

GENERATING UML CLASS DIAGRAM FROM SOURCE CODES USING

MULIT-THREADING TECHNIQUE

SAIF KHALID ABDULLAH

A dissertation submitted in

partial fulfilment of the requirement for the award of the

Degree of Master of Computer Science (Software Engineering)

Faculty of Computer Science and Information Technology

Universiti Tun Hussein Onn Malaysia

APRIL 2015

PTTA
PERP

UST
AKA
AN
TUN
KU T

UN
AMI
NAH

iii

DEDICATION

To my beloved father and mother

This dissertation is dedicated to my father, who taught me that the best kind of

knowledge to have is that which is learned for its own sake. It is also dedicated to my

beloved mother, who taught me that even the largest task can be accomplished if it is

done one step at a time.

“Thank you for your love and support “

PTTA
PERP

UST
AKA
AN
TUN
KU T

UN
AMI
NAH

iv

ACKNOWLEDGMENT

First and foremost, I would like to thank the almighty God (ALLAH S.W.T) for all

the abilities and opportunities He provided me through all my life and His blessings

that enables me to do this research.

It is the greatest honor to be able to work under supervision of Prof. Dr.

Rosziati Ibrahim. I am grateful to be one of the luckiest persons who had a chance to

work with her. I am thankful and gratified for all of her help, assistance, inspiration

and guidance on the all aspects beside her patience and understanding

 I wish to express my sincere gratitude to everyone who contributed to the

successful completion of my study. I would like to express my gratitude to Universiti

Tun Hussein Onn Malaysia (UTHM) for all support through my master.

PTTA
PERP

UST
AKA
AN
TUN
KU T

UN
AMI
NAH

v

ABSTRACT

The traditional Software Development Life Cycle (SDLC) often includes four

phases: analysis, design, implementation, and testing. Reverse engineering is the

process of moving back those phases by analyzing the software system and then

representing it at the higher levels of abstractions. The reverse engineering software

process generates high level information from the implementation phase. This

information includes generating several diagrams and specification documents that

describe the implemented software. The UML class diagram represent a valuable

source of information even after the delivery of the software. Class diagram

extraction can be done either from software’s source code, or from the executable

file. In the case of source code, a review of the current tools shows that many

researchers have been extracting the UML class diagram from an object-oriented

source code based on the sequential processing approach. In this research, a proposed

approach for extracting a class diagram from the source code is presented. The

proposed approach relies on multi-threading technique in the class diagram

extraction which is representing the parallel processing. The motivation behind using

multi-threading technique is that, it gives an advantage of faster processing to any

software because the threads of the program naturally lend themselves to truly

concurrent execution. In this research, a class diagram extraction using multi-

threading technique is designed and implemented using the C# programming

language. The implemented approach is tested on three case studies that contain

several types of entities and relationships between them. Testing results show that the

time needed to extract class diagram using multi-threading technique for the tested

three cases is less than the time needed in extracting the same class diagram without

using multi-threading technique.

PTTA
PERP

UST
AKA
AN
TUN
KU T

UN
AMI
NAH

vi

ABSTRAK

Kitar Hayat Pembangunan Sistem (KHPS) terdiri daripada empat fasa: analisis, reka

bentuk, pelaksanaan, dan pengujian. Kejuruteraan balikan adalah proses pergerakan

ke mengundur kesemua fasa dengan menganalisa sistem perisian dan kemudiannya

mewakilkan ia pada abstraksi tahap tinggi. Proses kejuruteraan balikan perisian

menjana maklumat tahap tinggi daripada fasa pelaksanaan. Maklumat ini

merangkumi penjanaan sesetengah rajah dan spesifikasi dokumen yang

menggambarkan perisian yang dilaksanakan. rajah kelas mewakili sumber maklumat

yang paling berharga walaupun selepas penghantaran perisian. Pengekstrakan rajah

kelas boleh dibuat daripada kod sumber perisian atau daripada fail pelaksanaan.

Dalam kes kod sumber, kajian peralatan semasa menunjukkan bahawa kebanyakan

penyelidik telah mengekstrak rajah kelas UML daripada kod sumber berorientasikan

objek berasaskan pendekatan pemprosesan berjujukan. Dalam kajian ini, pendekatan

yang dicadangkan untuk mengekstrak rajah kelas daripada kod sumber dibentangkan.

Pendekatan yang dicadangkan bersandarkan kepada teknik multi-threading dalam

pengekstrakan rajah kelas yang mewakili pemprosesan selari. Motivasi di sebalik

menggunakan teknik multi-threading adalah kelebihan pemprosesan lebih cepat

terhadap perisian kerana bebenang program secara semulajadi meminjamkan dirinya

kepada pelaksanaan serentak. Dalam kajian ini, pengakstrakan rajah kelas

menggunakan teknik multi-threading direkabentuk dan dilaksanakan menggunakan

Bahasa pengaturcaraan C#. Pendekatan yang dilaksanakan diuji pada tiga kajian kes

yang mengandungi beberapa jenis entiti dan hubungan antara mereka. Hasil

pengujian menunjukkan masa yang diperlukan untuk mengekstrak rajah kelas

menggunakan teknik multi-threading bagi tiga kajian kes yang diuji adalah kurang

daripada masa yang diperlukan untuk mengekstrak rajah kelas yang sama tanpa

menggunakan teknik multi-threading.

PTTA
PERP

UST
AKA
AN
TUN
KU T

UN
AMI
NAH

vii

TABLE OF CONTENTS

 TITLE i

 DECLARATION ii

 DEDICATION iii

 ACKNOWLEDGMENT iv

 ABSTRACT v

 ABSTRAK vi

 TABLE OF CONTENTS vii

 LIST OF FIGURES x

 LIST OF TABLES xii

 LIST OF APPENDICES xiii

CHAPTER 1 INTRODUCTION 1

1.1 Background of research 1

1.2 Research motivations 3

1.3 Objectives 4

1.4 Scope of research 4

1.5 Expected outcomes 5

1.6 Chapter summary 6

1.7 Dissertation outline 6

CHAPTER 2 LITERATURE REVIEW 8

2.1 Introduction 8

2.2 Reverse engineering derivatives 8

2.2.1 Reverse engineering 9

2.2.2 Restructuring 9

2.2.3 Reengineering 10

2.3 Reverse engineering activities 10

2.3.1 Data gathering 10

2.3.2 Knowledge management 12

PTTA
PERP

UST
AKA
AN
TUN
KU T

UN
AMI
NAH

viii

2.3.3 Information exploration 12

2.4 Unified Modelling Language (UML) 12

2.4.1 UML model 13

2.4.2 Overview of class diagram 14

2.5 C# programming language 20

2.6 Sequential and Parallel approaches 21

2.7 Multi-Threading technique 23

2.7.1 Multi-Threading description 23

2.7.2 Thread code implementation 24

2.7.3 Thread pool concept 24

2.8 Related work 25

2.8.1 ForUML: class diagram extraction

from fortran source code 25

2.8.2 Extracting class diagram from c++

code 27

2.8.3 ReSeT: Reverse Engineering System

Requirements Tool 28

2.8.4 Related work summary 30

2.9 Chapter summary 30

CHAPTER 3 RESEARCH METHODOLOGY 31

3.1 Introduction 31

3.2 Proposed methodology 31

3.3 Proposed methodology stages 32

3.3.1 Stage 1: Map code files into tokens 33

3.3.2 Stage 2: Extract classes and

interfaces information 34

3.3.3 Stage 3a: Extract relationships

without using multi-threading

technique 35

3.3.4 Stage 3b: Extract relationships using

multi-threading technique 39

3.3.5 Stage 4: Compare execution time of

both techniques 41

3.3.6 Stage 5: Visualize class diagram 42

PTTA
PERP

UST
AKA
AN
TUN
KU T

UN
AMI
NAH

ix

3.4 Chapter summary 43

CHAPTER 4 DESIGN AND IMPLEMENTATION 44

4.1 Introduction 44

4.2 The general flowchart of generating

class diagram from source code 44

4.3 The proposed flowchart of

generating class diagram from

source code 45

4.3.1 Without using Multi-threading

technique 46

4.3.2 Using Multi-threading technique 48

4.4 Tool implementation 50

4.4.1 Build data structure 50

4.4.2 Classes and interfaces names

extraction 51

4.4.3 Relationships extraction without

using multi-threading technique 52

4.4.4 Relationships extraction using multi-

threading technique 53

4.4.5 Relationships extraction function 54

4.4.5 Classes attributes and operations

extraction 56

4.4.6 Processing time calculation 57

4.4.7 Sub-class diagrams merging 57

4.4.8 Interface implementation 59

4.5 Testing results 59

4.6 Chapter summary 66

CHAPTER 5 CONCLUSION AND FUTURE WORK 67

5.1 Introduction 67

5.2 Summary of the research 67

5.3 Future work 69

REFERENCES 69

APPENDIX 73

PTTA
PERP

UST
AKA
AN
TUN
KU T

UN
AMI
NAH

x

LIST OF FIGURES

2.1 Reverse engineering derivatives (Nelson, 1996) 9

2.2 Class Diagram of monitoring system of postgraduate

student (Ibrahim & Tiu, 2008) 14

2.3 Class diagram example of association between two

classes (Wiki, 2014) 15

2.4 Class diagram showing Aggregation between two

classes (Wiki, 2014) 16

2.5 Class diagram showing Composition between two

classes at the top and Aggregation between two classes

at bottom (Wiki, 2014) 17

2.6 Class diagram showing generalization between one

superclass and two subclasses (Wiki, 2014) 18

2.7 Class diagram showing realization relationship

(Nishadha, 2012) 19

2.8 Dependency relationship example (Wiki, 2014) 20

2.9 standard steps of Parallel approach (Mivule, 2011) 22

2.10 standard steps of Sequential approach (Mivule, 2011) 22

2.11 sequential and parallel execution example (Xmipp,

2010) 22

2.12 A sample thread pool (green boxes) with waiting tasks

(blue) and completed tasks (yellow), (Wiki, 2007). 25

2.13 Fortran model 26

2.14 Transformation process 26

2.15 ForUML class diagram view 27

2.16 An example of C++ code 28

2.17 Extracted tokens 29

2.18 Class diagram extracted out of C++ code 29

PTTA
PERP

UST
AKA
AN
TUN
KU T

UN
AMI
NAH

xi

3.1 Proposed Methodology 32

3.2 Map code files into tokens 33

3.3 Extract classes and interfaces information 35

3.4 Extract relationships without using multi-threading

technique 38

3.5 Extract relationships using multi-threading technique 40

3.6 Compare execution time of both techniques 42

4.1 General flowchart of generating class diagram 45

4.2 flowchart to extract class diagram without using multi-

threading technique 47

4.3 flowchart to extract class diagram using multi-threading

technique 49

4.4 Data Structure 51

4.5 Classes and interfaces information extraction 52

4.6 Relationships extraction without using multi-threading 53

4.7 Relationships extraction using multi-threading 53

4.8 Generalization and realization relationships extraction 54

4.9 Association relationships extraction 55

4.10 Dependency relationships extraction 56

4.11 Visibility representation of attributes and operations 56

4.12 Processing time calculation 57

4.13 Adding classes and interfaces to the class diagram 58

4.14 Adding relationships to the class diagram 58

4.15 Tool Main interface 59

4.16 Case study 1 class diagram 56

4.17 Case study 2 class diagram 58

4.18 Case study 3 class diagram 60

PTTA
PERP

UST
AKA
AN
TUN
KU T

UN
AMI
NAH

file:///D:/finalupdate.docx%23_Toc412673733
file:///D:/finalupdate.docx%23_Toc412673733

xii

LIST OF TABLES

2.1 UML 2.4.1 defines 14 diagrams, (OMG, 2008) 13

2.2 Multiplicity Indicators (Agile, 2014) 17

2.3 Related work summary 30

3.1 Visibility types (MSDN, 2014) 34

4.1 Testing Results (Time is in ms) 60

PTTA
PERP

UST
AKA
AN
TUN
KU T

UN
AMI
NAH

xiii

LIST OF APPENDICES

APPENDIX TITLE PAGE

A Case study 1 73

B Case study 2 75

C Case study 3 78

77

 PTTA
PERP

UST
AKA
AN
TUN
KU T

UN
AMI
NAH

1 CHAPTER 1

INTRODUCTION

1.1 Background of research

Software maintenance is the last phase in the life cycle of a software development

process which often includes the following phases: requirement specification,

analysis, design, implementation, testing, deployment and maintenance (Dennis, el

at., 2006). However, this phase plays an important role because software

maintenance activities ensure that a software system still works well without errors

in new environments after it is released. According to Doan (2008), common

maintenance activities include fixing bugs, adapting the system to a new

environment, adding new features to the system to satisfy new requirements from the

client, and updating documentation for the system. In order to do these tasks,

software maintainers must understand the structure or architecture of the system.

However, it is a hard task for them in case some changes happened in the structure of

the system, which makes the system different from its original version. In some

cases, system documentation is not up-to-date so it cannot provide explicit

knowledge about the system. Source code is the most important available source to

understand the structure of the system (Doan, 2008).

In the case of source code reuse, if some parts of a new software system can

be reused from existing systems, software developer will save a large amount of

money and effort in developing it (Doan, 2008). In order to reuse the source code,

software developers must realize the structure and architecture of the system and

then understand clearly their features and functions.

PTTA
PERP

UST
AKA
AN
TUN
KU T

UN
AMI
NAH

2

 Reverse engineering tools are very useful in the above cases. The term

reverse engineering was defined by Chikofsky & Cross (1990) as the process of

analyzing a subject system to (i) identify the system’s components and their

interrelationships and (ii) generate representations of the system in another form or at

a higher level of abstraction. It is an activity that takes place frequently, for example,

when understanding a system before making a change; when migrating a software

system from one platform to another; when transforming source code from one

object model to another; and when refactoring a set of classes to satisfy new

requirements (Canfora & Penta, 2007).

According to Tonella & Potrich (2001) reverse engineering tools provide

useful high level information about the system being maintained. Their output

diagrams can support the program in understanding activities, drive refactoring, and

restructuring interventions, and also employed to assess the traceability of the design

into the code. Therefore, it is important that the representations recovered from the

code to be accurate, i.e., exploit all static information present in the code in order to

reverse engineer entities and relations.

Enhancements can be easily done if the modeling diagrams are done during

the initial diagram generation. Unfortunately, when the software is delivered, design

diagrams are not packed with it. There are a large number of tools that are

incorporated with reverse engineering modules (Nagappan, 2008). The most

commonly implemented reverse engineering module is the reverse engineering of the

codes (Nagappan, 2008).

A thread is the smallest sequence of programmed instructions that can be

managed independently by an operating system scheduler (Butenhof, 1997).

According to Justia (2011), multi-threading is the ability of a program or an

operating system process to manage multiple requests by the same user without

having to have multiple copies of the programming running on the computer. Multi-

threading paradigm has become more popular as efforts to further exploit instruction

level parallelism have stalled since the late 1990s (Justia, 2011). This allowed the

concept of throughput computing to re-emerge to prominence from the more

specialized field of transaction processing.

PTTA
PERP

UST
AKA
AN
TUN
KU T

UN
AMI
NAH

3

1.2 Research motivations

Software engineering has undergone a paradigm shift as the size of the software

systems deployed increased dramatically and businesses began to rely increasingly

on computers and information systems (Ramasubbu, 2001). A substantial portion of

the software development effort is spent on maintaining existing systems rather than

developing new ones (Rugaber, 1992). An estimated 50% to 80% of the time and

material involved in software development is devoted to maintenance of existing

code (Boehm, 1991). Crucial to the maintenance of existing systems is the task of

program comprehension, an emerging area in software engineering. About 47% of

the time is spent on enhancements to existing programs and 62% of that spent on

program corrections involve program comprehension tasks like reading the

documentation, scanning the source code, and understanding the changes to be made

(Fjeldstad & Hamlen, 2001).

Software development as mentioned above is a growing field. However,

developing software from scratch is no longer a situation faced by the developer. The

challenge faced currently is how to use the minimum information about existing

software and further enhance it to become a powerful tool (Nagappan, 2008).

Since the paradigm shift, developers who have embarked on the idea of

enhancing any software are often faced with the problem of how to gather the initial

requirements on which the existing software was built upon (Nagappan, 2008).

Documentation that is often used to aid this process would be the user manual.

However, user manuals only show how to use the system for the system user and not

from the developer’s perspective. Design documentations are often not enclosed

together with the software due to security reasons. UML models are used to

document user requirements and design documentation. One of the most important

models used is the class diagram. Class diagram describes the structure of a system

by showing the system's classes, their attributes, operations (or methods), and the

relationships among objects (Nagappan, 2008).

 According to Barnes, et al., (2012) the advantage of a multithreaded program

is that it allows the program to operate faster on computer systems. This is because

the threads of the program naturally lend themselves to truly concurrent execution.

PTTA
PERP

UST
AKA
AN
TUN
KU T

UN
AMI
NAH

4

Many researchers have developed techniques and tools of reverse engineering

from source code to class diagram such as (Ibrahim, R. & Yong, T.K., 2008), where

they developed ReSet tool which is implemented using C++ programming language.

The main objectives of developing this tool is being able to detect the necessary

tokens from the syntax of the program source codes and generate the class diagram

automatically based on the detected tokens. Another tool named ForUML is

proposed by Aziz, et al., (2013). ForUML is a tool that extracts UML class diagrams

from Fortran code. ForUML can produce an XMI document that describes the UML

Class Diagrams. While Jain, et al., (2010) developed a reverse engineering method to

automate the extraction of DFDs, CFDs, and class diagrams from any legacy C++

code. The extracted information is classified as structural, behavioral and constraint

rules through which such information can be produced. And also many tools are

developed such as in (Matzko, et al., 2002, Sutton & Maletic, 2007, Keschenau,

2006, Tonella, 2005). However, none of these researches have used multi-threading

technique to extract UML class diagram from the source code. Therefore, this

research uses multi-threading technique to improve the efficiency of UML class

diagram extracted from source code.

1.3 Objectives

The objectives of this research work are as follows:

 To design an approach that generates class diagram from object-oriented

source code using multi-threading technique.

 To implement the proposed approach using C# programming language.

 To test the proposed approach on C# source code and compare it with

generating a class diagram without using multi-threading technique for its

efficiency in terms of time.

1.4 Scope of research

The main area of concentration in this research is the part on reverse engineering that

is pertaining to generating class diagram from source code. The reverse engineering

PTTA
PERP

UST
AKA
AN
TUN
KU T

UN
AMI
NAH

5

concept here is explained in terms of transformation of object oriented source codes

to UML diagrams using the suggested approach. The application scope of this

approach will be the C# source code only. The main focus will be on using

asynchronous threading. Asynchronous concept in C# programming language

explained the running of two or more operations in different contexts (thread) so they

can run concurrently and do not block each other (Mazhou, 2010). The application

accepts codes that are free from any syntax errors. The parser that will be built

according to the suggested approach is limited only to extracting class diagram, not

compiling the source code. The input will be source code of C# language and the

output will be a UML class diagram. Four relationships between classes and

interfaces will be extracted: Generalizations, realizations, association, and

dependency. The proposed approach’s aim is to compare the time needed in

generating a class diagram with and without using the multi-threading technique. The

proposed approach is applied on three case studies in order to prove its validity. The

three case studies are C# programs that contain several code files. Each code file

contains a set of classes and interfaces. The time of execution is calculated for each

case study and then listed in the testing results table.

1.5 Expected outcomes

The main aim of this research is to prove that using multi-threading technique in

generating class diagram from source code is more efficient than generating it

without using the multi-threading technique. The basic criterion of comparison is

time. A tool will be developed to compare the time needed in generating class

diagram with and without using multi-threading technique. This research outcome

will be a tool that generates a class diagram from source code in two ways: i) Using

multi-threading technique, ii) Without using multi-threading technique. The

developed tool generates a class diagram that contains the following items: classes,

interfaces, relationships, class attributes, and class operations. The developed tool

still needs some enhancements in order to be able to extract class diagram using all

possible rules of code writing.

PTTA
PERP

UST
AKA
AN
TUN
KU T

UN
AMI
NAH

6

1.6 Chapter summary

In this chapter the overall aim of the research which is generating UML class

diagram from an implementation phase using reverse engineering is explained.

Further illustrate on how the aims can be achieved, objectives are identified. The

scope and the limitation in this chapter clearly narrow the broad area of research.

This chapter also gives an introduction and a brief overview of the reverse

engineering concept and its advantages. Followed by the expected outcomes and the

organization of the dissertation. The next chapter will cover the literatures related to

this research.

1.7 Dissertation outline

The rest of this dissertation is organized into the following chapters. Chapter 2

presents a review of several aspects that are related to this research, starting from

general ideas of reverse engineering to UML and class diagram. After that, a

description of C# programming language is introduced. This is followed by a

description of multi-threading technique and how to apply it practically. Finally,

some of the related works of this research are presented. Chapter 3 contains a

description of the proposed methodology that will be followed and used in order to

achieve this research objective. This chapter starts with an overall view of the

proposed methodology. After that, a description of the methodology in brief details

are presented. The methodology is composed of a set of vital steps. Each step takes

the result of the previous step and provides a new input for the next step. While in

Chapter 4, design and implementation phases of this research are introduced. The

design part will be about how to generate a class diagram in general. Then the

proposed work is presented. The proposed work consists of mainly two parts:

generating a class diagram from source code using multi-threading technique, and

generating a class diagram without using multi-threading technique. After design, the

last two parts of this research are presented, namely tool implementation and testing.

In the first section which is implementation, a detailed description of the proposed

approach is to be presented. Implementation explanation contains also some

important parts of the written code. The second section will be about tool testing.

PTTA
PERP

UST
AKA
AN
TUN
KU T

UN
AMI
NAH

7

Testing is done on three case studies that will be explained in the testing section. The

main concentration in testing will be the time of execution. This means processing

time that is needed to generate a class diagram with and without using multi-

threading technique. Chapter 5 provides a summary of this research, which will be

presented along with possible future development.

PTTA
PERP

UST
AKA
AN
TUN
KU T

UN
AMI
NAH

2 CHAPTER 2

LITERATURE REVIEW

2.1 Introduction

This chapter covers the literatures related to this research. First of all, an overview of

reverse engineering and its derivatives with its main activities are presented. After

that, the description of UML as a prominent modelling language is given. Then, the

class diagram and its relationship types are discussed. Next, an overview of C#

language is given. This is followed by a description of multi-threading technique and

how to apply it practically. After that, some of the related works of this research are

presented. Finally, summarizes the topics discussed in this chapter.

2.2 Reverse engineering derivatives

In order to understand clearly about reverse engineering, one must distinguish it from

other terms such as restructuring and reengineering. These processes are described in

Figure 2.1. In the following sections, a description of each term is presented.

PTTA
PERP

UST
AKA
AN
TUN
KU T

UN
AMI
NAH

9

Figure 2.1: Reverse engineering derivatives (Nelson, 1996)

2.2.1 Reverse engineering

Reverse engineering in software engineering is the opposite of forward engineering,

which is offered to indicate a traditional software development process (Nelson,

1996). The traditional software development often includes four phases: analysis,

design, implementation, and testing. Through those phases, software is developed

from the high level of abstraction (architecture) to the lowest level of abstraction

(source code). Therefore, reverse engineering is the process which analyzes software

system and then represents it at the higher levels of abstractions. The following

definitions which is given by Chikofsky & Cross (1990) is widely used: "Reverse

engineering is the process of analyzing a subject system to identify the system’s

components and their interrelationships."

2.2.2 Restructuring

Restructuring is the transformation from one representation form to another form

within the same abstraction level (Chikofsky & Cross 1990). An example would be

to modify the source code in order to make the structure of the source code more

PTTA
PERP

UST
AKA
AN
TUN
KU T

UN
AMI
NAH

10

clear. This process only takes place in one abstraction level and its result is the

representation of the system in another form depending on the purpose intended by

the software engineers, but still at the same abstraction level, while reverse

engineering deals with many abstraction levels and its result is the representation of

the system at a higher level of abstraction. In addition, restructuring generates

changes in the structure of the system, while reverse engineering only examines the

structure of the system and does not make any changes in the system.

2.2.3 Reengineering

Reengineering is the examination, alteration, and modification of the system in order

to regenerate a new system with new functions in another representation form

(Chikofsky & Cross 1990). This term is wider than the reverse engineering term

because it often includes both reverse engineering and forward engineering. The first

phase in the reengineering process is using reverse engineering to understand the

structure of the old system and represent it at a higher level of abstraction. At that

time, some changes were generated at any level of abstraction. The second phase is

developing the new system based on the new requirements or functions which have

just been recently generated. This phase follows the steps in forward engineering.

Hence, reengineering generates a new system with different features and

functionalities from an old system, while reverse engineering does not make any

changes in the features and functionalities of the system. Reverse engineering is a

process of examination, not a process of replication.

2.3 Reverse engineering activities

According to Tilley (1998), the reverse engineering process includes three main

activities: data gathering, knowledge management, and information exploration.

2.3.1 Data gathering

One cannot understand about the structure of a software system at higher levels of

abstraction without having the necessary information pertaining to the subject.

PTTA
PERP

UST
AKA
AN
TUN
KU T

UN
AMI
NAH

11

Therefore, data gathering is often the first step, where several types of data about the

system are gathered such as the source code, comments in source code,

documentation about the system, and experts’ comments. Three techniques of data

gathering which are widely used are: system examination, document scanning, and

experience capture (Tilley, 1998).

2.3.1.1 System examination

System examination is often classified into two constricting ways: static examination

and dynamic examination. Static examination concentrates on analyzing the source

code. A source code parser is often used to analyze the source code and then transfers

it to abstract syntax trees (Bellay & Gall, 1998). In contrast, the dynamic

examination focuses on the executing system. It is useful for understanding

component-based systems in which the static examination cannot apply because

components do not come with the source code. Analyzing systems when they are

running helps us to have the knowledge about the interactions between components

in the system, types of messages and protocols used, and the external recourses used

by the system (Tilley, 1998).

2.3.1.2 Documents scanning

Document scanning is the process of gathering documents, another type of

information about the system. For example, comments in the source code are useful

sources for understanding the system. However, automatic analysis of the comments

is more difficult as they may be isolated in the source code or they do not provide

explicit information about the source code when they are not updated. Therefore,

comments are often analyzed manually by the experts (Tilley, 1998).

2.3.1.3 Experience capturing

Experience capturing is the approach to obtain knowledge about the system by

interviewing the people who developed the system. The knowledge is very useful in

PTTA
PERP

UST
AKA
AN
TUN
KU T

UN
AMI
NAH

12

understanding the system. However, it is difficult to find out those that developed the

system (Tilley, 1998).

2.3.2 Knowledge management

Knowledge management in reverse engineering is used to structure gathered data

into a conceptual model of the application domain called a domain model. It includes

three main steps namely knowledge organization, knowledge discovery, and

knowledge evolution (Tilley, 1998).

2.3.3 Information exploration

According to Tilley (1998), the majority of program understanding takes place

during information exploration, and it is arguably the most important of the three

canonical reverse engineering activities. Data gathering is required to begin the

reverse-engineering process. Knowledge management is needed to structure the data

into a conceptual model of the application domain. But the key to increased

comprehension is exploration because it facilitates the iterative refinement of the

hypotheses. The process of information exploration includes three activities:

navigation, analysis, and presentation (Tilley, 1998).

2.4 Unified Modelling Language (UML)

UML is defined by (OMG, 2008) as: "a graphical language for visualizing,

specifying, constructing and documenting the artifacts of software systems". UML

was originally derived from object modeling languages of three leading object-

oriented methods: Booch, Object Modeling Technique (OMT), and Object-Oriented

Software Engineering (OOSE). It is more compatible to be used to model object-

oriented software systems.

Object Management Group (OMG) has approved UML in November 1997 as

the standard notation for object-oriented analysis and design, and it became the

industry standard for modeling objects and components. At the end of 2000, the

OMG has issued a Request For Information (RFI) with regard to UML 2.0.

PTTA
PERP

UST
AKA
AN
TUN
KU T

UN
AMI
NAH

69

REFERENCES

Agile. (2014). UML 2 Class Diagrams: An Agile Introduction. Retrieved on

07/03/2014,from: http://www.agilemodeling.com/artifacts/classDiagram.htm.

Aziz, N., Karla Morris and Salvatore Filippone (2013). Extracting UML class

diagrams from object-oriented Fortran: ForUML. Proceedings of the 1st

International Workshop on Software Engineering for High Performance

Computing in Computational Science and Engineering (SE-HPCCSE

'13). New York: ACM, pp 9-16.

Barnes, A., Ryan Fernando, Kasuni Mettananda and Roshan Ragel (2012).

Improving the Throughput of the AES Algorithm with Multi core Processors.

Proceeding of the 7th International Conference on Industrial and Information

Systems (ICIIS). Chennai: IEEE.pp.1-6.

Bell, and James R. (2003). Threaded code. Communications of the ACM, ACM, 16

(6), pp. 370–372.

Bellay, B. and Gall, H.(1998). An evolution of reverse engineering tool capabilities.

Journal of Software Maintenance: Research and practice, 10(5), pp. 305-33.

Britannica (2010). Sequence Programming Britannica Online Encyclopedia.

Retrieved on 13/05/2014 from:

 http://www.britannica.com/EBchecked/topic/1086517/sequence.

Boehm, B.W.(1991). Software Engineering Economics. 1
st
 edition.USA: Prentice

Hall.

Butenhof, D.R. (1997). Programming with POSIX Threads. 1
st
 edition. Boston,

USA: Addison-Wesley.

Canfora, G. and Penta, M. (2007). New Frontiers of Reverse Engineering. Future of

Software Engineering (FOSE '07). Minneapolis: IEEE. pp. 326-341.

Chikofsky, E. and Cross, J. I. (1990). Reverse engineering and design recovery: A

taxonomy. IEEE Software, 7(1), pp. 13-17.

Dennis, A., Wixom, B.H. and Roth, R.M. (2006). Systems Analysis and Design. 3rd

edition. Hoboken: John Wiley & Sons, Inc.

Doan, T.(2008). An evaluation of four reverse engineering tools for C++

applications. University of Tampere: Master’s Dissertation.

PTTA
PERP

UST
AKA
AN
TUN
KU T

UN
AMI
NAH

http://www.agilemodeling.com/artifacts/classDiagram.htm
http://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=52

70

Dobing, B. and Parsons, J. (2006). How UML is used. Communications of the ACM -

Two decades of the language-action perspective, ACM, 49(5).pp. 109-114.

Ertl, A. what is threaded code. Retrieved on 11/03/2014 from:

 http://www.complang.tuwien.ac.at/forth/threaded-code.html#what

Fjeldstad, R.K., and Hamlen W.T. (2001). Application Program Maintenance Study:

Report to Our Respondents. Tutorial on Software Maintenance. IEEE

Computer Society Press.pp. 13 – 30.

Goetz, B. (2002). Java theory and practice: Thread pools and work queues. IBM

DeveloperWorks. Retrieved on 12/03/2014 from:

http://www.ibm.com/developerworks/java/library/j-jtp0730/index.html.

Grossman, M., Aronson, J. E. and McCarthy, R. V. (2005). Does UML make the

grade? Insights from the software development community. Information and

Software Technology, 47(6), pp. 383-397.

Harvey, B.,Wright, M. (1999). Simply scheme: introducing computer science. 2nd

edition. California: MIT Press.

Ibrahim, N.(2013). An Enhanced UML Consisteccy Cecker Using Logical Approach.

Universiti Tun Hussein Onn Malaysia: Ph.D. Dissertation.

Ibrahim, R. & Yong, T.K. (2008). ReSeT: Reverse Engineering System

Requirements Tool. World Academy of Science, 14(4), pp.238-241.

Jain, A., Sooner, S, and Holkar, A. (2010). Reverse engineering: Extracting

information from C++ code. Proceedings of the 2nd International Conference

on Software Technology and Engineering (ICSTE). San Juan: IEEE. pp. 154 -

158 .

Justia (2011). Obfuscated hardware multi-threading. Retrieved on 31/03/2014, from

http://patents.justia.com/patent/8621186.

Justia. (2013). Multi-threading Computers. Retrieved on 11/03/2014 from:

http://patents.justia.com/patent/20140047219.

Keschenau, M. (2006). Reverse Engineering of UML Specifications from Java

Programs. Proceedings of the 19
th

 companion annual conference on Object-

oriented programming systems (OOPSLA '04).New York:ACM,pp 326-327.

Matzko, S., Clarke, P. J., Gibbs, T. H., Malloy, B. A., Power, J. F., and Monahan, R.

(2002). Reveal: a tool to reverse engineer class diagrams. Proceedings of the

Fortieth International Conference on Tools Pacific: Objects for internet,

PTTA
PERP

UST
AKA
AN
TUN
KU T

UN
AMI
NAH

http://www.complang.tuwien.ac.at/forth/threaded-code.html#what
http://www.ibm.com/developerworks/java/library/j-jtp0730/index.html
http://www.ibm.com/developerworks/java/library/j-jtp0730/index.html
http://patents.justia.com/patent/8621186
http://patents.justia.com/patent/20140047219

71

mobile and embedded applications (CRPIT'02). Australia: ACM, 10(4),

pp.13-21.

Mazhou.(2010). What are actually synchronous/asynchronous operations

(C# 5.0 Series). Retrieved on 05/07/2014, from

http://www.codeproject.com/Articles/127660/What-are-actually-synchronous

asynchronous-operati.

Mivule, K. (2011). Difference between Sequential and Parallel Programming.

Retrieved on 12/05/2014 from:

https://mivuletech.wordpress.com/2011/01/12/difference-between-sequential-

and-parallel-programming/.

Miller, R. (2003). Practical UML : A Hands-on Introduction for developer.

Retrieved on 05/03/2014, from http://dn.codegear.com/article/31863.

MSDN. (2014). Microsoft Corporation. Retrieved on 08/03/2014, from:

http://msdn.microsoft.com/en-us/default.aspx.

Nagappan, S.D. (2008). A reverse engineering uml modeling tool. University of

Malaya: Master’s Dissertation.

Nelson, M.L. (1996). A survey of reverse engineering and program comprehension,

A Survey of Reverse Engineering and Program Comprehension. Computing

Research Repository - CORR.pp.1- 8.

Nishadha. (2012). Class Diagram Relationships in UML with Examples. Retrieved

on 08/03/2014, from:http://generately.com/blog/diagrams/class-diagram-

relationships/.

OMG (2008). Unified Modeling Language UML, http://www.omg.org/-spec/UML/,

2008. OMG Formally Released Versions of UML and ISO Released Versions

of UML. p. 20,40, 116.Pages 212-229.

Ramasubbu, S. (2001). Reverse Software Engineering Large Object Oriented

Software Systems using the UML Notation. Virginia Polytechnic Institute and

State University: Master’s Dissertation.

Rohitha. (2011). Understanding UML Class Diagram Relationships. Retrieved on

07/03/2014, from: http://generately.com/blog/diagrams/understanding-the-

relationships-between-classes/.

Rugaber,S. (1992). Program Comprehension for Reverse Engineering. Workshop on

AI and Automated Program Understanding.

Scott, W. A. (2009). UML 2 Class Diagrams. Retrieved on 07/03/2014, from

PTTA
PERP

UST
AKA
AN
TUN
KU T

UN
AMI
NAH

https://mivuletech.wordpress.com/2011/01/12/difference-between-sequential-and-parallel-programming/
https://mivuletech.wordpress.com/2011/01/12/difference-between-sequential-and-parallel-programming/
http://dn.codegear.com/article/31863
http://msdn.microsoft.com/en-us/default.aspx
http://libra.msra.cn/Journal/299/corr-computing-research-repository
http://libra.msra.cn/Journal/299/corr-computing-research-repository
http://creately.com/blog/diagrams/class-diagram-relationships/
http://creately.com/blog/diagrams/class-diagram-relationships/
http://creately.com/blog/diagrams/understanding-the-relationships-between-classes/
http://creately.com/blog/diagrams/understanding-the-relationships-between-classes/
http://en.wikipedia.org/wiki/Scott_W._Ambler
http://www.agilemodeling.com/artifacts/classDiagram.htm

72

 http://www.agilemodeling.com/artifacts/classDiagram.htm

Sparks, G. (2001). Database Modelling in UML. Retrieved on 06/03/2014, from

http://www.methodsandtools.com/archive/archive.php?id=9.

Sutton, A. and Maletic, J.I. (2007). Recovering UML class models from C++: A

detailed explanation. Information and Software Technology. 49(3), pp 212-

229.

Thaara, S. (2002). Thread Pool Pattern. Retrieved on 12/03/2014 from:

http://www.scribd.com/doc/240669342/Thread-Pool-Pattern.

Tilly, S.T.(1998). A reverse engineering environment framework. Technical report

CMU/SEI, Hanscom: Software Engineering Institute.

Tonella, P. (2005). Reverse Engineering of Object Oriented Code. Proceeding of the.

27th International Conference on Software Engineering ICSE 2005.IEEE

.pp.724- 725.

Tonella, P., and Potrich, A. (2001). Reverse engineering of the UML class diagram

from C++ code in presence of weakly typed containers. Proceeding of

International Conference on Software Maintenance. Florence: IEEE.pp. 376

– 385.

Tokhi, Mohammad, A. H. and Mohammad, H. S. (2003). Parallel computing for real-

time signal processing and control, Advanced textbooks in control and signal

processing.43(11),pp 1545-1568.

Vidgen, R. (2003). Requirements analysis and UML use cases and class diagrams.

Computing & Control Engineering Journal.14(2).pp.12 - 17.

Vinita; Amita Jain and Devendra K. Tayal. (2008). On reverse engineering an object-

oriented code into UML class diagrams incorporating extensible mechanisms.

ACM SIGSOFT Software Engineering Notes. 33(5), pp.1-9.

Wiki. (2007). Thread pool. Retrieved on 12/03/2014 from:

http://en.wikipedia.org/w/index.php?title=File:Thread_pool.svg.

Wiki. (2014). Class diagram relationships examples. Retrieved on 06/03/2014, from:

 http://en.wikipedia.org/wiki/Class_diagram

Xmipp (2010). ParallelProgramming. Retrieved on 12/05/2014 from:

http://xmipp.cnb.csic.es/twiki/bin/view/Xmipp/ParallelProgramming.

PTTA
PERP

UST
AKA
AN
TUN
KU T

UN
AMI
NAH

http://www.agilemodeling.com/artifacts/classDiagram.htm
http://www.methodsandtools.com/archive/archive.php?id=9
http://www.scribd.com/doc/240669342/Thread-Pool-Pattern
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=10409
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=10409
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=7668
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=7668
http://en.wikipedia.org/w/index.php?title=File:Thread_pool.svg

