rpm)	43
	4.2.3	A322 5135 Alloy Structured Steel /	
		Tooth face hardened (1500 rpm)	51
	4.2.4	42CrV6 Alloy Structured Steel	
		(1500 rpm)	60
	4.2.5	A322-5135 Alloy Structured Steel /	
		Heat Treated (1500 rpm)	68
	4.2.6	Discussion for AGMA results	74

CHAPTER 5 CONCLUSION AND RECOMMENDATION

Conclusion

5.1

coner		70
5.1.1	Introduction	76
5.1.2	Result conclusion	77
5.1.3	Recommendation	78

REFERENCES

APPENDICES

Appendix A Appendix B Appendix C Appendix D Appendix E Appendix F Appendix G Appendix H 80

79

76

LIST OF TABLE

TABLE NO.

TITLE

PAGE

1.1	Types of gears and their categories	2
1.2	Gantt chart for Project 1	8
1.3	Gantt chart for Project 2	9
3.1	Comparison of module and diametral Pitch	16
4.1	Gear materials and its properties for JGMA	
	standard.	26
4.2	Allowable torque value of SCM415 Alloy Steel	
	for bending strength and surface durability for	
	gear module 1.0 - 2.5 and number of teeth $17 - 50$	28
4.3	Calculation results for gear module 2.5 and 2000 rpm	31
4.4	Allowable torque value of S45C Carbon Steel for	
	bending strength and surface durability for gear	
	module $1.0 - 4.0$ and number of teeth $15 - 80$	33
4.5	Allowable torque value of SUS Stainless Steel for	
	bending strength and surface durability for gear	
	module $1.0 - 3.0$ and number of teeth $15 - 70$	37
4.6	Allowable torque value of S45C Carbon Steel for	
	bending strength and surface durability for gear	
	module $1.0 - 6.0$ and number of teeth $15 - 70$	39
4.7	Gear materials and its properties for AGMA	
	standard	42
4.8	Parameter settings for Autodesk Inventor 2013 gear	
	generator software	42

LIST OF TABLE

TABI	LE NO.	TITLE	PAGE
	4.9	Allowable torque value of A576-1050 Carbon	
		Structured Steel for bending strength and surface	
		durability for gear module $1.0 - 4.0$ and number	
		of teeth 17 – 70 (Gear ratio 2.0)	45
	4.10	Allowable torque value of A576-1050 Carbon	
		Structured Steel for bending strength and surface	
		durability for gear module $1.0 - 4.0$ and number of	
		teeth 17 – 70 (Gear ratio 4.0)	45
	4.11	Calculation results for gear module 3.0 and	
		1500 rpm for gear ratio 2.0	49
	4.12	Calculation results for gear module 3.0 and	
		1500 rpm for gear ratio 4.0	50
	4.13	Allowable torque value of A322-5135 Alloy	
		Structured Steel for bending strength and surface	
		durability for gear module $1.0 - 2.5$ and number of	
		teeth 17 – 70 (Gear ratio 2.0)	53
	4.14	Allowable torque value of A322-5135 Alloy	
		Structured Steel for bending strength and surface	
		durability for gear module $1.0 - 2.5$ and number of	
		teeth 17 – 70 (Gear ratio 4.0)	54
	4.15	Calculation results for gear module 2.5 and	
		1500 rpm for gear ratio 2.0	58
	4.16	Calculation results for gear module 2.5 and	
		1500 rpm for gear ratio 4.0	58
	4.17	Allowable torque value of 42CrV6 Alloy Structure	
		Steel for bending strength and surface durability for	
		gear module $1.0 - 2.5$ and number of teeth	
		17 - 70 (Gear ratio 2.0)	62
		17 70 (00ai 1au0 2.0)	02

LIST OF TABLE

TABLE NO.	TITLE	PAGE
4.18	Allowable torque value of 42CrV6 Alloy Structure	d
	Steel for bending strength and surface durability fo	r
	gear module $1.0 - 2.5$ and number of teeth	
	17 – 70 (Gear ratio 4.0)	62
4.19	Calculation results for gear module 2.5 and	
	1500 rpm for gear ratio 2.0	66
4.20	Calculation results for gear module 2.5 and	
	1500 rpm for gear ratio 4.0	67
4.21	Allowable torque value of A322-5135 heat treated	
	alloy structured steel for bending strength and	
	surface durability for gear module $1.0 - 2.5$ and	
	number of teeth 17 – 60	71
4.22	Allowable torque value of A322-5135 heat treated	
	alloy structured steel for bending strength and	
	surface durability for gear module $1.0 - 2.5$ and	
	number of teeth 17 – 60	71

FIGURE NO.

TITLE

PAGE

1.1	Spur gear	2
1.2	Spur rack	2
1.3	Internal gear	2
1.4	Helical gear	3
1.5	Herringbone gear	3
1.6	Straight bevel gear	3
1.7	Spiral bevel gear	4
1.8	Screw gear	4
1.9	Worm gear	4
2.1	Gear tooth breakage	14
2.2	Gear tooth surface pitting	14
3.1	Nomenclature of spur gear teeth	15
3.2	Spur gear generator (design interface)	23
3.3	Spur gear generator (result interface)	23
4.1 PEN.	Maximum torque of bending strength vs gear	
	module for SCM415 Alloy Steel.	27
4.2	Maximum torque of surface durability vs gear	
	module for SCM415 Alloy Steel.	28
4.3	Maximum torque vs number of teeth of SCM415	
	Alloy Steel for gear module $1.0 - 2.5$	29
4.4	Maximum torque vs number of teeth for gear	
	module 2.5	29
4.5	Maximum torque (Nm) for threat combination	
	curve: Module 2.5	30
4.6	SCM415 Alloy Steel spur gear selection chart for	
	module 2.5	31

FIGURE NO.	TITLE	PAGE
4.7	Maximum torque of bending strength vs	
	gear module for S45C Carbon Steel.	32
4.8	Maximum torque of surface durability vs	
	gear module for S45C Carbon Steel.	33
4.9	Maximum torque vs number of teeth of	
	S45C Carbon Steel for gear module 1.0 – 4.0	34
4.10	Maximum torque vs number of teeth for gear	
	module 2.5	34
4.11	Maximum torque (Nm) for threat combination	
	curve: Module 2.5	35
4.12	S45C Carbon Steel spur gear selection chart for	
	module 2.5	35
4.13	Maximum torque of bending strength vs gear	
	module for SUS Stainless Steel	36
4.14	Maximum torque of surface durability vs gear	
	module for SUS 303 Stainless Steel.	36
4.15	Maximum torque vs number of teeth of SUS 303	
	Stainless Steel for gear module $1.0 - 3.0$	37
4.16	Maximum torque of bending strength vs gear	
	module for S45C Carbon Steel (No heat treatment)	38
4.17	Maximum torque of surface durability vs gear	
	module for S45C Carbon Steel.(No heat treatment)	39
4.18	Maximum torque vs number of teeth of S45C Carbon	
	Steel (No heat treatment) for gear module $1.0 - 6.0$	40
4.19	Maximum torque of bending strength vs gear module f	or
	A576-1050 Carbon Structured Steel (Gear Ratio 2.0)	43
4.20	Maximum torque of bending strength vs gear module f	or
	A576-1050 Carbon Structured Steel (Gear Ratio 4.0)	43

FIGURE NO	TITLE	PAGE
4.21	Maximum torque of surface durability vs	
	gear module for A576-1050 Carbon Structured	
	Steel (Gear Ratio 2.0)	44
4.22	Maximum torque of surface durability vs gear	
	module for A576-1050 Carbon Structured Steel	
	(Gear Ratio 4.0)	44
4.23	Maximum torque vs number of teeth of A576-105	50
	Carbon Structured Steel for gear module $1.0 - 4.0$	
	and gear ratio 2.0	46
4.24	Maximum torque vs number of teeth of A576-105	50
	Carbon Structured Steel for gear module $1.0 - 4.0$	M
	and gear ratio 4.0	46
4.25	Maximum torque vs number of teeth for gear	
	module 3.0/ gear ratio 2.0	47
4.26	Maximum torque vs number of teeth for gear	
	module 3.0/gear ratio 4.0	47
4.27	Maximum torque (Nm) for threat combination cu	rve:
	Module 3.0 and ratio 2.0	48
4.28	Maximum torque (Nm) for threat combination cur	ve:
	Module 3.0 and ratio 4.0	48
4.29	Combination threat curve for all modules	
	(Gear ratio 2.0)	49
4.30	A576-1050 Carbon Structured Steel spur gear sele	ection
	chart for module 3.0 and gear ratio 2.0	50
4.31	A576-1050 Carbon Structured Steel spur gear sele	ection
	chart for module 3.0 and gear ratio 4.0	51

XV

FI	GURE NO	TITLE	PAGE
4.32		Maximum torque of bending strength vs gear	
		module for A322-5135 Alloy Structured Steel	
		(Gear Ratio 2.0)	51
	4.33	Maximum torque of bending strength vs gear	
		module for A322-5135 Alloy Structured Steel	
		(Gear Ratio 4.0)	52
	4.34	Maximum torque of surface durability vs gear	
		module for A322-5135 Alloy Structured Steel	
		(Gear Ratio 2.0)	52
	4.35	Maximum torque of surface durability vs gear	
		module for A322-5135 Alloy Structured Steel	
		(Gear Ratio 4.0)	53
	4.36	Maximum torque vs number of teeth of A322-5135	
		Alloy Structured Steel for gear module $1.0 - 2.5$	
		and gear ratio 2.0	54
	4.37	Maximum torque vs number of teeth of A322-5135	
		Alloy Structured Steel for gear module $1.0 - 2.5$	
		and gear ratio 4.0	55
	4.38	Maximum torque vs number of teeth for gear module	•
		2.5/ gear ratio 2.0	55
	4.39	Maximum torque vs number of teeth for gear module	e
		2.5/ gear ratio 4.0	56
	4.40	Maximum torque (Nm) for threat combination curve	:
		Module 2.5 and ratio 2.0	56
	4.41	Maximum torque (Nm) for threat combination curve	:
		Module 2.5 and ratio 4.0	57
	4.42	Combination threat curve for all modules	
		(Gear ratio 2.0)	57

FIG	SURE NO	TITLE	PAGE
	4.43	A322-5135 Alloy Structured Steel spur gear	
		selection chart for module 2.5 and gear ratio 2.0	59
	4.44	A322-5135 Alloy Structured Steel spur gear	
		selection chart for module 2.5 and gear ratio 4.0	59
	4.45	Maximum torque of bending strength vs gear	
		module for 42CrV6 Alloy Structured Steel	
		(Gear Ratio 2.0)	60
	4.46	Maximum torque of surface durability vs gear	
		module for 42CrV6 Alloy Structured Steel	
		(Gear Ratio 2.0)	60
	4.47	Maximum torque of bending strength vs gear	
		module for 42CrV6 Alloy Structured Steel	
		(Gear Ratio 4.0)	61
	4.48	Maximum torque of surface durability vs gear	
		module for 42CrV6 Alloy Structured Steel	
		(Gear Ratio 4.0)	61
	4.49	Maximum torque vs number of teeth of 42CrV6	
		Alloy Structured Steel for gear module $1.0 - 2.5$	
		and gear ratio 2.0	63
	4.50	Maximum torque vs number of teeth of 42CrV6	
		Alloy Structured Steel for gear module $1.0 - 2.5$	
		and gear ratio 4.0	63
	4.51	Maximum torque vs number of teeth for gear module	e
		2.5/ gear ratio 2.0	64
	4.52	Maximum torque vs number of teeth for gear module	e
		2.5/ gear ratio 4.0	64
	4.53	Maximum torque (Nm) for threat combination curve	:
		Module 2.5 and gear ratio 2.0	65

4.54 Maximum torque (Nm) for threat combination curve: Module 2.5 and gear ratio 4.0	65 66
-	
	66
4.55 Combination threat curve for all modules	66
(Gear ratio 2.0)	
4.56 42CrV6 Alloy Structured Steel spur gear selection	L
chart for module 2.5 and gear ratio 2.0	67
4.57 42CrV6 Alloy Structured Steel spur gear selection	
chart for module 2.5 and gear ratio 4.0	68
4.58 Maximum torque of bending strength vs gear mod	ule
for A322-5135 Alloy Structured Steel- Heat Treat	ed
(Gear Ratio 2.0)	69
4.59 Maximum torque of surface durability vs gear mo	dule
for A322-5135 Alloy Structured Steel – Heat Trea	ted
(Gear Ratio 2.0)	69
4.60 Maximum torque of bending strength vs gear mod	dule
for A322-5135 Alloy Structured Steel – Heat Trea	ted
(Gear Ratio 4.0)	70
4.61 Maximum torque of surface durability vs gear mo	dule
for A322-5135 Alloy Structured Steel – Heat Trea	ted
(Gear Ratio 4.0)	70
4.62 Maximum torque vs number of teeth of A322-513	35
Alloy Structured Steel – Heat Treated for gear mo	dule
1.0 – 2.5 (ratio 2.0)	72
4.63 Maximum torque vs number of teeth of A322-513	5
Alloy Structured Steel – Heat Treated for gear mo	dule
1.0 – 2.5 (ratio 4.0)	72

LIST OF SYMBOLS

- $P_d = Diametral pitch$
- m = module
- N = Number of teeth
- $D_p = Pitch diameter$

AGMA standards

- σ = Gear bending stress
- $\sigma_{allowable}$ = Gear bending endurance strength

 S_F = Bending factor of safety (AGMA)

 $W_t = transmitted load, kN$

H = power, kW

- I = Facewidth, mm $K_m = load distribution factor$ $K_B = Rim Thickness factor$ J = Geometrv fr
- S_t = Gear bending strength, MPa(value depends on gear materials)
- Y_N = Stress cycle factor for bending stress
- K_T = Temperature factor

 $K_R = Reliability factor$

 σ_c = Gear contact stress

 $\sigma_{c,allowable}$ = Gear contact endurance strength

 S_H = Wear factor of safety (AGMA)

 $C_p = elastic coefficient, \sqrt{N/mm^2}$

 C_f = Surface condition factor, used C_f = 1

 d_p = Pitch diameter of pinion, mm

I = Geometry factor for pitting resistance

 $\mathrm{Z}_{\mathrm{N}}=\mathrm{Stress}$ cycle life factor , $\mathrm{Z}_{\mathrm{W}}=\mathrm{Hardness}$ ratio factors for pitting resistance

- S_c = contact fatique strength, MPa(value depends on gear material)
- C_{H} = Hardness ratio factors for pitting resistance

JGMA standards

 F_t = tangential force at pitch circle (kgf)

P = power (KW)

T = Torque (kgf.m)

 $d_b =$ working pitch diameter (mm)

n = Rotational speed (rpm)

v = Tangential speed of workng pitch circle (m/s)

 F_{tlim} = Allowable tangential force at the working pitch circle.

 σ_F = Actual bending stress at the root

 σ_{Flim} = Allowable bending stress at the root

b = facewidth (mm)

 Y_F = Tooth profile factor

 Y_{ϵ} = Load sharing factor

 $K_L = Life factor$

 K_{FX} = Size factor of root stress, normally 1.00

 $K_V = Dynamic load factor$

 $K_0 = Overload factor$

 $S_F =$ safety factor for bending failure

 Y_{β} = Helix angle factor (1.00 for spur gears)

 $M_n = Normal module$

 σ_H = Actual Hertz stress

 σ_{Hlim} = Allowable Hertz stress

 $b_{\rm H} = {\rm facewidth} ({\rm mm})$

 d_{01} = Pitch diameter of pinion (mm)

i = gear ratio

 $Z_{H} = Zone factor$

 $Z_M = Material factor$

 Z_{ϵ} = Contact ratio factor

 Z_{β} = Helix angle factor

JNKU TUN AMINA

- $K_{HL} = Life factor$
- Z_L = Lubricant factor
- Z_R = Surface roughness factor
- $Z_V = Lubrication$ speed factor
- $Z_w =$ Hardness ratio factor
- $K_{HX} = Size factor$
- $K_{H\beta}$ = Load distribution factor
- $K_V = Dynamic load factor$
- $K_0 = Overload factor$
- $S_{H} = Safety factor for pitting$

LIST OF APPENDICES

APPENDIX

TITLE

А	JGMA results – SCM415 Alloy Steel
В	JGMA results - S45C Carbon Steel
	(Tooth Surfaces Induction Hardened)
С	JGMA results – SUS303 Stainless
	Steel
D	JGMA results – S45C Carbon Steel
	(No Heat Treatment)
Е	AGMA results – A576-1050 Carbon
	Structured Steel
F	AGMA results – A322-5135 Alloy
	Structured Steel (Tooth face Hardened)
G	AGMA results – 42CrV6 Alloy
	Structured Steel
HISTAN	AGMA results – A322-5135 Alloy
	Structured Steel (Heat Treated)

CHAPTER 1

1.1 INTRODUCTION

Gears are defined as toothed wheels or multi-lobed cams which transmit power and motion from one shaft to another by means of successive engagement of teeth [1]. Its popularity and usage in various type of machinery as a transmission component is mainly due to the fact that it is a positive drive and hence the velocity ratio is constant, it can transmit much larger power as compared to belt and chain drive, it is especially suitable for transmitting power at low velocity and most of all the transmission efficiency is very high. Gears range in size from miniature instrument installations, such as watches, to large powerful gears used in automobiles and turbine drives for ocean liners.

There are many types of gears and it is common to classify them into 3 categories; parallel axes gears, intersecting axes gears, and nonparallel and nonintersecting axes gears. **Table 1.1** below lists some examples of the gear types available by axes orientation.

Categories of gears	Types of gears		
Parallel axes gears	Spur gear, Spur rack,		
	Internal gear, Helical gear,		
	Double Helical gear		
	(Herringbone gear)		
Intersecting axes	Straight bevel gear, Spiral		
gears	bevel gear		
Nonparallel and	Screw gear, Worm gear		
nonintersecting			

Table 1.1	Types	of gears	and their	categories
-----------	-------	----------	-----------	------------

The gear types in Table 1.1 are further explained below: (From Ref.[2])

 a) Spur Gear – This is a cylindrical shape gear, in which the teeth are arranged parallel to the axis. It is the most commonly used gear with a wide range of applications and is the easiest to manufacture.

Figure 1.1: Spur gear

 b) Spur Rack – This is a linear shaped gear which can mesh with a spur gear with any number of teeth. The spur rack is a portion of a spur gear with an infinite radius.

Figure 1.2: Spur Rack

c) Internal gear – This is also a cylindrical shaped gear, but with the teeth inside the circular ring. It can mesh with a spur gear. Internal gears are often used in planetary gear systems.

Figure 1.3: Internal gear

d) Helical gear – This is a cylindrical shaped gear with helicoid teeth.
Helical gears can bear more load than spur gears, and work more quietly.
They are widely used in industry. A disadvantage is the axial thrust force caused by the helix form.

Figure 1.4: Helical gear

e) Double helical gear (Herringbone gear) – A gear with both left-hand and right-hand helical teeth. The double helical form balances the inherent thrust forces.

Figure 1.5: Herringbone gear

f) Straight bevel gear – This is a gear in which the teeth have tapered conical elements that have the same direction as the pitch cone base line. The straight bevel gear is both the simplest to produce and the most widely applied in the bevel gear family.

Figure 1.6: Straight Bevel gear

 g) Spiral bevel gear – This is a bevel gear with a helical angle of spiral teeth. It is much more complex to manufacture, but offers higher strength and less noise.

Figure 1.7: Spiral bevel gears

 h) Screw gear – A pair of cylindrical gears used to drive non-parallel and nonintersecting shafts where the teeth of one or both members of the pair are of screw form. Screw gears are used in the combination of screw gear/screw gear, or screw gear/spur gear. Screw gears assure smooth, quiet operation. However, they are not suitable for transmission of high horsepower.

Figure 1.8: Screw gear

 Worm gear – Worm gear pair is the name for a meshed worm and worm wheel. An outstanding feature is that if offers a very large gear ratio in a single mesh. It also provides quiet and smooth action. However, transmission efficiency is poor.

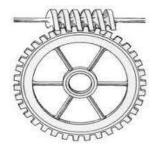


Figure 1.9: Worm gear

References

- Dr. S.S Wadhwa, Er. S.S. Jolly. *Machine Design, A basic approach*. New Delhi : Dhanpat Rai & Co, 2007, Page 546.
- 2. Industry, Kohara Gear. Gear Technical References. 1996-2013, Page 595-606.
- 3. Lynwander, Peter. *Gear drive systems, Design and Application*. New York : Marcel Dekker, Inc, 1983. Page 93. ISBN 0-8247-1896-8.
- 4. A.L. Kapelevich, R.E. Kleiss. *Direct Gear Design for Spur and Helical Involute Gears, Gear Technology.* September/October 2002, Page 29-35.
- Review of API Versus AGMA Gear Standards/Rating, Data Sheet Completion, and Gear Selection Guidelines. In Proceedings of the Twenty-Ninth Turbomachinery Symposium (pp. 191-204). Kenneth O. Beckman, Vinod P. Patel. 2000.
- Vulgakov, E.B. Gears with Improved Characteristics (in Russian). Mashinostroenie, Moscow : s.n., 1974.
- 7. Autodesk Wikihelp : Inventor 2013, Spur gear component generator. *Autodesk, Inc Website*. [Online] Autodesk, Inc. [Cited: May 29, 2013.]
 http://wikihelp.autodesk.com/Inventor/enu/2013/Help.
- 8. Chee Kiong Sia, Loo Yee Lee, Siaw Hua Chong, Mohd Azwir Azlan & Nik Hisyamudin Muhd Nor. "Decision Making with the Analytical Hierarchy Process (AHP) for Material Selection in Screw Manufacturing for Minimizing Environmental Impacts." *Applied Mechanics and Materials* 315 (2013): 57-62.
- Sushil Kumar Tiwari, Upendra Kumar Joshi. " Stress Analysis of Mating Involute Spur Gear Teeth." *International Journal of Engineering Research & Technology (IJERT)*, Vol. 1 Issue 9, November- 2012. ISSN: 2278-0181
- 10.Bharat Gupta, Abhishek Choubey & Gautam V. Varde. "Contact stress analysis on spur gear." *International Journal of Engineering Research & Technology (IJERT)*, Vol. 1 Issue 4, June - 2012. ISSN: 2278-0181.
- 11. Darle W. Dudley, Practical Gear Design, McGraw-Hill Book Company, 1954
- 12. Shinde S.P, Nikam A.A. and Mulla T.S. " Static Analysis of Spur Gear Using Finite Element Analysis" IOSR Journal of Mechanical and Civil Engineering (IOSR-JMCE), ISSN: 2278-1684, PP: 26-31

