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InP based InAlAs/InGaAs pseudomorphic High Electron Mobility Transistors 

(pHEMTs) have shown  outstanding performances, which makes them  prominent in high 

frequency mm-wave and submillimeter-wave applications. However, conventional 

InGaAs/InAlAs pHEMTs  have major drawbacks, i.e., very low breakdown voltage and high 

gate leakage current. These disadvantages degrade device performance, especially in 

Monolithic Microwave Integrated Circuit (MMIC) low noise amplifiers (LNAs). The 

optimisation of InAlAs/InGaAs epilayer structures through advanced bandgap engineering 

together with gate length reduction from 1 m into deep sub-μm regime is the key solution 

to enabled high breakdown and ultra-high speed, low noise pHEMT devices to be fabricated. 

Concurrently, device modelling plays a vital  role in the design and analysis of pHEMT 

device and circuit performance. Physical modeling becomes essential to fully characterise 

and understand the underlying physical phenomenon of the device, while  empirical 

modelling is significant in circuit design and predicts device’s characteristic performance.  

In this research, the main objectives to accurately model the DC and RF 

characteristics of the two-dimensional (2D) physical modelling for sub-μm gate length for 

strained channel InAlAs/InGaAs/InP pHEMT has been accomplished and developed in 

ATLAS Silvaco. All modelled devices were optimised and validated  by experimental 

devices which were fabricated at the University of Manchester; the sub-micrometer devices 

were developed with T-gate using I-line optical lithography. The underlying device physics 

insight are gained, i.e, the effects of changes to the device’s physical structure, theoretical 

concepts and its general operation, hence a reliable pHEMT model is obtained. The kink 

anomalies in I-V characteristics was reproduced and the 2D simulation results demonstrate 

an outstanding agreement with measured DC and RF characteristics.  

The aims to develop linear and nonlinear models for sub-μm transistors and their 

implementation in MMIC LNA design is achieved with the 0.25 m 

In0.7Ga0.3As/In0.52Al0.48As/InP pHEMT. An accurate technique for the extraction of empirical 

models for the fabricated active devices has been developed and optimised using Advance 

Design System (ADS) software which demonstrate excellent agreement between 

experimental and modelled DC and RF data. A precise models for MMIC passive devices 

have also been obtained and incorporated in the proposed design for a single and double 

stage MMIC LNAs in C- and X-band frequency. The single stage LNA is designed to 

achieve maximum gain ranging from 9 to 13 dB over the band of operation while the gain is 

increased between 20 dB and 26 dB for the double stage LNA designs.  A noise figure of 

less than 1.2 dB and 2 dB is expected respectively, for the C- and X-band LNA designed 

while retaining stability across the entire frequency bands.  

 Although the RF performance of pHEMT is being vigorously pushed towards 

terahertz region, novel devices such as Resonant Tunnelling Diode (RTD) are needed  to 

support future ultra-high speed, high frequency applications especially when it comes to 

THz frequencies. Hence, the study of physical modelling is extended to quantum modelling 

of an advanced In0.8Ga0.2As/AlAs RTD device to effectively model both large size and 

submicron RTD using Silvaco’s ATLAS software to reproduce the peak current density, 

peak-to-valley-current ratio (PVCR), and negative differential resistance (NDR) voltage 

range. The simple one-dimensional physical modelling for the RTD devices is optimised to 

achieve an excellent match with the fabricated RTD devices with variations in the spacer 

thickness, barrier thickness, quantum well thickness and doping concentration.  
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1 CHAPTER 1  

 

INTRODUCTION 

 

 

1.1 Overview 

The High Electron Mobility Transistor (HEMT) and Pseudomorphic High Electron 

Mobility Transistor (pHEMT) are Field Effect Transistors (FET). HEMTs operate in 

a similar manner to MESFET but extend the performance of FET by taking 

advantage of the large band discontinuities in the band structures of the constituent 

semiconductor materials. Basically, HEMTs structure consists of compositional 

compound materials that are lattice-matched to the substrate. However in the 

pHEMT structure, the channel material is so thin that the crystal lattice stretches 

“pseudomorphically” to occupy the spacing of the nearby material. Consequently, it 

allows better performance due to the larger bandgap difference compared to the 

lattice-matched structure. The formation of quantum well and the two dimensional 

electron Gas (2DEG) in the channel provides HEMT with a high electron mobility 

and high carrier density, leading to low noise figures and higher cut-off frequency 

[1].  

 

Amongst all material systems in the III-V compound semiconductors, the 

InGaAs/InAlAs material system has the most desirable band structure and transport 

properties (carrier mobility, saturation velocity, etc).  This material system offers 

pHEMT devices with high electron sheet charge density and excellent carrier 

confinement in the channel, resulting in superior electron transport translating into 

higher transconductance (gm), current gain cutoff frequency (fT) and lower noise 

figure (NF). Hence,  the InGaAs/InAlAs has become an advanced material system 

for high-speed, high-frequency and even in the lower frequency range of 0.9 GHz 

and 1.9 GHz that are used  for mobile communication [2].  Current development of 

InP based InAlAs/InGaAs HEMTs have demonstrated excellent high frequency and 

high-gain performance [3, 4], i.e. a cut-off frequency above 625 GHz [5], and they 
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dominate the microwave and millimetre wave applications and low noise amplifiers 

(LNAs) fields [6, 7, 8].   

 

The superior performance of InP based InAlAs/InGaAs pHEMTs as compared to the 

GaAs-based HEMT [9] makes them the most preferred candidates for the active 

devices selection and also an important aspects in the fabrication of Monolithic 

Millimeter Wave Integrated Circuit (MMIC) LNAs. The design of MMIC LNAs 

itself has emerged from the design for very low frequency, low noise figure, very 

high power, etc. For over a decade, the advancement in millimeter wave 

semiconductor technologies has been strongly driven by military requests such as  

sensor/radar application [10]. There are also an increasing number of wireless civil 

applications, i.e telecommunication-, sensors- and navigation-systems that are ever 

demanding for more and more low-noise and power devices at high frequencies. 

Undoubtedly, these systems could be realised with the outstanding combination of 

high frequency operation and low noise performance of the InGaAs/InAlAs/InP 

pHEMT devices. 

 

 

1.2 Project Motivation and Objective 

Recent advances in Metal Organic Chemical Vapour Deposition (MOCVD) and 

Molecular Beam Epitaxy (MBE) epitaxial growth techniques for III-V compound 

semiconductor systems have made it possible to grow extremely high-quality III-V 

heterojunction structures. Current development of InAlAs/InGaAs HEMTs have 

demonstrated excellent high cutoff frequency of 625 GHz up to 1 THz and high-gain 

performance [3, 4] and dominate the millimeter wave applications, i.e., low cost 

LNA [3] and Ka-band MMIC LNAs [6].  The previous work conducted by the 

Manchester group on  novel pHEMT devices [11,12] and hence the MMIC LNA 

development for the SKA was initiated at the SKA-low frequency (L-band) [13, 14] 

using a one micron gate length device.   

 

With the device size scaled down to the nanometer regime and various epitaxial 

layer structures being designed and optimized, physical modeling becomes essential 

to fully characterize and identify the underlying physical phenomenon of these 
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devices. Semiconductor modelling based on physical models [15, 16] can prove to be 

very helpful in the development of such transistors. The empirical modelling [17,18] 

is also required to accurately model and estimate the performance analysis the linear 

and nonlinear behaviour of the designed circuits , i.e. LNA over a range of frequency 

and characterize the device technological process. The development and verification 

of device simulation tools have become desirable as to compare statistically analysed 

measured data. With the aid of modelling, the time and cost of device fabrication and 

characterization undoubtedly can be considerably reduced  [19].  This research aims 

to employ the advances of modelling tools, SILVACO simulation package and 

Advanced Design System (ADS) to appreciate the underlying device physics of the 

device towards the device output characteristics, to reproduce both the DC and RF 

device characteristic, and investigate the correlation of the device physics to the 

output characteristics. The initial work of the device modelling of 1 m gate device 

will be extended to the deep submicrometer gate regime and aim to develop models 

for new transistors and their implementation in the design and fabrication of 

advanced integrated circuits using the extensive facilities available at the University 

of Manchester. 

 

Despite of the high cut-off frequency achievements reported for InP pHEMT in the 

terahertz region, i.e. [20] and [21],  novel devices are needed which are able to 

support future ultra-high speed, high frequency applications; especially when it 

comes to sub-THz or THz frequencies (operating at room temperature). The 

Resonant Tunnelling Diode (RTD) might well be the solution to this problem with 

its ability to provide a very high fundamental frequency well into the THz region. 

Therefore, the study of physical modelling is extended to quantum modelling for an  

advanced InGaAs/AlAs RTD device. The purpose of this extended work is to 

effectively model the RTD using Silvaco’s ATLAS software; particularly with 

respect to the peak current density, peak-to-valley-current ratio (PVCR), and 

negative differential resistance (NDR) voltage range.  
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1.3 Scope of thesis  

This thesis presents the physical and empirical modelling of advanced 

InGaAs/InAlAs pHEMT for the development of low noise amplifier (LNA) designs 

to fulfil the requirements of the (8.0 to 12 GHz) band of the Square Kilometre Array 

(SKA) [22]. During the preliminary work, the transistor used in this project 

employed a 1μm gate length with multiple sized gate widths. The modelling and 

circuit designs are then progressed with the submicrometer gate InGaAs/InAlAs 

pHEMT to facilitate higher frequency applications. The transistors were in-house 

fabricated at the University of Manchester and the measurement of the transistors is 

carried out at room temperature. The proposed design is a Monolithic Microwave 

Integrated Circuit (MMIC) that combine high performance with low cost and avoids 

expensive and labor intensive external components (especially discrete inductors 

used for the input of the LNA). In this work, the advances in the InGaAs/InAlAs 

material system is fully utilised in the submicron gate length pHEMT and the study 

is extended into a simpler one dimensional structure of a two terminal device, the 

InGaAs/AlAs resonant tunnelling diode (RTD).  

 

 

1.4 Thesis Outline 

The organization of the remainder of this thesis is as follows: 

 

Chapter 2 provides insights into the fundamental theory of semiconductor device 

physics for heterojunctions and HEMTs structure background.  This chapter deals 

with the literature review of the basic concepts of III-V compound semiconductors. 

The development of different III-V FET devices in relation to the advancement of 

material engineering and their contribution to RF applications are presented. A 

comparison between the different FET structures (MESFET, HEMT and pHEMT) 

and material systems (InGaAs-AlGaAs, InGaAs-InAlAs) and the advantage of InP-

based pHEMT for low noise and high speed applications is outlined. The discussion 

continues with an extensive study of the physics and operation of the devices. At the 

end of the chapter, some important physical parameter extraction methods are 

highlighted, as these methods are used throughout this work. 
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Chapter 3 highlights the significance of device simulations, introduces the 

simulation tools used in the development of the physical modelling performed in this 

work. Detail procedures of the device modelling of pHEMTs structure are presented, 

i.e. meshing, structure and parameter definitions, and physical models, and 

numerical methods.  A detail explanation of the concepts of device modelling and 

current-transport equations used in this project is presented.  

 

Chapter 4 briefly explains the fundamental models that are used in the simulation 

work for the small signal model.  In this chapter a physically based model for various 

samples of the in-house fabricated pHEMTs has been developed, providing an 

insight to the internal device behaviour. The DC and RF characteristics of the two 

dimensional physical device simulations are compared with the experimental results 

which were fitted and analysed. The modelled device simulation shows excellent 

agreement with the experimental results. 

 

Chapter 5 explains the empirical model parameters and device modelling steps for 

the pHEMT device. The empirical models for three different epitaxial layers with 

various device sizes and gate length are presented. The agreements between the 

modelled and measured parameter are discussed and analysed.  An optimized 

pHEMT model which is used in the LNA design and a brief study on the device’s 

noise characteristics are presented at the end of this chapter. The results from device 

empirical modelling provides a guide for active device selection for LNA circuit 

designs.  

 

Chapter 6 begins with the background of Monolithic Microwave Integrated Circuit 

(MMIC) and its advantages in the integrated circuit roadmap.  This is followed by an 

outline of the LNA theoretical concept which is used to examine the requirements of 

a complete system design. The target specifications of the MMIC LNA design are 

then addressed; the performance constraints and compromises that arise in the design 

of circuit topologies, biasing networks and matching configurations are also 

discussed. The design and analysis of the single input single-ended output, single 

and double stage LNAs are presented using all of the criteria discussed in Chapters 

6. The LNAs are designed to match a 50   input and output impedance. At the end 
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of this chapter, the target specifications attained from the simulation of the single- 

and double-stage MMIC LNA for C-band and X-band frequency range are presented 

and discussed. The layout designs of these LNA circuits are also developed and 

presented.   

 

Chapter 7 demonstrates a one-dimensional physical modelling for various sample of 

large-siz and submicrometer In0.8Ga0.2As/GaAs Resonant Tunneling Diode (RTD) 

device. The concept, operation principle and the applications of RTD in Terahertz 

(THz) region are explained at the beginning of the chapter. The modelling of the two 

terminal RTD device focuses on the DC analysis, which is mainly to reproduce the I-

V characteristics of experimental devices, namely the negative differential resistance 

(NDR), NDR peak voltage, VP (voltage at peak current) and the peak current 

density(IP). The model optimisation based of the device structure, i.e. spacer layer, 

barrier layer and quantum well layer thicknesses are also studied.  The modelled 

device simulation for DC analysis shows excellent agreement with the experimental 

results. 

  

Finally, Chapter 8 summarises the work that has been discussed in the earlier 

chapters and suggests some potential future research to further extend the work 

described in this thesis. 
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2 CHAPTER 2 

 

THEORY AND BACKGROUND OF PSEUDOMORPHIC HIGH 

ELECTRON MOBILITY TRANSISTOR 

 

 

2.1 Introduction 

For the past decades, the power of electronics has been driven by an increase in the 

density of silicon complementary metal–oxide–semiconductor (CMOS) transistors 

and the progression to their logic performance. The semiconductor chips are 

becoming more powerful, smaller and more economical and energy efficient. 

However, as the scaling of silicon transistor is now reaching its limits, the III-V 

compound semiconductors are now becoming the key choice to continue the 

microelectronic revolution for high speed and high frequency devices. The 

outstanding electron transport properties and frequency response of these materials 

might be central to the development of  nanometre-scale logic transistors [23]. For 

example, the electron mobility in InGaAs and InAs HEMT is more than 10 times 

higher than in silicon at a comparable sheet density. In the early development, 

HEMTs, also known as Modulation Doped Field Effect Transistors (MODFETs), 

Two-dimensional Electron Gas Field Effect Transistors (TEGFETs), Heterojunction 

Field Effect Transistors (HFETs) or Selectively Doped Heterostructure Transistors 

(SDHTs) was originally developed for high speed applications and these devices 

were discovered to exhibit a very low noise figure. This is related to the nature of the 

two-dimensional electron gas (2DEG) and the fact that there are less electron 

collisions in the channel [6].  

 

The basic fundamental which govern the development of HEMTs are explained in 

this chapter. An introduction to heterojunction, their band structures, formation of 

quantum wells, carrier confinement and 2DEG will be discussed. The HEMT and 

pHEMT structures and their operational principles are summarized. Some of the 

applications of pHEMTs and works concentrating  in the pHEMTs design in the 

literature are also highlighted in  later sections.   
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2.2  Hetero Junction Structure 

Generally, HEMT structures are based on epitaxially grown layers with different 

compositions and energy band gaps. When these different semiconductor layers are 

brought together, they form heterojunctions. The principle parameters for 

heterostructures are the difference of energy bandgaps (Eg) and the lattice constant 

(a) for the two semiconductor materials. Figure 2.1illustrates the lattice constant and 

energy gap parameters for various III-V material system that are of interest to the 

work presented here. These parameters play a very important role in the advanced 

bandgap engineering to optimize  device characteristics. 

 

 

Figure 2.1 The energy gap of III–V compounds and ternary derivatives 

as a function of lattice constant [24] 

 

The ternary compound semiconductor materials that are lattice matched to GaAs and 

InP substrates are shown. For example, the AlAs, AlxGa(1-x)As, (for all values of x) 

and In0.48Ga0.52P is lattice match with GaAs.  Consequently, the InxGa(1-x)As and 

InxAl(1-x)As are lattice matched to InP only at a single fixed mole fraction (x ~0.52). 

Practically, the materials chosen must have a very close lattice constant to minimise 

the disturbance at the heterointerface. However, for various materials that have 

slightly different lattice constant, Vegard’s law is used to synthesize new 
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semiconductor materials to match the size of the crystal lattices. Therefore, the 

resulting lattice constant and the energy band gap can be approximated using 

Vegard’s law [21, 22] as in Equation 2.1, where x is the mole fraction and AZ and BZ 

are the binary compound lattice constant and band gap values, 

 

 
𝑎𝑎𝑙𝑙𝑜𝑦 = 𝑥AZ + (1 − 𝑥)BZ Equation 2.1 

 

The lattice constant and band-gap energy for various GaAs and InP-based materials 

are given in Table 2.1  [26,27]. Enhancements in epitaxial growth techniques have 

enabled the possibility of growing lattice mismatched heterostructures [27]. In this 

situation, the lattice atoms change abruptly between the two semiconductor materials 

with dissimilar energy band gaps and lattice constants [24, 25]. This growth 

technique is known as pseudomorphism and will be discussed in the next section. 

 

Table 2.1 Lattice constant and energy band gap of common III-V binary and                                     

ternary compound semiconductors at 300 K [26, 27] 

Alloy Lattice constant, 

a0 (Å) 

Band gap, 

Eg (eV) 

GaAs 5.653 1.42 

AlAs 5.660 2.16 

InAs 6.058 0.37 

InP 5.869 1.35 

In0.53Ga0.47As 5.869 0.76 

In0.52Al0.48As 5.869 1.48 

 

 

For an InP substrate, the lattice matched In0.52Al0.48As is usually used as a buffer as it 

has a large band gap, resulting in improved insulation; and In0.53Ga0.47As as a 

channel (due to its high mobility) followed by In0.52Al0.48As as a barrier (large Ec). 

Over the years, the state-of-art compound semiconductor technology has moved 

from GaAs channel (lattice constant =5.64Å) to InxGa1-xAs/InP channels (5.87Å) 

which motivated by the higher saturation velocity in these materials [20].  
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2.2.1  Lattice Matched and Pseudomorphic Material System 

Ideally, heterostructures are formed by semiconductors with the same crystal 

structures and the same lattice constant. A HEMT structures grown with the same 

lattice constant are referred to as lattice matched HEMTs, i.e. In0.53Ga0.47As and 

In0.52Al0.48As (lattice matched to InP).  Structures with slightly different lattice 

constant are known as Pseudomorphic HEMTs (pHEMTs). In modern epitaxial 

growth techniques, the thickness of lattice mismatched layers is kept within a certain 

critical thickness limit and the deposited layer must be very thin to avoid defect or 

dislocation formation [23, 29]. This new layer is called “pseudormorphic” as it alters 

its original crystal structure and physical properties, i.e., InGaAs-InAlAs, 

AlGaAs/InGaAs.  For lattice mismatched, the atoms at the hetero-interface have to 

slightly adjust their positions in order for them to conserve the geometry of the 

lattice. The adjustments of the atomic position will result in a small strain at the 

interface.  The critical thickness of grown epilayer (hC) and the strain () is given by 

Equation 2.22 and  Equation 2.3. Respectively, aS and aL denotes the lattice constant 

for substrate and grown epilayer.    

  

ℎ𝐶 =
𝑎𝑆

2𝜀
 Equation 2.2 

  

 𝜀 =
𝑎𝐿−𝑎𝑆

𝑎𝑆
 Equation 2.3 

 

 

The Figure 2.2 illustrates the crystal formation of the binary and ternary compound 

semiconductor material.  In Figure 2.2 (a), aL is in lattice matched with aS, and hence 

the over-layer and base material atoms at the crystal interface are not required to 

adjust their positions relative to each other. However, lattice mismatched in the 

semiconductor may result in defects due to dislocations, as shown in Figure 2.2 (b). 

Above the critical thickness, the excessive strain energy is released by the formation 

of dislocations where some of the bonds are missing or extra bonds appear. These 

dislocations adversely affect the electrical characteristics of a device by creating 

localized states which act as traps for the charge carriers [29].  Materials that are not 

in lattice matched or have different inter-atomic lattice spacing are known as 

pseudomorphic i.e., AlGaAs and InGaAs. The formation of pseudomorphic crystal 
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structure under compressive and tensile strains are shown in Figure 2.2 (c) and 

Figure 2.2 (d) respectively. When aL is larger than aS, the resultant relaxed material 

is under compressive strain whereas the atoms are under tensile strain when aL is 

smaller than aS.  
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Figure 2.2  Conceptual formation of (a) lattice matched, (b) lattice mismatched                            

with defects, and pseudormophic layers (c) Compressive and (d) Tensile strain 
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2.2.2 Band Discontinuity   

Energy band discontinuity is the most important aspect of heterojunctions. It is an 

interesting features i.e., in HEMTs which can be used to modify  the transport of 

charge carriers. The junction of two semiconductors with a difference in energy 

bandgaps results in an abrupt change in the energy band diagram of the 

heterostructure. Figure 2.3 shows the energy band diagram of two isolated 

semiconductors with the notation given by: EC and EV indicating conduction and 

valence bands, Eg1 and Eg2  the energy band gap for material A and material B, χ is 

the electron affinities, EF is the Fermi level, Ec the electron affinity, and  Ec and 

Ev representing the conduction and valence band discontinuities between the two 

materials [33].  

 

 

(a)                                                 (b)                                        

Figure 2.3  Energy Band Diagrams for wide and narrow bandgap semiconductor 

(a) before and (b) after contact 

 

The energy-band model of an ideal, abrupt heterojunction, was first established by 

Anderson [34]. The model assumes that Ec was equal to the difference in electron 

affinities,  as shown in Equation 2.4 and Equation 2.5. 

 

𝐸𝑐 = χ1 − χ2 Equation 2.4 

  

𝐸𝑣 = (𝐸𝑔2 − 𝐸𝑔1) − (χ1 − χ2)  Equation 2.5 
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Similarly, this could be written using Equation 2.6 and Equation 2.7,  

 

 

𝐸𝑔 = 𝐸𝑔1 − 𝐸𝑔2  Equation 2.6 

  

𝐸𝑔 = 𝐸𝑐 + 𝐸𝑣  Equation 2.7 

 

In most semiconductors, the band gap engineering is very effective to attain 

numerous amounts of junction discontinuities. A larger band discontinuity, EC will 

lead to better carrier confinement and therefore a higher carrier concentration at the 

2-DEG interface. The InAlAs/InGaAs/InP material system has many significant 

advantages over the AlGaAs/GaAs [24] or AlGaAs/InGaAs/GaAs material systems. 

The EC between In0.52Al0.48As/In0.53Ga0.47As layer in InAlAs/InGaAs/InP material 

system (> 0.5eV) is higher than the EC between Al0.2Ga0.8As/In0.15Ga0.85As layer (~ 

0.3 eV)  in the pseudomorphic AlGaAs/InGaAs/GaAs material system.  The band 

discontinuity is even lower for Al0.30Ga0.70As/GaAs hereterojunction where the EC  

is only 0.24 eV [16]. This property, therefore makes In0.52Al0.48As/In0.53Ga0.47As/InP 

a prominent and suitable candidate for high-speed devices application with greater 

flexibility over carrier control at the junction. 

 

 

2.2.3 Quantum Well and 2-DEG 

When a thin layer of (~ 100 Å) of low band gap semiconductor material (e.g. GaAs) 

is sandwiched between two similar high band gap semiconductors (e.g. AlGaAs), a 

Quantum Well (QW) can  be formed in the heterostructure.  Such a heterojunction 

boundary will experience discontinuities at the edges of the conduction band and 

valence band with a QW generated for the carriers (electrons and holes) as illustrated 

in Figure 2.4. The dopants in the high band gap layers can  supply the carriers to the 

quantum well. When the bottom of the quantum well is below the Fermi level, the 

high energy donors will go down to the well, hence creating a Two Dimensional 

Electron Gas (2DEG). This is shown in Figure 2.4 (c). The electron is free to move 

parallel to the interface, and so is quasi two-dimensional. However, the electrons in 

the quantum well is unable to move in the direction perpendicular to the interface, 
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i.e. the crystal growth direction [35]. Careful choice of the materials and alloy 

compositions allow control of the carrier densities within the 2DEG.  

 

 

Figure 2.4  An ideal undoped square shape quantum well (a) Structure, Energy band 

diagram, and (c) Conduction band diagram if AlGaAs is n-doped [35] 

 

 

2.3 Metal Semiconductor Contacts 

Metal-semiconductor contacts are present in every semiconductor device. There are 

two types of contact for a metal-semiconductor junction; Schottky contact or ohmic 

contact depending on the nature of the interface. The details of these contacts are 

discussed in section 2.3.1 and section 2.3.2. 
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2.3.1 Ohmic Contact  

An ohmic contact is formed if no potential barrier exists between the metal and 

semiconductor. It is a non-rectifying contact and does not control the flow of current, 

thus the current  flows equally in both directions (reverse and forward) with linear   

I-V characteristic. On top of that, an ohmic contact should have an insignificant 

contact resistance, RC  relative to the series resistance, rs of the semiconductor so that 

zero or very small current loss occurs across the device. There are 2 types of ohmic 

contact: (1) for n-type semiconductor; the metal workfunction, Фm must be closer to 

or smaller than the semiconductor electron affinity χ. Therefore, Фm must be smaller 

than the work-function of semiconductor Фs, i.e. Фs > Фm, as shown in Figure 2.5 

(2) for a p-type semiconductor, Фm must be close to or larger than the sum of 

electron affinity and energy bandgap of the semiconductor, which is usually 

impractical. Hence p-type ohmic contacts are a lot more difficult to fabricate than n-

type ones.  

 

 

Figure 2.5  Band diagram of a metal-semiconductor interface:                                                  

(a) before contact and (b) after contact [33] 

 

Practically, there are two ways in achieving a good ohmic contact in semiconductor 

processing: either by high semiconductor doping layer or through a low Schottky 

barrier height at metal-semiconductor junction.  At any metal-semiconductor contact, 

there always exists a Schottky barrier [33]. The carriers must overcome this barrier 
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in order to travel between the metal and semiconductor sides. When the 

semiconductor is heavily doped, i.e. ND  10
19

 cm
-3

, the depletion width and 

consequently the barrier width near the metal-semiconductor contact will be reduced. 

Electrons now can overcome this barrier and tunnel through it as the depletion width 

becomes sufficiently narrow. This mechanism is known as Thermionic Field 

Emission (TFE) [36].  Alternatively, the barrier height is reduced by means of a low 

energy gap material at the semiconductor side. Here, the electrons have energies 

larger than the potential barrier and Thermionic Emission (TE) takes place by 

electrons moving over the barrier [33]. Figure 2.6 illustrates the TFE and TE 

mechanism at the Schottky barrier interface.  

 

 

(a)                                                            (b) 

Figure 2.6  Current conduction at Ohmic contact (a) via TFE in highly doped semiconductor 

and (b) via TE at low Schottky barrier interface [33] 

 

2.3.2 Schottky Contact 

A Schottky contact (also known as rectifying contact), permits the flow of current in 

one direction and provides a barrier to the flow of current in the opposite direction. 

In Schottky contact, the semiconductor work-function, Фm  is smaller than the work-

function of the metal, Фm (Фs < Фm). Figure 2.7 (a)  illustrates a metal to 

semiconductor interface before and after forming the Schottky contact for n-type 

semiconductor and metal contact. On contact, electrons from the semiconductor 

conduction band flow into lower energy states of metal, till a constant Fermi level is 

achieved at equilibrium condition. The flow of electrons will then leave a positive 

charge of ionised donor in the semiconductor which creates the depletion region of 

thickness, Xdep as illustrated in Figure 2.7 (b). The band bending at equilibrium, 
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results in a potential barrier, Фb, at the interface and a built-in potential, Vbi that 

restricts further diffusion of electrons from semiconductor to metal. The exact shape 

of the conduction and valence bands is determined by solving the Schrödinger and 

Poisson equations self-consistently. 

 

 

Figure 2.7  Energy and diagram of Schottky contact: (a) isolated and  (b) on contact [33] 

 

The built-in potential is given by Equation 2.8: 

 

 Vbi = Фb - Фn Equation 2.8 

 

where Фn is the potential difference between the minimum of conduction band (EC) 

and Fermi level EF, i.e. 

 

 n = 
𝐸𝐶−𝐸𝐹

𝑞
 Equation 2.9 

   

The potential barrier, Фb, formed at the interface is related to the metal work-

function, Фm and semiconductor electron affinity,s as in Equation 2.10 and Equation 

2.11: 

 B = m -s Equation 2.10 

 

 S =S - n  Equation 2.11 
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Under zero bias condition, the net current flow between semiconductor to metal is 

zero because the same amount of current flows from semiconductor to metal and 

vice versa. However, under forward and reverse bias conditions, the flow of current 

transport changes due the changes in the Vbi. These conditions are illustrated in  

Figure 2.8 in which B remains constant [12] in both figures. 

 

 

Figure 2.8  Current transport by thermionic emission in: 

(a) forward bias and (b) reverse bias [33] 

 

When a positive bias, e.g., VF is applied to a metal, it will experience forward bias 

condition. Under this condition, the Fermi level, EF will be shifted up and the built-in 

voltahe, Vbi will be reduced by a voltage VF as illustrated in Figure 2.8 (a). The 

Figure 2.8 (b) shows that if a negative bias, i.e,  -VR is applied to the metal, a reverse 

bias condition is achieved. In reversed bias condition, the Fermi level will be shifted 

down and the built-in-potential will increase by a voltage VR. In a pHEMT, the 

quantity of electrons flow from metal to semiconductor under reverse bias condition 

is also known as leakage current [31]. The leakage current is one of the unwanted 

drawback for a pHEMT device which degrades its performance, particularly at high 

frequency applications.  
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(a)                                                (b)                                         (c) 

 

 

 

 

 

Figure 2.9  Depletion type contacts to n-type substrates with increasing doping concentration 

ND: (a) Low ND, (b) Intermediate ND and (c) High ND [37] 

 

The mechanism of TE, TFE and FE at the barrier is shown in Figure 2.9. 

Theoretically, a metal with a higher Фm will yield a larger Schottky barrier on the 

same semiconductor. But this is not quite valid in practice. There is always an 

intermediate layer, contributing to the surface contamination of the metal or the 

surface states of the semiconductors such as native oxides or dangling bonds after 

etching, formed in between the metal and semiconductor. As a result, the Fermi level 

of a semiconductor will pin at the surface [38] of the intermediate layer before 

equilibrium is achieved. The resulting barrier height is not sensitive to the change of 

metal work function and such phenomenon is called Fermi-level pinning [33]. 
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2.4 Introduction to High Electron Mobility Transistors (HEMTs) 

HEMTs are very similar to Metal Semiconductor Field Effect Transistors (MESFET) 

in terms of structure and operations, but the key difference  is  the heterojunction 

structures. By bringing two dissimilar semiconductors to the junction, a potential 

well is formed in the channel due to the bending of energy level. This  results in high 

density of carrier confinement in the well (channel), which only allows electron to 

move in a two-dimensional plane which creates the 2DEG layer.  It is the high two-

dimensional electron gas density with a high mobility and low scattering mechanism 

which contributes to naming the device the High Electron Mobility Transistor. This 

ultimately results in improved gain, noise and power performance of the device.  

 

2.4.1 HEMT Epitaxial Layer  

HEMT is a field effect transistor (FET) and utilises a vertical structure. A typical 

HEMT structure consists of epitaxial layers, namely cap layer, barrier layer, channel 

layer, and buffer layer which are grown on semi insulating substrates. These epilayer 

have different material parameters such as energy band gaps, doping concentration, 

layer thickness, etc. Figure 2.10 illustrates a conventional HEMT structure with a 

single delta doping layer.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.10  Cross section of conventional HEMT with -doped layer   
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2.4.1.1 Cap layer 

The source and drain contacts are formed through  the Cap layer. The Cap layer is  

heavily doped (usually >10
18

 cm
-3

) to facilitate the formation of a low resistance for 

the source and drain metal contacts. The thickness of the cap layer is about 50Å to 

100 Å [24]. Higher doping levels and a thicker capping layer would simultaneously 

reduce the device contact resistance [39] and effectively shorten the source-to-drain 

spacing; resulting in very high electron velocity, gm, and  fT in the device. However, 

this also significantly reduces the device breakdown voltage, VBR,  and also increases 

the device output conductance, gds, and drain-to-gate feedback capacitance, Cdg. 

Another technique followed is the alloying and annealing technique in which 

electrons heavily diffuse down to the 2DEG thus reducing the potential barrier 

caused due to difference in electron concentration on both sides of the junction [35].  

 

2.4.1.2 Supply Layer 

The supply layer is formed beneath the cap Layer using a wide band gap material. 

Typically, the supply layer is uniformly doped  with Si to supply carriers that diffuse 

into the channel and become available for conduction. The distance between gate 

and channel is very critical and is largely determined by the thickness of the supply 

layer [35]. A thinner supply layer allows for a small distance between the gate metal 

and the carrier channel that results in higher charge density in the channel, cutoff 

frequency,fT and transconductance, gm but reduces breakdown voltage. The thickness 

of supply layer and increasing doping concentration of the supply layer reduces the 

depletion width. If the depletion region is not fully formed, i.e. the supply layer is 

not fully depleted, poor field effect actions are expected to arise in this regime [40]. 

In order to eliminate parallel conduction in the supply layer, this layer must be 

completely depleted by both heterojunction and the Schottky gate.  
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2.4.1.3 Delta (δ) Doping Layer 

A uniformly doped supply layer can be replaced by an undoped supply layer, 

followed by a very thin but extensively doped layer called a  δ-doped layer (or pulse-

doped). Hence, when the parallel conduction problem  in the barrier layer is reduced, 

high sheet charge density and breakdown voltage can be achieved.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.11 Conduction band of general depletion mode HEMT structure  

with -doping and bulk-doping [33] 

 

As a result, the channel concentration increases. The difference of these doping to 

the structure is illustrated in Figure 2.11. The energy quantization occurs at the 

discontinuity formed between the high and low band gap materials. Electrons in the 

supply layer (bulk doping case) or δ-doping can then tunnel through the thin 

potential barrier and be trapped into the triangular QW. The electrons in the QW 

forms a high electron mobility plane called a 2DEG. The Coulomb scattering 

between electrons and the fixed  ionized atoms separated by the spacer layer leads to 

high mobility. Figure 2.12 shows the relation of -doping concentration and the drain 

current as described in [41]. A degradation of the drain current is observed with 

reducing the  -doping concentration. 
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Figure 2.12  Drain Current versus -doping concentration variation [41] 

 

2.4.1.4 Spacer Layer 

A spacer layer of undoped materials i.e., AlGaAs or InAlAs is placed between the 

InAlAs donor and the InGaAs channel layer to separate the negatively charged 

2DEG from the ionized dopant atoms. A thin spacer layer is preferred for low-noise 

and power devices due to the reduced parasitic source resistance and the increase in 

transconductance,gm and current density. However, a thicker spacer layer might be 

applied to provide higher electron mobility with a smaller charge density in the 

channel. At cryogenic temperatures the noise performance of a HEMT is strongly 

dependent on the spacer thickness due to the large increase in electron mobility and 

velocity [6]. 

 

2.4.1.5 Channel Layer 

The channel layer is a narrow bandgap undoped material, i.e. GaAs or InGaAs. 

These material systems improve transport properties due to the higher mobility of 

InGaAs and stronger electron confinement associated with the quantum well at the 

heterojunction. The barrier on both sides of the channel form heterojunctions on 

either edge of the channel layer thus building QW which confines high carrier 

concentration. These electrons have superior mobility characteristic because of high 

mobility and undoped nature of the channel material. Increasing the Indium 

concentration in the carrier channel of the pHEMT will result in further 

improvements in electron carrier confinement and transport properties [24].  
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Figure 2.13   Electron velocity as a function of electric field for variety of                              

Indium (In) concentrations of InGaAs [24]. 

 

For example, the performance of InP based pHEMT is directly related to the intrinsic 

properties of the InGaAs/InAlAs material system. The high indium content (typically 

53 – 80%) InGaAs channel contributes to the high electron mobility and velocity 

[42]. Moreover, the large band discontinuities at the InGaAs/InAlAs heterojunctions 

will permit high two-dimensional electron gas (2DEG) densities. Figure 2.13 shows 

the electron velocity as a function of electric field for various In concentrations of 

InGaAs. Unfortunately, increasing the Indium concentration in InXGa1-XAs also 

increases the lattice constant [24].  

  

2.4.1.6 Buffer Layer 

Basically, the buffer layer is developed to confine the carriers to the device channel.  

It is also significant to isolate any unwanted defects on the substrate surface and also 

to de-couple it from the 2DEG [43].  The buffer layer is grown using undoped wide 

bandgap material that creates an energy barrier in the conduction band, thus reducing 

electron injection into the buffer or substrate. The electrons being injected into the 

substrate layer because of the application of Drain-to-Source electric field, contribute 

to the drain current, thus increasing the output conductance of the device and 

degrading the device pinch-off characteristic. The thick buffer layer is used to reduce 

any growth defects, and to accumulate any impurities from the substrate interface 

that may degrade the performance of the 2DEG channel [35]. 
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