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ABSTRACT

Surface roughness is one of the most important properties in any machining process and

in micro milling it is really critical as the product needs to be of a very high surface

quality. Therefore the present research is aimed at finding the optimal process

parameters for end milling process and optimum surface roughness. In this study by

using regression model and Artificial Neural Networks (ANN) which are widely used

for both modeling and optimizing the performance of the manufacturing technologies.

Optimum machining parameters are of great concern in manufacturing environments,

where economy of machining operation plays a key role in competitiveness in the

market. The End milling process is a widely used machining process in aerospace

industries and many other industries ranging from large manufacturers to a small tool

and die shops, because of its versatility and efficiency. The present work involves the

estimation of optimal values of the process variables like, speed, feed and depth of cut,

whereas the surface roughness was taken as the output. The obtained results proved the

ability of ANN method for End milling process modeling and optimization. The final

measurement experiment and predicting the error of surface roughness in neural network

have been performed to verify the surface roughness optimum error percentage 1.71µm.

For this study, the accuracy of artificial neural network and regression model 98.2% and

96.3 respectively.
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CHAPTER 1

INTRODUCTION

1.1 Research background

In recent years the modern machines have the challenges in the industries which is

mainly focused on the achievement of high quality, in term of work piece dimensional

accuracy, high production rate, surface finish, less wear on the cutting tools, economy of

machining in terms of cost saving and increase in the performance of the product with

reduced environmental impact. End milling is a very commonly used machining process

in industry. The ability to control the process for better quality of the final product is

paramount importance.

The key change drivers in the case of cutting technology include diminishing

component size, enhanced surface quality, closer tolerances and manufacturing

accuracies, reduced prices, diminished component weight, and reduced batch sizes

(Byrne., 2003). The surface character of the machined parts is one of the most

significant product quality characteristics and one of the most frequent customer

requirements. Surface quality is often expressed by the measurement of surface

roughness.

According to (Parveen et al., 2013), CNC (Computer Numerical Control) milling

machine is one of the common machine tools in machine industry. The face milling is an

operation for producing plane or flat surfaces using a face milling cutter. It is applied for

finishing of machine components. In face milling, the cutter is mounted on a spindle
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having an axis of rotation perpendicular to the work pieces surface and removes material

in the manner.  Face milling process is gaining popularity in industries in recent years

due to the capability in improving machining performance, reducing cost while

achieving reduced lead times, and higher productivity.  However,  the  demand  for  high

quality  focuses  attention  on  the  surface  condition  and  the  quality  of  the product,

especially  the  roughness  of  the  machined  surface  because  of  its  effect  on  product

appearance,  function,  and reliability.

In addition, a good quality machined surface significantly improves fatigue

strength, corrosion resistance, and creep life. Surface roughness are defined as a group

of irregular waves in the surface, measured in micrometers (μm). With the more precise

demand of modern engineering products, the control of surface texture has become more

important. The surface roughness data obtained by measurement can be manipulated to

determine the roughness parameter (Parveen et al., 2013).

(Thanongsak et al., 2012), Micro-end milling is the most flexible process among

all mechanical micromachining processes. Its capabilities provide many advantages for

manufacturing of complex features, especially those in medical devices and implants.

However, scaling the conventional milling process down to a micro scale result in

encountering several problems.

Aluminum alloys are extensively used as a main engineering material in various

industries such as automotive industries, the mold and die components manufacture and

the industry in which weight is the most important factor. Surface roughness is an

important measure of product quality since it greatly influences the performance of

mechanical parts as well as production cost. These materials help machining and possess

superior machine ability index. Milling is one of the most commonly used machining

processes in aluminum alloys shaping. It has considerable economic importance because

it is usually among the finishing steps in the fabrication of industrial mechanical parts.

Their effect on products is important because they may cause some critical problems

such as the deterioration of surface quality, thus reducing the product durability and

precision.
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Surface roughness is one of the most important properties in any machining

process and in micro milling it is really critical as the product needs to be of a very high

surface quality. Many researchers have focused on the surface roughness obtained in the

micro milling process, (Rawangwong et al., 2012).

As mentioned above, surface roughness is an important measure of product

quality. Surface roughness have an impact on the mechanical properties like fatigue

behavior, corrosion resistance, creep life, etc. Sometimes, various catastrophic failures

causing high costs have been attributed to the surface finish of the components in

question. As a result, there have been many great research developments in modeling

surface roughness and optimization of the controlling parameters to obtain a surface

finish of desired level since the only proper selection of cutting parameters can produce

a better surface finish.

Nevertheless, such studies are far from completion since it is very difficult to

consider all the parameters that control the surface roughness for a particular

manufacturing process. The parameters that affect surface roughness include machining

parameters, cutting tool properties and work pieces properties etc. In the manufacturing

industries, various machining processes are adopted to remove the material from a work

piece for the better product. Likewise, end milling process is one of the most critical and

common metal cutting operations used for machining parts because of its ability to get

rid of materials faster with a reasonably good surface quality. In recent times, numerical

controlled machine tools have been implemented to realize full automation in milling

since they provide greater improvements in productivity increase the quality of the

machined parts and require fewer operators input recognized by (Rawangwong et al.,

2012).

Although micro milling emerges as a newly developing method, it is in nature

originally and directly scaled down from the conventional milling. The two cutting

processes have the similar kinematics, and the cutting process can be characterized by

mechanical interaction of a sharp tool with the work material, causing breakage inside,

the material along defined paths, and eventually leading to removal of the useless part of

the work piece in the form of chips (Alting et al., 2003).
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Micro milling plays an increasingly significant part in bridging the crack

between the traditional precision macro and the emerging micro machining for making

functional parts. However, a number of vital issues,  arise on transition of mature macro-

domain knowledge into the micro stage, which influence the underlying mechanisms of

the process, resulting in alterations in the chip-formation process, reducing forces,

vibrations and process stability, and the genesis and subsequent character of the

resulting machined surface (Liu et al., 2004a).

These constraints, for example, unpredictable tool life and premature tool

failures, significant downsized tool-work interactions, are mainly resulting from the

miniaturization of machined components, cutting tools and processes, making the

manufacturing technique considerably challenging in achieving favorable cutting

performance.  In the work, tooling performance is referred as the cutting operation of

micro tools, and it is universally weighted by a combination of characterization

methods, such as the cutting forces, chip formation, tool wear and life, dimensional

accuracy and surface polish. Research on this aspect has the potential to improve the

tool design and optimize the cutting process. At present, scientific knowledge on the

genes governing the tooling performance has not been systematically examined yet and

the present capability of the manufacturing technique needs to be continually prepared

to fill current and future production needs. It would consequently be of outstanding

significance to address a comprehensive insight so as for further drawing out its

industrial applications.

1.2 Problem statement

In manufacturing industries, manufacturers focused on the quality and productivity of

the product. To increase the productivity of the product, computer numerically machine

tools have been implemented during the past decades. Surface roughness is one of the

most important parameters to determine the quality of product. The mechanism behind

the formation of surface roughness is very dynamic, complicated, and process

dependent.
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Although surface roughness have an important property in any machining

process and in micro milling it is really critical as the product needs to be of a very high

surface quality. As presented the events that occurred in manufacturing industries by

looking along the surface roughness for the quality of the products that can effect to the

market income. In this research can predict the events that appeared by using the

intelligent neural network.

Furthermore, minimizing the error of surface roughness in the micro milling

machine which consider the effectiveness of increasing and decreasing the feed rate and

tool edge radius. Although, by using artificial neural network prediction is depending on

other parameters which are depth of cut, cutting speed and feed rate. Besides that

surface roughness value were optimized in milling using statically regression methods.

1.3 Objectives

1. To develop predictive model of surface roughness in milling process.

2. To apply Artificial Neural Network in the machining.

3. Optimization of machining processes by regression method  and used to

assist in the controller training.

1.4 Scope of study

To obtain a better understanding regarding machining parameter and surface roughness

which focusing on neural net organization. Traditionally, the selection of cutting

conditions for metal cutting is left to the machine operator. In such events, the

experience of the operator plays a major function, but even for a skilled operator it is

very difficult to achieve the optimum values each time. Machining parameters in metal

milling are cutting speed, feed rate and depth of cut. The setting of these parameters

determines the quality characteristics of milling parts.
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CHAPTER 2

LITERATURE REVIEW

2.1 Introduction

In this current research for obtaining the optimum of surface roughness by using micro

milling process. Therefore, three milling parameters have been selected, spindle speed,

feed rate and depth of cut. Adequate settings of cutting parameters are most important to

obtain better surface roughness. By using intelligence method of neural network system

that will predict the accurate surface roughness with playing rules of hidden layers and

weighted of input parameters. Beside that study the effect of feed rate, cutting speed and

depth of cut on surface roughness by developing artificial neural networks (ANN)

models.

2.2 Previous Study

(Abbasi et al., 2012), focused  on  the  Response  surface methodology (RSM) prospects

with Gradient method and discussed the  problem  of  getting  insignificant  results, the

possibility of getting  trapped  in  local minima  or  maxima  for  a  given objective

function. In this context, the application of ANN is suggested for improving the

estimation with lesser calculations.
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(Ramesh et al., 2012), studied the effect of depth of cut, cutting speed and feed

rate on the surface roughness of Ti-6Al-4V (Titanium alloy) in the turning operation.

The base of selection for experimentation was L27 orthogonal array (Taguchi’s

principle) under dry condition. The development of surface plots and the response

surface model were suggested the feed rate as the most influential parameter followed

by depth of cut and cutting speed.

(Nataraja et al., 2011), the surface roughness, an indicator of surface quality is

one of the most specified customer requirements in a machining process. In this review

paper the importance to find a better optimization method, which can suggest to induce

an optimum value of editing parameters for minimizing the surface roughness.

(Khorasan et al., 2011), Indicated that the importance of parameter in the milling

operation in the manufacturing process is tool life. There are three main parameters, i.e.

cutting speed, feed rate and depth of cut were suggested by using artificial neural

network and Taguchi design of experiment for tool life prediction in the milling

operation.

(Sehgal et al., 2013) focused in Two methods, artificial neural network (ANN)

and response surface methodology (RSM) is used for optimized prediction of surface

roughness. Therefore investigated that the artificial neural network (ANN) model

predicts with higher accuracy compared with response surface methodology (RSM).

(Pontes et al., 2009), reported that the construction of good ANN models is a

complex and demanding task when compared to other modeling techniques. This is the

trade-off for the superior computing capability of an artificial neural network. Although

this analysis was suggested that great improvement could be made on works produced

on the subject, if basic requirements in Neuro-computing were observed, and

possibilities offered by the technique were better explored. It shows that in many works,

inadequate treatment is given to model validation. Consequently, confidence in the use

of ANN models could be substantially improved where data and information required to

reproduce results and networks are supplied.

(Sivasakthive et al., 2010) reported that the effects of helix angle, spindle speed,

feed rate, axial depth of cut and radial depth of cut were experimentally investigated.

The investigation presented a central composite rotatable second order response surface
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methodology to develop a mathematical model to predict tool wear in terms of helix

angle, spindle speed, feed rate, axial and radial depth of cut.

(Singh et al., 2012), neural network  and  the  fuzzy  inference  system  called

Adaptive  Neuro-Fuzzy Inference  System  (ANFIS)  for  prediction  modeling  of

surface  roughness during  machining  of  GFRP  composites. The data had been

obtained  in experiments  by  taking  machining  parameters like  spindle  speed,  feed

rate  and depth  of  cut  as  input;  and  surface  roughness  of  the  machined  composite

product  has  been  treated  as  output.  Experimental data have been utilized for

prediction modeling of the surface roughness with an accuracy of 91%.

(Vivek et al., 2013), reported that the high speed micro-milling  is  gaining

popularity  due  to  its  high  material removal  rate  and  good  surface  finish.  The

author focused  on  the characterization  of  the  burr  formation  in  high  speed  micro-

milling. Also the Influence  of  various  process  parameters, that are spindle  speed,

feed  rate,  depth  of  cut,  tool  diameter  and  number  of  flutes  of  the  micro-milling

tool  has  been  analyzed  on the burr size and on the quality of the machined surface via

measuring the surface roughness.

(Kuttolamadom et al., 2010), that examined the achievability of surface

roughness specifications within efforts to reduce automotive component manufacture

cycle time, particularly by changing cutting feeds. Therefore, controlled milling

experiments show the relationship between feed rate and surface quality for 6061

aluminum, and the results are used to recommend machining practices for cycle time

reduction while maintaining quality requirements.

(Aburashid et al., 2009), reported that predicting surface roughness by using

multiple regression prediction models was investigated. Therefore Three milling

parameters have been selected, spindle speed, feed rate and depth of cut. This showed

that the statistical model could predict the surface roughness with about 90.2% accuracy

of the testing data set and 90.3% accuracy of the training data set.

(Routara et al., 2009) surface roughness models as well as the significance of the

machining parameters have been validated with analysis of variance. Thus it was found

that the response surface models for different roughness parameters are specific to work

piece materials. An effort has also been created to obtain optimum cutting conditions
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with respect to each of the five roughness parameters considered in the present study

with the help of response optimization technique.

(Mounayr et al., 2008), has studied an innovative Artificial Neural Network

(ANN) model that predicts both cutting force and surface roughness in end milling were

developed and validated. Moreover A set of five input variables were selected to

represent the machining conditions while twelve quantities representing two key process

parameters, namely, cutting force and surface roughness, form the variables of the

network output.

(El-rahman et al., 2013) in this paper the Multi-Layer  back  propagation  (BP)

network is  a supervised,  continuous valued, multi-input and  single-output feed

forward multi-layer network  that follows a gradient  descent  method  interfaced with

the virtual environment  to predict surface roughness  in  the end milling process.

Therefore ANN based model is produced by using the optimized network for this

exceptional case (100 networks are tested) that the most accurate model will be

suggested for in process part surface roughness prediction.

2.3 The Interface of Artificial Neuro-intelligence

Generally, the interface of Neuro-Intelligence is optimized to solve forecasting,

classification and function approximation problems. Neuro-Intelligence is neural

network software designed to assist experts in solving real world problems. Aimed at

solution of technology problems, Neuro-Intelligence features only  proven algorithms

and techniques, is fast and easy-to-use. Neuro-Intelligence supports all stages of neural

network application. It is used in this work to:

 Analyze and preprocess the pre measured test results,

 Find the best neural network architecture that represents the end milling process

trend accurately.

 Test and optimize the selected network.
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