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Abstract

Introduction
Capturing the nature of spatio/spectro-temporal data (SSTD) is not an easy task

nor is understanding the relationships between the different data dimensions such as

between temporal and spatial, temporal and static, and between temporal variables

themselves. In the past it has been normal to separate the SSTD dimensions and

only take one dimension of the data and convert it into a static representation and

model from there. While other dimensions are either ignored or modelled separately.

Although this practice has had significant outcomes, the relationships between data

dimensions and the meaning of that relationship defined be the data is lost and can

result in inaccurate solutions. Any relationship between the static and dynamic or

temporal data has been under analysed, if analysed at all, dependent upon the field

of study.

Purpose of the research
The purpose of this research is to undertake the modelling of dynamic data with-

out losing any of the temporal relationships, and to be able to predict likelihood of

outcome as far in advance of actual occurrence as possible. To this end a novel com-

putational architecture for personalised (individualised) modelling of SSTD based on

spiking neural network methods (PMeSNNr), with a three dimensional visualisation

of relationships between variables is proposed. The main architecture consists of a

spike time encoding module; a recurrent or evolving 3D spiking neural network reser-

voir (eSNNr); an output module for either classification or prediction based around

another evolving spiking neural network; and a parameter optimisation module. In

brief, the architecture is able to transfer spatio-temporal data patterns from a mul-

tidimensional input stream into internal patterns in the eSNNr. These patterns are

then analysed to produce a personalised model for either classification or prediction

dependent on the specific needs of the situation.
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Method
The architecture described above was constructed using MatLab in several individ-

ual modules linked together to form NeuCube (M1). This is the first iteration of

the NeuCube architecture and as such remains relatively basic in its operations.

The value of results obtained have also been analysed against the backdrop of the

limitations of existing global and personalised methods with respect to SSTD. The

following list briefly outlines the constituent components of the current version of

NeuCube (M1) that was developed by our team.

• An encoding method employing Address Event Representation (AER) algo-

rithm.

• A recurrent 3D SNN reservoir based on the Liquid-State Machine (LSM) con-

cept and implementation of Spike Time Dependent Plasticity (STDP) as a

learning rule.

• Innovative input variables mapping techniques utilizing Factor Graph Match-

ing (FGM) algorithm.

• A predictive personalised modelling method for early event prediction.

• Various selections of evolving spiking neural network classifiers including a

novel extended dynamic evolving spiking neural network method for multi-

NN classification and regression problems called deSNNs_wkNN.

• A grid-search optimisation module and visualisation of the spiking network

activities specifically on a group and personalised level.

This methodology has been applied to two real world case studies. Firstly, it has

been applied to data for the prediction of stroke occurrences on an individual ba-

sis. This data consists of static variables (personal and geographic), and dynamic

variables (climate, pollution and geomagnetic daily readings). Secondly, it has been

applied to ecological data on aphid pest abundance prediction. The aphid data con-

sists of only dynamic climate and geomagnetic variables. Two main objectives for

this research when judging outcomes of the modelling are accurate prediction and

to have this at the earliest possible time point. These two objectives are applied
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to both case studies. Decisions of accuracy and dependability of the prediction are

dependent upon the data available and the desired precision of the prediction.

Product
This study has found a number of interesting results.

• Firstly that using spiking neural networks for personalised modelling is more

suitable for analysing and modelling SSTD dynamically compared with con-

ventional machine learning methods that use global modelling, thus verifying

the validity of this approach and that this methodology has also achieved a

better results in terms of prediction accuracy.

• Secondly, using this approach early event prediction is possible where the time

length of the training data (samples, collected in the past) and the test data

(samples used for prediction) can be differentiate. Early event prediction is

very crucial when solving important ecological and social tasks and disease risk

prediction described by temporal-and/or spatial-temporal data, such as stroke

risk prediction, pest population burst prevention, natural disaster warning,

and financial crisis prediction.

• Thirdly, that these methods take all features without the need to filter noise

and still produce good results.

• Fourthly, the innovative input variables mapping techniques enable dynamics

mapping of SSTD variables and assist in revealing unknown spatio-temporal

patterns and its associations.

• Lastly, the visualisation of spiking network activities enables deep network

learning of the spiking patterns. This assists us in understanding the spiking

neurons connection and relationships. Furthermore this visualisation reveals

new knowledge about the SSTD that deserves to be investigated further.

Conclusions
The implications of these findings are not insignificant in terms of health care man-

agement and environmental control. As the case studies utilised here represent
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vastly different application fields, it reveals more of the potential and usefulness of

NeuCube for modelling data in an integrated manner. This in turn can identify

previously unknown (or less understood) interactions thus both increasing the level

of reliance that can be placed on the model created, and enhancing our human un-

derstanding of the complexities of the world around us without the need for over

simplification. The visualisation of the cube inside NeuCube enables the researcher

to gain valuable insight into not just the connectedness of variables but how this

change dynamically as new data is presented. A simulation of what the real situa-

tion is more likely to be like in its construction, connection and the nature of the

interaction between variables, i.e. does the current neuron promote the next neuron

or inhibit it. The findings were published in five (5) papers and two (2) more have

been recently submitted.
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Chapter 1

INTRODUCTION

“All our knowledge has its origins in our perceptions.”

- Leonardo da Vinci

1.1 Background

Spectro, spatio-temporal data (SSTD) is collected daily in many domains and is

challenging to analyze because there are spatial and temporal connections amongst

the data that need to be addressed accordingly. In them reside hidden patterns and

new undiscovered knowledge that may solve numerous problems. Processing SSTD

increases the data mining task complexity because it includes both temporal and

spatial dimensions [Andrienko 2006].

In the domain area of bioinformatics, the concerns of manipulating SSTD to

represent knowledge is crucial because it could lead to the notion of improving

and saving lives either for humans, animals or the environment. In health related

problems such as predicting stroke and heart attack occurrences, the analysis of

SSTD will help in predicting the risk of these diseases by learning the temporal

relations in the data for prevention purposes.

Analyzing SSTD related to ecological problems could help in restoration of the

ecological balance that is sometimes disturbed or changed due to environmental

factors. In the geological domain, SSTD pattern learning could assist in disaster

management and may save lives.
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1.2. Motivation 2

1.2 Motivation

The development of personalised decision support systems has the potential to be

the tool for better understanding health related problems like chronic disease includ-

ing stroke, cardiovascular disease, cancer and countless unsolved medical problems.

For instance, health related problems like chronic diseases are the major cause of

death in almost all countries and it is projected that 41 million people will die of

a chronic disease by 2015 unless urgent action is taken [Organization 2005]. Vari-

ous initiatives have been taken to control the progression of symptoms in chronic

disease patients such as clinical prevention using combination of drug therapy and

calculation of a person’s risk by referring to an existing risk chart which takes into

account several risk factors. Additional initiatives involve the use of statistical meth-

ods to generate a survival model and to investigate several risk factors associated

with chronic disease, such as the Cox Proportional Hazards Model [Lumley 2002],

[Wolf 1991], [Yusuf 1998]. There are also several machine learning applications that

used global models for prediction of a person’s risk or the outcome of a certain

diseases [Khosla 2010], [Das 2003], [Anderson 2006], [Levey 1999]. According to

[Shabo 2007] there is evidence that prediction and treatment based on global mod-

els are only effective for some patients (about 70% average) leaving the remaining

30% of patients without proper treatment which could worsen their condition and

possibly lead to their death. A global model is derived from all available data for

the target and then applied to any new patient anywhere at any time. While it may

give 70% to 80% average accuracy over the whole population, it still may not be

suitable for many individuals [Kasabov 2010b]. Hence, using global models for pre-

diction of a person‘s risk is inadequate, based on the assumption that every person

or individual has their own unique characteristics.

Personal human health is defined by many factors such as the food they eat,

their lifestyle, life stage, ethnic origin, previous growth and development, gender,

environment influences, genetic differences, allergies, diseases and many other im-

portant factors [Lange 2007], including information regarding space (such as region

and distance) and temporal constraint (for a period of time before the event) and re-

lations between them. An example of stroke related studies, a simplified framework

of the causal relations between climate-related factors and stroke was developed to
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1.3. Research Objectives, Research Questions and Hypothesis 3

clarify the relations between environmental factors, lifestyle and a clinical risk factor

with stroke occurrences.

Consequently, the emerging approach utilized to solve the problem is person-

alised modelling, where a model is created for every single new input vector of

the problem space based on its nearest neighbours using a transductive reasoning

approach [Kasabov 2007a]. However, there are very few efficient methods for the

analysis of such complex data and discovery of complex spatio-temporal patterns,

especially for on-line and real time applications.

1.3 Research Objectives, Research Questions and

Hypothesis

Global modelling applied in most conventional machine learning methods has proven

its effectiveness in the past, however it has a limited capability in producing mod-

els that fit each person or each case in the problem space since global modelling

takes all available data in a problem space and produce a single general function

[Kasabov 2007b]. The produced model is applied to a new individual regardless

of their unique personal features. Common global modelling algorithms include

Support Vector Machine (SVM) [Vapnik 1963] and Multilayer Perceptron (MLP)

[Hornik 1989]. Therefore, in the case of stroke or any medical condition, personal-

ized modelling methods are preferred for the reason that they can produce a model

for each individual based on their personal features.

In numerous incidents, unforeseen events occur when triggered by the cascading

effect of specific spatio, spectro temporal pattern interaction amongst multiple fea-

tures over a period of time such as in the case of stroke [Feigin 1997], [Low 2006], eco-

logical problems [Lankin 2001], geological disaster, financial crisis and many more.

Such events can be avoided or the aftermath minimized if the risk is predicted early

enough. However classical personalized modelling methods such as k -Nearest Neigh-

bour (kNN) [Fix 1951] and weighted k -NN (wkNN) [Dudani 1976] are only suitable

when classifying static vector based data, not SSTD.

The concept of spiking neural networks (SNN) has been considered as an emerg-

ing computational technique for the analysis of spatio-temporal datasets. This is
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1.3. Research Objectives, Research Questions and Hypothesis 4

because SNN has the potential to represent and integrate different aspects of in-

formation dimensionality such as time and space; and has the ability to deal with

large volumes of data using trains of spikes [Kasabov 2013]. SNN models such as

Spike Response Models (SRM) [Gerstner 1995], Leaky Integrate-and-Fire Models

(LIFM) [Gerstner 2002], Evolving Spiking Neural Network (eSNN) [Wysoski 2006]

and Izhikevich models [Izhikevich 2004] have been successfully utilized in several

classification tasks. They process input data streams as a sequence of static data

vectors, ignoring the potential of SNN to simultaneously consider space and time

dimensions in the input patterns. It can be viewed that SNN has more poten-

tial and is more suitable for SSTD pattern recognition utilizing emerging new

methods such as reservoir computing [Maass 2002], Probabilistic Spiking Neuron

Model [Kasabov 2010a], Extended Evolving SNN (eeSNN) [Hamed 2011], Recurrent

Evolving SNN (reSNN) [Schliebs 2010], Spike Pattern Association Neuron (SPAN)

[Mohemmed 2011] and Dynamic Evolving SNN (deSNN) [Dhoble 2012].

The main goal of this research is to develop a novel framework of an information

method and system to analyse SSTD for personalised knowledge interpretation and

prognosis. The main objective is to develop a generic modelling environment to

analyse SSTD (medical, brain, financial, geological or ecological data, etc.) using

personalised modelling and spiking neural network methods. Accordingly, the per-

sonalised modelling method called the Integrated Method for Personalised Modelling

(IMPM) introduced by [Kasabov 2010b] will be incorporated into the system. The

proposed framework will be applied to case studies related to stroke occurrences and

ecological problems.

1.3.1 Research Objectives

Based from the above considerations, the research will achieve the following objec-

tives:

1. To review the literature concerning how personalised modelling based on spik-

ing neural networks method can best predict possible outcomes for a new

person/event using historical SSTD.

2. To design a framework that can analyse and learn from SSTD and produce a
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1.3. Research Objectives, Research Questions and Hypothesis 5

model that facilitates new knowledge discovery and provides better decision

support.

3. To develop software systems that analyse, learn and visualise the pattern re-

siding in SSTD.

4. To verify the proposed method and system for personalised decision support

utilising case studies related to a chronic disease and an ecological problem.

1.3.2 Research Questions

The main research question here is:

Can personalised modelling based on spiking neural networks methods be devel-

oped to learn SSTD and produce a better personalised knowledge representation and

risk prognosis for a person/event?

More specifically, several sub questions can be derived from this:

1. How to select an optimal set of features, neighbourhood, model and parameters

for SSTD using spiking neural network methods?

2. How to encode the real value continuous SSTD into a train of spikes?

3. How to develop a recurrent 3D spiking neural networks reservoir for learning

the continuous train of spikes?

4. How to utilise spiking neural networks modeling for improved classification

accuracy without filtering any noise?

5. How to visualise complex SSTD feature correlation and interaction patterns

for better interpretation of knowledge?

6. How to obtain the earliest time point for best prediction of the risk of an event

occurring in the future for an individual?

7. How to improve the spiking neural networks method for regression problems?
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1.4. Thesis Structure 6

1.3.3 Hypothesis

We hypothesise that the new method for a given complex problem,

1. utilising an individualised (personalised) modelling approach, where an indi-

vidual model is created for every new individual, will be more accurate than

a global modelling approach, where a single model is derived from all existing

data to predict at earliest time a future event can be accurately predicted for

any individual regardless of their specific static variable values.

2. that analysing all data collectively without data pre-processing or filtering

proves that NeuCube is robust to noise.

3. the visualisation of interaction patterns amongst the features will assist in

the learning process. The network of connections created during the learning

process can be visualised and the relationship between features can be com-

prehended through the understanding of changes in the connection weights of

neurons.

1.4 Thesis Structure

• Part 1 - Literature Review

– Chapter 2 outlines the fundamentals of data modelling and pattern recog-

nition approaches, including comparison between inductive modeling and

transductive modeling approaches. This is followed by a more detailed

discussion of global, local and personalized modeling approaches includ-

ing conventional methods related to these approaches.

– Chapter 3 introduces the Spiking Neural Networks as the new paradigm

to process SSTD. Similarity between biological neurons and artificial neu-

rons is reviewed. This chapter also outlines a brief history of SNN and its

components including neuron models, data encoding, learning algorithms,

working memories, reservoir computing and is followed by a review of sev-

eral types of new SNN model and applications for spatio-temporal pattern

recognition such as eSNN, eeSNN, reSNN and deSNN. This chapter also

reviews a new paradigm of integrated system for brain data modelling.
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1.4. Thesis Structure 7

• Part 2 - Proposed Novel PMeSNNr for SSTD and Applications

– Chapter 4 discusses the motivation behind the development of this novel

evolving personalised modelling and spiking neural network framework

and system (PMeSNNr). Each component of the framework will be out-

lined; the encoding module, the unsupervised learning module, the su-

pervised learning module and optimization module. New method that

combines deSNNs with the wkNN method for Multi-NN classification

and regression are proposed in this chapter.

– Chapter 5 discusses the implementation of the PMeSNNr framework

called NeuCube M1 and demonstrates the system’s capability for pre-

dictive modelling; and added functionality to assist in deep learning and

knowledge discoveries.

– Chapter 6 reviews on the stroke disease including modifiable factors and

external factors that influence the stroke occurrences. This chapter will

also review previous studies regarding the influence of environmental fac-

tors that may cause brain stroke in humans. For application purposes, the

New Zealand stroke occurrences case study will be used to evaluate the

feasibility of the PMeSNNr in analysing and modelling real-value SSTD.

This proposed method is used to do predictive personalised modelling for

stroke risk prediction using temporal environmental data. The experi-

mental study aims to produce an individual model for each subject and

obtain the earliest time point to best predict the risk of a stroke event

occurring in the future for an individual. Several groups of individuals

are chosen according to season and personal information. Comparative

experiments with conventional machine learning methods are also carried

out. Discovery on new personalised knowledge will be further discussed

based on visualisation generated during the modelling process.

– Chapter 7 reviews the ecological problem relating to aphids pest infes-

tation in certain areas of New Zealand. The case study will used for

classification application using NeuCube. Comparative experiments with

conventional machine learning methods are also carried out.
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1.5. Thesis Contribution 8

• Part 3 - Conclusion and future direction

– Chapter 8 summarizes the findings and contributions of this research

proposed further future developments. For example; combining ontology-

based systems for more organized and systematic modelling of SSTD, to

enhance NeuCube M1’s optimisation strategies, dealing with variability

in data and multiple type of data.

1.5 Thesis Contribution

This is the first comprehensive study of utilising personalised modelling based on

spiking neural network methods resulting in several contributions to the areas of

both information science and bioinformatics.

During the course of this study, several novel contributions have been applied

including analysing the problems related to global modelling and conventional per-

sonalised modelling for SSTD and their respective potential solutions; development

of a prototype system based on the PMeSNNr framework called NeuCube M1 which

comprises an encoding method employing Address Event Representation (AER) al-

gorithm; a recurrent 3D SNN reservoir based on the Liquid-State Machine (LSM)

concept and implementation of Spike Time Dependent Plasticity (STDP) as a learn-

ing rules; an innovative input variables mapping techniques utilizing Factor Graph

Matching (FGM) algorithm; a predictive personalised modelling method for early

event prediction; various selections of evolving spiking neural network classifiers in-

cluding a novel extended dynamic evolving spiking neural network method called

deSNNs_wkNN for multi-NN classification and regression problems; a grid-search

optimisation module and visualisation of the spiking network activities specifically

on a group and personalised level. All these contributions are described and applied

in Chapters 4, 5, 6 and 7. The methods have been applied to two real world case

studies which are stroke occurrences prediction and aphid pest population predic-

tion.

This study has found a number of interesting results. Firstly is that using spik-

ing neural networks for personalised modelling is more suitable for analysing and

modelling SSTD dynamically compared with conventional machine learning meth-
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1.5. Thesis Contribution 9

ods that use global modelling, thus verifying the validity of this approach and that

this methodology has also achieved a better results in terms of prediction accu-

racy. Secondly, using this approach, early event prediction is possible where the

time length of the training data (samples, collected in the past) and the test data

(samples used for prediction) can be differentiate. Early event prediction is very cru-

cial when solving important ecological and social tasks and disease risk prediction

described by temporal-and/or spatio-temporal data, such as stroke risk prediction,

pest population burst prevention, natural disaster warning, financial crisis predic-

tion. Thirdly, that these methods take all features without the need to filter noise

and still produce good results. Fourthly, the innovative input variables mapping

techniques enable dynamics mapping of SSTD variables and assist in revealing un-

known spatio-temporal patterns and its associations. Lastly, the visualisation of

spiking network activities enables deep network learning of the spiking patterns.

This assists us in understanding the spiking neurons connection and relationships.

Furthermore this visualisation reveals new knowledge about the SSTD that deserves

to be investigated further.

NeuCube revealed hidden associations amongst environmental features in stroke

prediction case study where the associations of environmental factors suggest there is

influence on stroke occurrences. We also discovered that there is a cascading effect,

unique to each individual depending on their exposure to certain environmental

factors within a specific time window. This study has also successfully and accurately

predicted the risk of stroke occurrences at an earlier time point then produces models

and demonstrates that analysing all the features collectively can accurately predict

stroke risk. The second case study on ecological data in aphid pest abundance

prediction, verified NeuCube’s capability in modelling any type of SSTD. The result

has been an earlier prediction of aphid pest abundance to assist in timely agricultural

management.

This study gives light to future research directions for personalised modelling

based on SNN with the improvements in the NeuCube architecture for SSTD pro-

cessing and personalised profiling. The main results of this study emphasise the new

discoveries that have been published as conference papers and will further published

as journal papers.
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Chapter 2

PERSONALISED MODELLING:

A REVIEW

“The measure of intelligence is the ability to change.”

- Albert Einstein

2.1 Introduction

This chapter reviews the concept of the personalised modelling method. However

before the personalised modelling method can be discussed in detail, the basis of

data modelling and pattern recognition approaches need to be addressed briefly.

Inductive and transductive inference approaches are two of the most basic theories

for data modelling and the main idea behind global, local and personalised modelling

methods.

2.2 Inductive and Transductive Inference

Approaches

Inductive and transductive inference approaches are commonly used to build models

and systems for data analysis and pattern recognition [Kasabov 2009b]. Inductive

inference approaches will create a single function (a model) based on historical data

to predict a future event [Levey 1999]. In the inductive inference approach the model

is created based on the analysis of the entire problem space (global space) without

taking into account the information related to the new data vector. Neglecting

information from the new data vector raises an issue about the relevance of global
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2.2. Inductive and Transductive Inference
Approaches 14

modelling to produce an accurate model or solution to a specific problem. Figure

2.1 illustrates the inductive inference approach. The engine will train on historical

data and create a global function to model incoming new data. Popular inductive

inference approaches are Support Vector Machine (SVM) [Cortes 1995], Multi-Layer

Perceptron [Hornik 1989] and Linear Regression.

Figure 2.1: Inductive inference approach.

The transductive inference was introduced by [Vapnik 1998] as a solution to solve

the issue raised by the inductive inference engine. This approach creates a model

based on observations of a specific group of data vectors and only focuses on one

point in the space (local space). Transductive inference takes into account the ad-

ditional information of the new data vector to find relevant information for analysis

purposes. This in the end will create many different specific models (functions), to

test every new data vector. Figure 2.2, illustrates a basic process of transductive

inference.

Figure 2.2: Transductive inference approach.

Several types of advanced transductive inference model have been build such as

Transductive RBF Neural Network with Weighted Data Normalization - TWRBF

[Song 2004] and Transductive Neural Fuzzy Inference System with Weighted Data
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2.3. Global, Local and Personalised Modelling 15

Normalization - TWNFI [Song 2006] and successfully applied for medical decision

support and time series prediction. As a result the transductive inference approach is

considered the most suitable approach toward building a learning model for the ap-

plication of personalised decision support, especially in medical application or event

prediction. Since individual personal features of a patient or event are important to

consider for future prediction or treatment decision.

2.3 Global, Local and Personalised Modelling

2.3.1 Introduction

In computational intelligence modelling and learning, the main techniques are global,

local or personalised modelling which are derived from inductive and transductive

inference approaches. Global modelling produces a model from the data for the

whole problem space. The model represents the data by a single function whereas

local modelling creates a set of models from data where each model represents a

cluster of the whole problem space. These models can be a set of functions or set of

rules. Personalised modelling on the other hand utilises transductive reasoning to

create a specific model for each data point (a patient, an event) within a localised

problem space.

2.3.2 Global Modelling

Support vector machine (SVM) also called support vector networks is one of the

most popular algorithm used for global modelling. It is very efficient in classifying

static and vector-based data using few training samples. However, SVM is not

suitable to analyse high-dimensional dataset like SSTD.

2.3.2.1 Support Vector Machine

Support vector machine is widely used for classification and regression problems.

Originally the SVM algorithm was created by Vladimir Vapnik in 1963 [Vapnik 1963]

then new SVM with ‘soft margin’ approach was introduced by Vladimir Vapnik and

colleagues in 1995 [Cortes 1995]. After that, several other extended versions has been
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2.3. Global, Local and Personalised Modelling 16

developed such as Least Square SVM (LSSVM) [Suykens 1999], Linear Proximal

SVM [Fung 2001], Wavelet SVM [Zhang 2004], Smooth SVM (SSVM) [Lee 2001]

and the robustness of SVM still inspired researchers to extend the algorithm, current

examples like SVM-Wavelet Transform [Mohammadi 2015], Cluster SVM (CSVM)

[Harris 2015] and many more. Since the active development of the SVM algorithms,

a group of researcher developed a library for SVM called LibSVM [Chang 2011] to

support users in implementing their application using SVM.

Fundamentally SVM is based on the concept of decision planes that define deci-

sion boundaries. The decision planes (hyperplanes) are like clear gaps that separate

a set of objects that belong to different classes, the distance from the hyperplane

to the data is maximized (also known as the maximum margin hyperplane). For

example for a linear SVM (illustrated in Figure 2.3), the set of objects either belong

to class RED or BLUE. The line represents the linear decision surface that separates

between RED and BLUE class. When a new object (black circle) is added to the

problem space, it will be mapped to the features space of these two planes either in

RED or BLUE. Depending on where it is mapped, it will be classified as RED when

it falls in the left plane and BLUE if it falls in the right plane.

Figure 2.3: Overview of simple SVM transformation (mapping).

In mathematical terms, linear SVM can be defined as follows. Given a set of

data that can be linearly separated:

D = {xi, yi | x ∈ Rp, y ∈ {−1, 1}}ni=1 = size (2.1)

where D is the training data, xi is a p-dimensional vector, n is a set of data points,
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2.3. Global, Local and Personalised Modelling 17

and yi is either -1 or 1, indicating which class xi belongs to.

Maximum margin hyperplane is found using Equation 2.2, to separate the two

classes.

w.x− b = 0 (2.2)

where w the normal vector to the hyperplane, b is a scalar and . denotes the dot

product.

Two hyperplanes can be selected to separate the data, where there no data points

lies between them and try to maximize their distance. The region bounded by the

hyperplanes is called the margin and is described by the following equations.

w.x− b = 1 (2.3)

and

w.x− b = −1 (2.4)

Constraints must be added to keep the data point from falling inside the margin

and to classify each sample into a specific class. The constraints are:

w.xi − b <= −1 (2.5)

where xi belong to first class, and

w.xi − b >= 1 (2.6)

where xi belong to second class.

Figure 2.4 shows the overview of linear SVM.

Figure 2.4: Overview of simple linear SVM. The samples on the margin are called

support vectors.
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2.3. Global, Local and Personalised Modelling 18

To overcome the issue of inseparable data where some data cannot be linearly

separated, nonlinear SVM is introduced by applying kernel approach to find maxi-

mum margin hyperplanes. The data is initially transformed into high dimensional

space a using nonlinear kernel function, then the standard algorithm is used to find

the maximum margin hyperplanes [Boser 1992]. Several types of kernel can be uti-

lized in SVM which include linear, polynomial, radial basis function (RBF) and

sigmoid.

• Linear: K(xi, xj) = xi.xj

• Polynomial: K(xi, xj) = (γxi.xj + C)d

• Radial Basis Function:K(xi, xj) = exp(−γ | xi.xj |2)

• Sigmoid: K(xi, xj) = tanh(γxi.xj + C)

where K(xi, xj) = δ(xi).δ(xj). The kernel function represents a dot product of input

data points mapped into the higher dimensional feature space by transformation δ.

Gamma (γ) is an adjustable parameter of certain kernel function.

One of the disadvantages of SVM is that it has a high computational bur-

den because of the quadratic programming, making it slow in the training phase

[Horváth 2003]. Another drawback is the choice of kernels and kernel parameter

determination suitable for the data under investigation. Kernel models are sensitive

to over-fitting the model selection criterion [Cawley 2010]. Domain knowledge is

also hard to incorporate in SVM, especially new information about the new sample.

2.3.3 Local Modelling

The local modelling approach was created to overcome the drawbacks of global

modelling where it is more adaptable to the new data vector, and to create a model

to represent the cluster within which the new data vector resides. This has made

local modelling methods more suitable to analyse individual samples than global

modelling. Evolving Classification Function (ECF) is one example of local modelling

methods and is built based on the concept of Evolving Connectionist System (ECOS)

[Kasabov 2002].
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2.3. Global, Local and Personalised Modelling 19

2.3.3.1 Evolving Classification Function (ECF)

ECOS are systems that evolve in time through interaction with the environment; it is

adaptable to changes in the system through new incoming information [Kasabov 1998b].

Evolving Classification Function (ECF) was developed based on ECOS principles

has four layers of neurons (nodes) which represent input variables, fuzzy member-

ships functions, a set of data centers in input spaces and classes [Kasabov 2002].

ECF methods exhibit fast incremental on-line and off-line learning and have dy-

namic environments that allocate rule nodes to help users understand and verify the

model’s functionality. Figure 2.5 illustrates clusters of nodes in the ECF environ-

ment, based on the information of new input vector (ni) ECF will produce clusters

of rule nodes that are identified by its center (oj), radius (rj) and class (C).

Figure 2.5: An example of evolving clusters in ECF.

2.3.4 Personalised Modelling

Personalised modelling is different from global modelling because it will create a

specified model for each new data vector based on the samples that are closest to

the new data vector in the dataset. Other than advance transductive methods listed

above, methods that can be categorised as personalised modelling are k -Nearest

Neighbour (kNN), weighted k -Nearest Neighbour (wkNN) and weighted-weighted

k -Nearest Neighbour (wwkNN).
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2.3. Global, Local and Personalised Modelling 20

2.3.4.1 k-Nearest Neighbour(kNN)

The k -Nearest Neighbour (kNN) method is a supervised learning algorithm that has

been successfully used for classifying sets of samples based on nearest training sam-

ples in a multi-dimensional feature space, and was originally proposed by [Fix 1951].

The basic idea behind the kNN algorithm is depicted in Figure 2.6:

Figure 2.6: kNN modelling.

The kNN modelling:

• Firstly, a set of pairs features (e.g. (x1, y1),...(xn, yn)) are defined to specify

each data point, and each of those data points are identified by the class labels

C = c1, ...cn.

• Secondly, a distance measure (di) is chosen (e.g. Euclidean distance, or Man-

hattan distance) to measure the similarity of those data points based on all

their features.

• Finally, the k -nearest neighbours are found for a target data point by analyzing

similarity and using the majority voting rule to determine which class the

target data point belongs to.

2.3.4.2 Weighted k-Nearest Neighbour (wkNN)

The weighted k -Nearest Neighbour (wkNN) is designed based on the transductive

reasoning approach, which has been widely used to evaluate the output of a model

focusing solely on an individual point of a problem space using information related to

the individual [Vapnik 1998]. In the wkNN algorithm, each single vector requires a
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local model that is able to best fit each new input vector rather than a global model,

thus each those new input vectors can be matched to an individual model without

taking into account any specific information about existing vectors. In contrast

to the kNN algorithm, the output values of a new input vector (yi), is not only

dependent upon its output values of k -nearest neighbour vectors (yj), but also upon

the weight (wj) that is decided by the distance between existing vectors and the new

input vector. This is the basic idea behind the wkNN algorithm. Mathematically

wkNN can be described as:

yi =
k∑

j=1

wjyj
wj

(2.7)

where weight (wj) is calculated based on the distance of k -nearest neighbour vectors

to new vector using the following equation:

wj = [max(d)− (dj −min(d))]/max(d) (2.8)

The vector d = [d1, d2, ...dNi ] is defined as the distances between input vector

(xi) and the k nearest neighbour (x1, y1) for j = 1 to k. The Euclidean distance

measured between new vector (xi) and neighbouring vector (xj) is calculated based

on:

dj = sqrt[
V∑
l=1

(xi,l − xj,l)2] (2.9)

where V is the number of the input variables, xi,l and xj,l are the values of the

variables in vector xi and xj, respectively. An example of wkNN implementation

in a classification problem that consists of two classes, represented by 0 (class 1)

and 1 (class 2) as output class labels. If the new vector (x1) belongs to class 2, this

means it has “personalised probability”. To classify the new vector (x1) into classes,

there has to be probability threshold selected Pthr, so if the output value yi ≥ Pthr

then the new vector (x1) will be classified into class 2. For example the probability

threshold value is set to 0.5 and if the output value is 0.75 which is more than the

probablity threshold, the new vector will be classified into class 2 not class 1 where

the output value should fall within the range of 0 ≤ yi ≤ 0.5.
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2.3.4.3 Weighted-Weighted k-Nearest Neighbour (wwkNN)

The weighted-weighted k -Nearest Neighbour (wwkNN) is a novel personalised mod-

elling algorithm which was proposed by [Kasabov 2007b]. The basic idea behind

this algorithm is the output of each new input vector is measured dependent upon

its k -nearest neighbours and also upon the distance between the existing vectors and

the new input vectors, and the power of each vector which is weighted according

to its importance within the sub-space (local space) to which the new input vector

belongs. The new Euclidean distance measure is calculated using this equation:

dj = sqrt[
V∑
l=1

(ci,l(xi,l − xj,l))2] (2.10)

where ci,l is the coefficient weighing variables xl in the neighbourhood of xi. The

coefficient value is calculated using the Signal-to-Noise Ratio (SNR) procedure that

ranks each variables across all vectors in the neighbourhood set Di of Ni vectors.

Ci = (ci,1, ci,2, ..., ci,V ) (2.11)

ci,l = Sl/sum(Sl) for l = 1, 2, · · · , V where (2.12)

Sl = abs(M
(class1)
l −M (class2)

l /(Std
(class1)
l + Std

(class2)
l ) (2.13)

M
(class1)
l and Std(class1)l is the mean value and standard deviation of variable xl for

all vectors in Di that belong to class 1. The new distance measurement that assigned

weight to all variables according to its importance is the new feature in wwkNN that

differentiates it from wkNN. Weighting variables in personalised models is also used

in TWNFI models [Kasabov 2007b], [Song 2006].

2.4 Integrated Method for Personalised Modelling

Personalised modelling framework for gene data analysis and biomedical applications

was proposed by [Kasabov 2010b]. The framework is called Integrated Method for
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Personalised Modelling (IMPM) (refer to Figure 2.7). The methodology of IMPM

is described in Table 2.1 below:

Table 2.1: The IMPM Methodology

1: Collect, filter and store data D .

2: Compile new input vector x of a new person.

3: Select a subset of relevant variables, Vx of the the new input vector x from

a global variables set V .

4: Select k-nearest neighbour vectors Kx from the global data set D and forming

a neighbourhoodDx of similar samples to x using the variables from Vx

to define the similarity.

5: Rank the Vx variables within the local neighbourhood Dx in order of

importance to the outcome, obtaining a weight vector Wx.

6: Train and optimise a local prognostic/ classification model Mx, that has a set

of model parameters Px, a set of variables Vx and local train/test data set Dx.

7: Generate a functional profile Fx for the person x using the selected set

Vx of variables, along with the average profiles of the samples from Dx that belong

to different outcome classes, e.g., Fi and Fj .

Figure 2.7: Functional block diagram of IMPM [Kasabov 2010b].

2.5 Chapter Summary

Global modelling applied in most conventional machine learning methods has proven

its effectiveness in the past, however it has a limited capability in producing mod-
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els that fit each person or each case in the problem space since global modelling

takes all available data in a problem space and produces a single general function

[Kasabov 2007a]. The produced model is applied to a new individual regardless

of their unique personal features. Therefore, in the case of specific medical condi-

tion e.g. stroke, heart attack and environmental events e.g. earthquake, volcano

eruption; personalised modelling methods are preferred for the reason that they can

produce a model for each individual/event based on their personal features.
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