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 ABSTRACT 

 

The news about distributed denial of service (DDoS) attacks is rapidly increased 

around the world. Many services of companies and/or governments are victims of the 

attack. The main purpose of DDoS attacks is to overload the service for a long time, 

rather than to steal money or data from the targets. Since the user might not re-use 

services jammed by crackers, a company attacked by the crackers will lose many 

benefits.  

Major challenges are faced by the researchers are the unavailability of the 

dataset such as “no labelled DDoS attacks for IPv6, no data available online for 

download or use, few datasets on the internet but the security institutes or researchers 

who own it are kept private even for the research purposes”. In this research, I 

developed a DDoS-IPv6 dataset from real attacks traffic that contains 96 extracted 

features, the generated IPv6-DDoS dataset where had been collected by capturing 

attacks packets can be converted into network flows that contain rich metadata about 

the statistics of each flow, which are composed of the captured packet data. These 

flows are structured in the form of tabular data and contain both continuous and 

categorical features. Then deployed deep learning technique as intrusion detection 

system on the developed dataset, moreover optimised deep learning hyperparameters 

(i.e. the number of hidden layers/neurons, etc.) in order to find the optimal deep 

learning model, and check if the optimisation of layers/neurons would contribute to 

improving the accuracy. 

Accordingly, the result of the optimal deep learning technique for the four 

models with the developed dataset DDoS-IPv6 are between 99.79% and 99.996% and 

losses are between 0.0014% and 0.781%. I found that all the techniques succeeded to 

classify/detect IPv6 attacks and this will lead to new further research that needs to be 

developed in this area.  
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 ABSTRAK 

 
 
Berita mengenai serangan Penafian Perkhidmatan (DDoS) telah pesat 

meningkat di seluruh dunia. Banyak perkhidmatan Syarikat dan/atau kerajaan adalah 

mangsa serangan. Tujuan utama serangan DDoS adalah untuk sarat Perkhidmatan 

untuk masa yang lama, dan bukannya untuk mencuri wang atau data dari target. Oleh 

kerana pengguna mungkin tidak menggunakan semula perkhidmatan yang sesak oleh 

keropok, sebuah syarikat yang diserang oleh keropok akan kehilangan banyak faedah.  

Cabaran utama yang dihadapi oleh penyelidik untuk membangunkan 

penyelidikan itu sendiri dan ketiadaan Dataset seperti "Tiada serangan DDoS yang 

dilabelkan untuk IPv6, tiada data yang ada dalam talian untuk muat turun atau 

penggunaan, beberapa set data di internet tetapi institusi keselamatan atau penyelidik 

yang memiliki ia disimpan swasta walaupun untuk tujuan penyelidikan. Dalam kajian 

ini, kami membangunkan DDoS-IPv6 Dataset daripada lalu lintas serangan sebenar 

yang mengandungi 96 ciri yang diekstrak, IPv6 yang dihasilkan-DDoS Dataset di 

mana telah dikumpulkan oleh paket serangan yang dilakukan boleh ditukar kepada 

aliran rangkaian yang mengandungi metadata kaya tentang statistik setiap aliran, yang 

terdiri daripada data paket yang ditangkap. Aliran ini distruktur dalam bentuk data 

tabulus dan mengandungi ciri yang berterusan dan berbentuk kategori. Kemudian 

dikerahkan dalam teknik pembelajaran mendalam sebagai sistem pengesanan 

pencerobohan pada Dataset yang dibangunkan, lebih-lebih lagi dioptimumkan dalam 

pembelajaran hiperparameter (iaitu bilangan lapisan tersembunyi/neurons dan lain-

lain) untuk mencari model pembelajaran mendalam yang optimum, dan memeriksa 

jika pengoptimuman lapisan/neuron akan menyumbang untuk meningkatkan 

ketepatan. 

Oleh itu, hasil daripada teknik pembelajaran mendalam yang optimum bagi 

empat model yang dibangunkan Dataset DDoS-IPv6 adalah antara 99.79% dan 

99.996% dan kerugian adalah di antara 0.0014% dan 0.781%. Kami mendapati bahawa 

semua teknik berjaya mengelaskan/mengesan serangan IPv6 dan ini akan membawa 

kepada penyelidikan lanjut baru perlu dibangunkan di kawasan ini.     
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 CHAPTER 1 

INTRODUCTION 

 
1.1 Introduction  

 
 
In past years, there is a rapid rise globally on news about the distributed denial of 

service (DDoS) attack. Most private and/or government departments have become 

targets. A hacker group developed tools to execute DDoS attacks very easily and sell 

them to many people. As a result, DDoS attacks became one of the most harmful 

attacks in network security. 

DDoS attacks are primarily to jam the services for a long time instead of taking money 

or data from the targets. Since a user might not re-use services jammed by crackers, a 

company attacked by the crackers will lose many benefits. A DDoS attack can be 

initiated from many computers hijacked by crackers, and then every computer will 

send large numbers of packets to the target server simultaneously. The server attempts 

to respond to all the packets, but its bandwidth gets exhausted very quickly and the 

service stops. A cracker who has hijacked many computers only sends some attack 

commands to the hijacked computers. These computers can be connected to multiple 

bots either directly or through a botnet. Consequently, detecting a cracker is extremely 

difficult. Hence, it seems that the right strategy is to detect DDoS attacks rather than 

crackers. 

 Intrusion detection systems are strategically placed on a network to detect 

threats and monitor packets. The intrusion detection system (IDS) accomplished this 

by collecting data from different systems and network sources, then analysing the data 

for possible threats [1]. The functions of the IDS include offering information on 

threats, taking corrective steps when it detects threats, and recording all important 

events within a network [2]. Different researchers have developed different 

classification representations [3-7], researchers have previously presented intrusion 

detection surveys and taxonomies [4, 8]. This research builds upon their work and 
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introduces deep learning networks techniques which are void of references. With the 

increasing value of big data, deep learning networks are an important element to 

capture a DDoS attack in an IDS. the taxonomy presented within this thesis provides 

a fine-grained overview of the different machine learning techniques for intrusion 

detection systems. The detection mainly depends on the source of data and intrusion 

technique used. The source of data is the nodes that gather the information for analysis. 

 

 
Figure 1.1: DDoS Architecture [9] 

 

Two typical methods are commonly used in IDS such as clustering and 

classification. It is difficult and costly to obtain the bulk of labelled network connection 

records for supervised training in the first stage. The clustering analysis has emerged 

as an anomaly intrusion detection approach in recent years [8]. Clustering is an 

unsupervised data exploratory technique that partitions a set of unlabelled data patterns 

into groups or clusters such that patterns within a cluster are similar to each other but 

dissimilar to another clusters' pattern. Meanwhile, classification is a supervised 

method to distinguish benign and malicious traffics on the basis of provided data which 

usually comes from clustering results as shown in Fig.1.2. The clustering and 

classification can be easily implemented by various machine learning methods. 

Deep Learning is a branch of machine learning on the basis of a set of 

algorithms that attempt to model high-level data abstractions. Deep learning is also 

known as Neural Networks (NN) as it’s inspired by the human brain’s functionality to 

learn and identify objects e.g. vision. The human brain processes raw data which is 
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populated through our sensory inputs i.e. eyes and learns the features on its own by 

nature. Likewise, in deep learning, raw data is provided as input through the deep 

neural networks, which learns to identify the object and its features on which it is 

trained by algorithms. In Machine Learning, it requires manual inputs for selecting 

which features to process through the machine learning modules. Hence, the machine 

learning process is a bit slower and the result's accuracy may be affected by human 

errors. Deep learning's sophisticated, self-learning capability and intelligence results 

in higher accuracy and faster processing as compared to machine learning. Deep 

learning is also called deep machine learning, hierarchical learning, or deep structured 

learning. It can be unsupervised or supervised learning from the collected data on the 

basis of multiple layered models.  

 

 
Figure 1.2: Common IDS approach [10] 

 

there may be confusion about how to adopt deep learning in IDS applications 

properly since the different approaches have been adopted by previous work. Several 

types of research use deep learning methods in a partial sense only while the rest still 

uses conventional neural networks. The complexity of the deep learning method may 

be one of the reasons. Besides, the deep learning method requires a lot of time to train 

properly. Nonetheless, there are several researchers that adopted the deep learning 

method in their IDS research to compare the IDS performance among them. I claim 

that deep learning is very useful in IDS, especially for feature extraction. The feature 

extraction is a process of transforming raw data into features that are better represented 

for the underlying problem of the predictive models, resulting in improved model 

accuracy on unseen data. To support our claim, to provide future challenges and 

directions to employ deep learning in IDS accordingly. concluded that the deep 

learning method is suitable for pre-training or feature engineering/extraction, not as 
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the classifier. Finally, deep learning methods can enhance future research on unknown 

attack detection. 

 
 

1.2 Problem Statement  

 
 
The distributed nature of DDoS attacks tends to make it very difficult to defend 

against. The main aim of such an attack is to degrade networks, deplete network 

resources, and to prevent legitimate users from having access to network resources 

[11]. Furthermore, From the related works in section 2.4.1 and section 2.5.3 the major 

challenges have shown that facing researchers to develop the researches and 

challenges of the dataset such as (“no labelled DDoS attacks for IPv6, no data available 

online for download or use, few datasets on the internet but the security institutes or 

researchers who own it are kept private even for the research purposes).  

Accordingly, accuracy analysis of Deep Learning techniques in IPv4 found that 

the accuracy rate that been reached between 60% to 99.92% as been explained in 

section 2.6. this raises a question that is, do deep learning will maintain similar/less or 

even better accuracy in DDoS IPv6 classification/detection?   

Nevertheless, deep learning hyperparameters (i.e. number of hidden layers, 

number of neurons, etc.) would contribute to improving the accuracy. In other words, 

is there any positive/negative correlation between the accuracy/loss and other 

evaluation metrics when the architecture of the neural is changed? Another side 

question related to the types of deep learning deployed and the data pre-processing is 

yet to be figured out and/or discussed in the academic literature. 

• Accuracy of Deep Learning techniques in IPv4 between 60% to 99.92%, this 

raises a question that is, does deep learning will maintain similar/less or even 

better accuracy in DDoS IPv6 classification/detection?  

• Challenges of the dataset such as (“no labelled DDoS attacks for IPv6, no data 

available online for download or use, few datasets on the internet but the 

security institutes or researchers who own it are kept private even for the 

research purposes”). 

• No available IPv6 dataset there would be no developed deep learning models 

for such type of dataset as shown in section 2.5.3. does deep learning will be a 

success as an intrusion detection system in IPv6  
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• Deep Learning Hyperparameters (i.e. the number of hidden layers, number of 

neurons etc.) would contribute to improving the accuracy. In other words, is 

there any positive/negative correlation between the accuracy/lose and other 

evaluation metrics when the architecture of the neural is changed? 

 
 
1.3 Research Question 

 
 

i. What are the Deep Learning models that been used as Intrusion detection 

systems? 

ii. What are the available datasets for DDoS attacks in IPv6? 

iii. How to generate and collect DDoS IPv6 Dataset? 

iv. What are the features of DDoS IPv6 attacks? 

v. What is the best deep learning model to classify DDoS ipv6 attacks? 

vi. What is the optimal design for deep learning models on DDoS IPv6 

classification attacks? 

vii. How accurate the detection/classification of deep learning models on the 

developed dataset? 

 
 
1.4 Objectives 

 
 
The research objectives can be identified as follows  

i. To investigate the deep learning models as an intrusion detection system. 

ii. To generate and collect dataset for anomaly DDoS flooding attack in real-time 

IPv6 environment. Then extract and prepare the features of the collected 

dataset towards creating a DDoS-IPv6 dataset. 

iii. To develop deep learning models as based DDoS detection and classification 

models using developed dataset in objective (ii) on different deep learning 

models. Then optimize deep learning models’ parameters (layers and neurons) 

using different model configurations towards identifying the optimal neural 

network design. 

iv. To evaluate, compare, and validate the proposed DDoS flooding attacks 

detection technique identified in objective (iii) and (iv) using the available 

evaluation metrics. 
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1.5 Thesis Scope  

 
 

i. The most common DDoS attacks such as (Smurf, TCP-SYN, Router 

Advertisement Flooding Attack, and Various DDoS Attacks) on IPv6 have 

been used to develop our dataset. 

ii. The number of packets included was 1.2 million packets. 

iii. Used five personal computers. 

iv. Software used in our thesis, (python programming language, THC-IPv6, 

Ostinato, and Wireshark). 

v. The deep learning models utilized in this study are ANN, DNN, SAE, and 

CNN. 

vi. Used IPv6 environment due to the lack of research articles in this area (during 

the development of the literature, non-reviewed articles utilized deep learning 

models with DDoS IPv6).  

vii. The programming language used was a python, attacks system was Linux, the 

attacking tool was THC-IPv6 tool, and the monitoring software was Wireshark. 

 
 
1.6 Research Outline 

 
 
The layout of this research as Chapter two will include the systematic literature review 

with analysis and review principles been used in this research. Whereas Chapter three 

explains the methodological part been followed to fulfil the objective. In addition, 

Chapter four will present the method followed to generate and pre-process the IPv6 

dataset. Chapter five will show the outcomes of our research. Lastly, Chapter six 

contains the discussion and future work of our research.  

 
 
1.7 Summary  

 
 
This chapter presents an introduction to our research and showing the problem 

statement, and objectives. Although it represents the research mapping and how the 

research conducted.   
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 CHAPTER 2 

LITERATURE REVIEW 

 

2.1 Background  

 
 
This chapter investigates the deep learning that been used as an intrusion detection 

system through a systematic literature review, then present a taxonomy in this area 

with an explanation for each class and subclasses. Moreover, discuss challenges, 

recommendations, and motivations in the related work. Additionally, a 

methodological aspect, critical analysis problem background and deep learning 

architecture are shown with an analysis for the latest related work in this field. Lastly, 

finalise the findings in section research gaps and present a summary for the chapter. 

The structure of the literature review and the purpose of each section is presented in 

the table below: 

 
Table 2.1: Literature Review Sections and Their Purpose  

SECTION PURPOSE 
2.2 Systematic review 
protocol  

To choose the set of studies to review and analyse it. 
The protocol explains selection procedures such as 
inclusion, exclusion, resources, and the procedure of 
selection. Consequently, select the most relevant 
resources for our research.  

2.3 Taxonomy To identify the themes of selected studies towards 
selecting the path of our research and ease gaps 
identification.  

2.4 Discussion  To identify the current challenges in the previously 
selected studies and the recommendations of the 
authors for future research. In addition to that the 
motivation behind their work. These elements can help 
to draw the shape of our problem statement and help to 
answer the question of why this research is important.   
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Table 2.1: Literature Review Sections and Their Purpose (Continued) 

SECTION PURPOSE 
2.5 Methodological 
Aspect   

To justify the configuration of our research. In addition 
to that the statistics configuration in the selected 
studies. 

2.6 Critical Analysis  This section aims to narrow down the focus into a set 
of studies close to our research. Through the section, 
the result and the accuracy have been achieved in the 
selected studies. 

2.7 Problem Background four major challenges which are challenges related to 
DDoS attacks, Challenges of DDoS in IPv6, is the 
challenges faced by researchers in IPv6 Dataset, and 
lastly, challenges on IDS in IPv6 

2.8 Deep Learning Layer 
With DDoS 

To review the current researches done as an intrusion 
detection system on the basis of deep learning 
technique. In addition to that review under which 
network-layer DDoS attacks are classified and 
established.  

2.9 Deep Learning 
Models 

The section presents the architecture of deep learning 
models that been used in this research 

2.10 Related Works 
Analysis Update 

This section showing the latest related work with their 
analysis in this research field 

2.11 Research Gaps This section showing gaps and challenges in the related 
works that will be our objectives in this research  

2.12 summary  This section summarises the findings of this chapter 

 
 
2.2 Systematic Review Protocol 

 
 
‘Deep learning’ DL is the most significant phrase in the scope of this study. Other 

artificial intelligence models that are not used as DL models are eliminated. For 

example, CNN, Deep Neural Network (DNN), and Autoencoder (AE) are used to 

develop intrusion detection systems (IDSs). I consider all areas related to intrusion 

detection and limit our scope to the English literature. Moreover, I use intruder and 

attacker as general categories. 
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 Information sources  

 
 
I proceed with the research on target articles and select the following digital databases:  

(1) Web of Science (WoS) is an extensive database indexed as cross-disciplinary 

research. This database is selected to provide a comprehensive assessment of 

scientists’ endeavours with an extensive view and to cover relevant technical 

literature. 

(2) The ScienceDirect database provides an entry to journals and technical and science 

articles. 

(3) The Xplore database of the Institute of Electrical and Electronics Engineers (IEEE) 

contains technical literature in electrical engineering, electronics, computer science, 

and other related fields. 

(4) Scopus is the largest abstract database of peer-reviewed literature (i.e. scientific 

journals and conference proceedings). 

 
 

 Study selection  

 
 
Study collection consists of two phases of scanning and filtering to search for literature 

resources. The first phase involves skimming titles and abstracts to exclude irrelevant 

articles and duplicates. The second phase involves reading the complete form of the 

selected manuscripts. 

 
 

 Search  

 
 
This study started at the beginning of December 2017 through the advanced search 

boxes in the WoS, ScienceDirect, IEEE Xplore, and Scopus databases. I used a 

combination of diverse variations of keywords that consisted of ‘deep learning,’ 

‘intrusion’ and ‘attack’ to perform our study. These keywords were combined with 

‘OR’ and ‘AND’ operators. Figure 2.1 illustrates the exact query texts used in this 

study. I focused on two types of articles, namely, journal and conference articles, and 

used the preferences in each search engine to eliminate other types of reports and book 

chapters. In our survey on this emerging trend of intrusion detection, I assumed that 

the two areas consist of the latest and related scientific studies. 
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 Eligibility criteria  

 
 
Figure 2.1 lists the criteria that each article must satisfy. The initial goal was to plan 

the research on DL into an overall and coarse-grained taxonomy with three sets. I used 

Google Scholar and derived the categories from a pre-survey of related studies without 

limitations to obtain an initial perception of the background and directions of related 

papers. If the eligibility criteria were unsatisfied in the remaining articles after the 

initial removal of duplicates, then they were excluded from filtering and screening the 

articles. The exclusion criteria included having the objective of intrusion detection 

technology rather than non-DL models and not being written in English. A single 

Excel file with a complete list of all the articles from numerous resources with their 

equivalent initial categories was used to simplify the subsequent processing steps of 

data collection. I accomplished several full-text readings, and thus obtained a running 

classification of articles into a refined taxonomy and a large collection of highlights 

and comments on the surveyed studies. The major findings followed the processes of 

tabulation, description, and summarization. Excel and Word files were used to 

maintain a set of relevant information, including the source databases, their complete 

list of articles, description tables and summaries, categorization tables on the basis of 

attack type, review sources, objectives, number of features, and model used to develop 

DL, in addition to certain related information. 

 
 

 Results and statistical information of articles 

 
 
The preliminary query resulted in 1,861 articles in the four databases: 1,203 in Scopus, 

117 in IEEE Xplore, 477 in ScienceDirect, and 64 in WoS. This study grouped the 

filtered articles that were published from 2015 to 2018 into four categories. After 

scanning the titles and abstracts, the number of articles decreased to 179 from all the 

categories, and the duplicate articles were 59 out of 179. The final full-text reading 

and review excluded 52 papers. A total of 68 articles remained in the final set given 

the different topics related to DL as an intrusion detection technique.  
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Figure 2.1: Flowchart Of Study Selection, Including The Search Query And 

Inclusion Criteria 
 
 
2.3 Taxonomy  

 
 
The classification suggests different classes and subclasses. Figure 2.2 illustrates the 

taxonomy of an IDS; it shows an inclusive improvement of several studies and 

applications. The first class includes articles associated with the objectives of this 

study. The second class includes articles on the number of techniques used as single 

or hybrid techniques to develop DL techniques to be used in IDSs. The third class 

comprises the artificial intelligence techniques used as DL techniques in IDSs. The 

largest proportion (72.06%; 49/68) relates to articles that develop an approach for 

evaluating or identifying intrusion detection techniques using the DL approach. The 

second-largest proportion (22.06%; 15/68) relates to studying/applying articles to the 

DL area, IDSs, or other related issues. The third-largest proportion (5.88%; 4/68) 

discusses frameworks/models for running or adopting IDSs. The taxonomy of the 

In 25 Dec 2017 Query: 
(("deep learning" OR "deep-learning”) AND (attack OR attacker OR attacking OR intruder 

OR intrusion)) 

First Read 
Filter the papers by title and abstract and filter all papers = 179 

Remove duplicate 
179 – 59 = 120 

papers 

Full Read 
120 – 52 = 68 papers 

Final Set 
68 papers 

Inclusion Criteria 
• The Articles are in English only  

• The focus is about pure deep learning technique in 
intrusion detection system, for the following aspect: 
• Reviewing and surveying the deep learning 

techniques used in intrusion detection system. 
• Designed and developed of deep learning technique 

in intrusion detection system with the related 
experience. 

• Propose pure and new deep leaning technique as 
intrusion detection system. 

• Evaluation and analysing the detection techniques 
through a systematic review. 

Web of science 
64 

IEEE Xplore 
117 

Scopus  
1203 

Science Direct 
477 
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literature presented in Figure 2.2 identifies several subcategories from the main 

classes. 
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Figure 2.2: Taxonomy Of Literature On Intrusion Detection System On the basis of 
Deep Learning 
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 Development  

 
 
The first subsection in the classification of our taxonomy is divided into two sections, 

namely, single and hybrid techniques: -  

 
 
2.3.1.1 Single Technique 

 
 
This class is divided into 12 subclasses on the basis of the type of technique used to 

develop the DL technique. 

 
 

A. Replicator Neural Networks 

 
 
Replicator NNs, such as Autoencoders and NNs, are specific. These networks have 

been initially proposed as compression techniques that are trained to replicate the 

given input as an output. Compression can be achieved by using input units that are 

more than the units in the intermediate layer [12]. The principal component analysis 

(PCA) dimensionality reduction technique has confirmed that this compression 

process belongs to replicator NNs. An anomaly intrusion detection on the basis of DL 

that used replicator NNs was presented in [13]. Unsupervised dimensionality 

reduction was performed by the hidden layer between an encoder and a decoder. 

Therefore, the presented technique is on the basis of a decoder and an encoder, and 

this network corresponds to PCA. However, the proposed method did not exhibit 

accuracy when evaluated. 

 
 

B. Recurrent neural network  

 
 
This technique has a unique feature that is identical to a human brain process. That is, 

it can adopt the inner memory to process random sequences of inputs, and thus perform 

complex tasks, such as unsegmented and pattern recognition; moreover, this technique 

is ideal for handling real-time learning tasks given its capability to handle time-series 

data [14]. The following articles have adopted RNNs to build their DL technique. 

Attack intrusion detection: An IDS on the basis of RNN was proposed in [15] 

by classifying the collected data. In the experiments, different hidden node numbers 
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and learning rate values were utilised for binary and multiclass classification. A 

realistic performance was accomplished by this technique, and computational 

processing was high. The authors of [16] developed a DL algorithm by using the 

preceding technique with Hessian-free optimisation to detect intrusions; the output 

exhibited relatively better performance in this technique than in the previous model. 

The false alarm rate was only 2.1%, and the detection rate was 95.37%. The authors 

of [17] suggested a system called DeepDefense, which adopts a DL-based distributed 

denial-of-service (DDoS) attack detection technique. The authors transformed packet-

based DDoS detection to window-based detection and formulated DDoS detection as 

a series of classification problems to improve the performance in identifying DDoS 

attack traffic. The results confirmed that the models’ performance depends on the 

dataset size, which does not depend on the system used for training.  

Intruder behaviour detection: To predict the behaviour of users in Tor 

networks, the authors of [18] applied deep RNNs combined with kernel PCA and long 

short-term memory (LSTM)-RNN; their method consists of feature extraction, attack 

detection, and data pre-processing. Better performance than those of previous 

strategies was achieved by using this proposed threat analysis strategy. In another 

study, a framework was suggested to perform intruder detection and analysis using 

DL networks and association rule mining [14]. This framework can predict future 

intruder operations that may occur and the locations where these operations may be 

generated; then, it will show the progress of intruder attacks. 

Malware detection: The authors of [19] proposed a natural language modelling 

that is similar to learning the language of malware spoken through the extraction of 

robust and executed instructions by using time-domain features. During the projection 

stage when features were extracted, the authors used RNNs to conduct experiments on 

malicious or benign files. 

 

 

C. Deep Belief Network 

 
 
A DBN is a Deep Neural Network model generated by a stacked Restricted Boltzmann 

machine (RBM), and the input of an RBM is the result of earlier RBMs, Between 

RBMs layers the information has become available on the system. Whole layers 
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provide a unidirectional connection, except for the two top layers, which provide a 

two-way connection. DBNs have been used as follows. 

Android malware detection: A framework called ‘Deepsign’ was presented in 

[20] to detect malware automatically using a signature generation method on the basis 

of DBN. Registry entries, web searches, and port accesses formed the dataset on the 

basis of the behaviour logs of application programming interface (API) calls. The logs 

were converted into a binary vector in a sandbox. The result showed that using DBN 

for classification can achieve an accuracy of 98.6%. The authors of [21] proposed 

‘DroidDeepLearner,’ an approach that uses a DL algorithm to address the current 

requirement for malware detection to become more autonomous at learning to solve 

problems with minimal human intervention for Android malware characterisation and 

identification. In their experiments, the DBN model performed better than various 

SVM models. The authors of [22] proposed ‘DroidDetector,’ an online DL-based 

Android malware detection engine that can detect whether an app is a malware or 

works automatically by using DL techniques to correlate the features from a static 

analysis with other features from dynamic analysis of the characterised malware and 

Android apps. Traditional (i.e. ML) techniques were outperformed, with a detection 

accuracy of 96.76%. The authors of [23] developed ‘DroidDelver,’ a programmed 

Android malware DS that utilises a DL structure that considers a DBN. From a small 

code extract, API call block features maintain an inherent relationship that exists 

within API calls.  

Attack intrusion detection: An intelligent communication middleware was 

proposed to complement the conventional quality of service (QoS) evaluation that 

utilises the quality of experience (QoE) metrics in [24]. Communication infrastructure 

and data acquisition systems are crucial technologies for maintaining system economic 

reliability and efficiency. The proposed middleware effectively utilised traditional 

QoS criteria to detect and defend against potential congestion that attacks QoE 

evaluation from the operators of a power system. The authors of [25] used DBN to 

propose a NIDS for the security of in-vehicular networks. Detection accuracy was 

improved compared with those of earlier methods. 
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D. Relevance Deep Learning 

 
 
The authors of [26] proposed a network intrusion detection technique on the basis of 

relevance DL, which learned a principle of deep relevance and the training algorithm 

of RBM. Relevance DL was applied to a NIDS to analyse the principle of feasibility 

in the NIDS. This technique was also applied to network intrusion detection 

technology and obtained high detection accuracy. The ratio of intrusion detection to 

normal data detection was 10:1. The average detection of a high-speed ultrahigh 

bandwidth network was greater than 50%, and the error rate was approximately 1.5%. 

These results indicated the effectiveness of the relevant DL algorithm in network 

intrusion detection. 

 
 

E. Deep Neural Networks 

 
 
DNNs, which provide powerful instruments to automatically produce high-level 

abstractions of complex multimodal data, have recently attracted considerable 

attention from industry and academia. DNNs learn features themselves, and thus the 

learning process becomes increasingly accurate; DNNs are verified to be more 

efficient and accurate than shallow learning [27]. The use of DNNs is presented as 

follows. 

Attack intrusion detection: The authors of [27] proposed a high-level feature 

extraction capability of Internet of things systems that can be a resilient mechanism 

for novel attacks or small mutations. The compression capabilities and self-taught DL 

architecture are key mechanisms for hidden pattern discovery from the training data; 

hence, attacks are discriminated from benign traffic. The authors of [28] suggested a 

DNN with 3 hidden layers that use 41 features. The outcomes were mixed, i.e. those 

with more classes were less accurate than those that focused on fewer classes. The 

authors of [29] investigated the influence of fault injection attacks on DNNs. Through 

a fault injection attack by modifying the parameters used in DNNs, a specified input 

pattern was misclassified into an adversarial class that was attempted by attackers. The 

authors proposed two types of fault injection attacks to achieve these objectives. The 

first type was a single-bias attack that requires modifying only one parameter in the 

DNN for a misclassification on the basis of the observation outputs of the DNN that 
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may linearly depend on several parameters. The second type was a gradient descent 

attack that aims to reserve classification accuracy on input patterns other than the 

targeted one to force stealthy misclassification. Moreover, the manual burden placed 

on Department of Défense investigators was reduced by using the ML application in 

the early triage of security warnings that were reviewed as a case study in [30]. The 

triage tool prototype, called federated analysis security, was implemented in this study. 

Numerous daily events/alerts were summarized, categorized, and highlighted using 

the FAST prototype. The NN achieved a high classification accuracy of 98% and a log 

loss below 0.0001. Fivefold cross-validation obtained a result calculated from sample 

data.  

Malware detection: A new adversary-resistant technique that prevents 

attackers from constructing influential adversarial samples by randomly nullifying 

features within data vectors was proposed in [31]; the accuracy of this technique was 

73.59% in the Canadian Institute for Advanced Research (CIFAR) dataset and 98.43% 

in the Modified National Institute of Standards and Technology (MNIST) dataset. A 

malware detector that uses static features was proposed in [32] to deploy DNNs. The 

accuracy results of any previously published detection engine that used exclusively 

static features were less than those of this proposed approach. However, in the case of 

obfuscated binaries, static analysis may not provide satisfactory input for 

classification, and the authors did not consider dynamic analysis results in their 

research. 

Spam detection: The authors of [33] proposed a novel technique on the basis 

of DL techniques. This technique constructed a binary classifier on the basis of the 

preceding representation dataset for the syntax of each tweet that will be learned 

through the Word Vector training phase. Performance evaluation was conducted from 

a 10-day ground-truth dataset with more than 600 million real-world tweets after the 

technique collected a part of the labelled data (376,206 spam and 73,836 no spam 

tweets). The data were pre-processed and converted into high-dimensional vectors by 

utilising the Word Vector technique. 
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F. Stacked Auto-encoder 

 
 
Autoencoder layers and a logistic regression layer were used to construct SAE. SAE 

was built by stacking additional unsupervised feature learning layers through greedy 

methods for each additional layer and could be trained. I trained the new hidden layer 

by training a standard supervised NN with one hidden layer. SAE was used as follows. 

Attack intrusion detection: A three-layer Wi-Fi impersonation attack detection 

system was developed in [34]. In the original dataset, SAEs firstly performed feature 

extraction through SAE and then feature selection through SVM, decision tree (DT), 

or artificial NN (ANN) on the newly extracted features and the original data. An ANN 

was used for the final classification. The proposed system results presented a 0.012% 

false-positive rate and a 99.918% detection rate. The deep features of an application-

layer DDoS attack on the basis of a DL architecture that consisted of more than three 

layers were proposed in [35]. The concept of an Autoencoder was applied to the 

proposed work. The DL architecture aimed to receive high-level features using SAE. 

The proposed architecture achieved an average false positive rate of 1.27% and an 

average detection rate of 98.99%. The authors of [36] proposed various denial-of-

service (DoS) attacks with timely detection against a computer or a network system 

on the basis of SAE. Their research focused on detecting application-layer DoS attacks 

by applying an anomaly detection-based approach to statistics extracted from network 

packets to utilize encrypted protocols. A classification scheme using a DL approach 

and a solution on the basis of anomaly detection was presented in [37]. The capability 

to perform attack classification accurately and the features necessary to detect network 

anomalies were self-learned in the DL approach. The overall accuracy of 98.6% was 

achieved through the SAE architecture frameworks formed on two and three hidden 

layers. The proposed frameworks can detect multipliable attacks in an IEEE 802.11 

network. This network has high overall accuracy, considers novel attacks, and can 

perform four-class classification. A leveraged SAE was proposed in [38] to improve 

impersonation detection and classification by using weighted feature learning from 

shallow machine learners.  

Android malware detection: The authors of [39] used a Linux-kernel system, 

called a graph-based DL framework, to propose an Android malware detection system 

on the basis of DL architecture with the SAE model. A DeepMalDroid method was 
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developed for dynamic analysis, rather than depending on a random event generator 

or user interactions.  

 
 

G. Stacked Denoising Autoencoder 

 
 
SDA, which is a development of traditional SAEs, introduces the structure and 

relevant terminology of a denoising Autoencoder [40]. A session-based network 

intrusion detection model using DL architecture was proposed in [31]. Researchers 

obtained relatively impressive results by applying an SDA-based DL architecture to 

detect botnet traffic. 

 
 

H. Conditional Deep Belief Networks 

 
 
CDBNs are extended versions of DBNs and have been presented to model temporal 

data by treating previously observed data through the implementation of an 

autoregressive data-modelling scheme and additional input to model temporal data. 

Real-time measurement data from geographically distributed phasor measurement 

units (PMUs) leverage physical coherence in power systems and are analysed using 

CDBNs to stabilise performance, probe and detect a data corruption scheme, verify 

the validity of lead agents’ PMU data and estimate their true values [41]. The authors 

of [42] proposed a real-time detection technique. DL techniques on the basis of CDBN 

used historical measurement data and revealed features to detect false data injection 

(FDI) attacks in real-time and recognise the behaviour patterns of FDI attacks. 

 
 

I. Convolutional Neural Network 

 
 
The CNN process is similar to that of traditional ANNs, i.e. it consists of self-

optimisation through learning neurons. Each neuron will operate and receive an input, 

such as a nonlinear function as a basis for countless ANNs [43]. CNNs are used as 

follows. 

Hardware cybersecurity detection: This scheme was proposed as a CNN 

technique for securing the automated teller machines (ATMs) of banks because 

customers are prohibited from wearing a helmet whilst using ATMs. Google’s 
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inception model was used for this purpose. The use of ATM surveillance camera feed 

can help improve security significantly as a form of automated helmet detection. The 

model achieved an accuracy of 95.3% whilst training on a proprietary ATM 

surveillance dataset [44].  

Attack intrusion detection: The authors of [42] proposed a CNN that 

automatically learns the features of a graphic NSL-KDD dataset transformation by 

using a graphic conversion technique as an image conversion method for the dataset. 

The proposed technique is performed effectively and can be used as an anomaly 

detection classifier. A novel poisoning algorithm on the basis of the concept of back-

gradient optimisation, i.e. to compute the gradient of interest through automatic 

differentiation, was proposed by the authors of [45] to extend the definition of 

poisoning attacks to multiclass problems and significantly reduce attack complexity 

whilst reversing the learning procedure. Their approach can target a wide class of 

learning algorithms compared with current poisoning strategies, including NN and 

CNN architectures that are trained with gradient-based procedures.  

Android malware detection: The proposed CNN operation conducts classification 

along the sequence. The convolution window slides down the sequence to learn 

sequential patterns for each location and construct high-level features from small local 

features. CNN architecture uses multiple CNN layers. CNN is a natural choice for 

sequential data because its performance is considerably better than that of LSTM [46]. 

 
 

J. Recursive Neural Tensor Network 

 
 
An RNTN, which is a development of RNN, is a tree-structured network similar to 

RNN that uses a tensor to improve its performance. A tensor is used to calculate a 

high-order composition of input features in RNTN after being enabled. On the basis 

of network behaviour, a technique was proposed in [47] to determine whether a 

dynamic analysis must be suspended to intensely and efficiently collect malware 

communication. Two characteristics of malware communication were focused on 

using the proposed technique, namely, the common latent function and the change in 

communication purpose. Overall, the proposed method reduced analysis time by 

67.1% and avoided a complete analysis of 80.2% of the malware samples. 
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K. Auto-Encoder 

 
 
Autoencoders aims to transform input into output with the least possible amount of 

distortion; they are considered a plain learning technique. Although they are 

theoretically simple, Autoencoders play an important role in ML. A three-stage 

algorithm was proposed in [48]. The first stage was a standardised dataset. The second 

stage produced a regression function by using DL depending on an Autoencoder 

model. The third stage produced a classifier function using a memetic. The system 

successfully classified 90.72% of the records. The authors of [49] proposed an 

Autoencoder technique for the real-time detection of cyber-physical attacks on water 

distribution systems. A test dataset that features several classes of plausible attacks 

was used to evaluate detection performance. The authors of [50] presented a new 

approach to network intrusion detection and classification for cybersecurity on an 

energy-efficient neuromorphic hardware platform by using DL algorithms on the basis 

of an Autoencoder. This Autoencoder was evaluated on IBM’s True North 

Neurosynaptic CPU with less than 50 mow computation energy. The results achieved 

a classification rate of approximately 81.31% and an accuracy of nearly 90.12% for 

intrusion detection. 

 
 

L. Sparse Auto-Encoder  

 
 
The authors of [51] proposed a DL approach that depends on a sparse Autoencoder to 

implement a flexible and effective NIDS. A feature-learning task was realised 

completely unsupervised by using a Sparse Autoencoder. The result achieved a 

classification accuracy rate of over 98%.  

 
 
2.3.1.2 Hybrid Technique 

 
 
This class is divided into 13 subclasses on the basis of the type of hybrid techniques 

used to develop the following DL techniques. 
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A. Hybrid-based Probabilistic NN (PNN) and Deep Belief Network (DBN) 

 
 
An intrusion detection strategy that utilises DBN and a probabilistic neural system was 

provided in [52]. Firstly, the major attributes of raw data were maintained to convert 

them into low-dimensional data through the nonlinear learning capability of DBN. 

Secondly, the number of hidden-layer nodes for each layer was increased by using a 

swarm optimisation algorithm to obtain optimal learning performance which reached 

99.31%. Lastly, researchers of low-dimensional data who used PNN were categorised. 

 
 

B. Learning Classifier System (LCS) and Convolutional Neural Network 

(CNN) 

 
 
The authors of [53] proposed the convolutional neural-LCS (CN-LCS), which is a 

hybrid system that uses LCS and CNN for an IDS. CN-LCS can classify high-

dimensional and sparse feature vectors of queries from data by using the automatic 

feature selection capability of convolution–pooling processes and a genetic algorithm. 

The model result achieved 94.64% accuracy. 

 
 

C. Long Short-Term Memory (LSTM) and Recurrent Neural Network 

(RNN) 

 
 
One work proposed a classifier for IDSs following the DL approach. Among six 

optimisations for the LSTM RNN model used as IDS, Nadam’s optimiser was suitable 

for the LSTM RNN model in detecting intrusions. This classifier achieved a detection 

rate of 98.95% and a false alarm rate of 9.98%; these results indicated that this 

classifier demonstrated better performance than the other classifiers [54]. Another IDS 

model with the DL approach was on the basis of the LSTM architecture with RNN. 

This model achieved an attack detection percentage of 98.8%, an average false alarm 

rate of 10.03%, and normal instances of 10% [55].  
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D. Convolutional Neural Network (CNNs) and Stacked Autoencoders (SAEs) 

 
 
A novel network intrusion model with the DL approach on the basis of stacked dilated 

convolutional Autoencoders was proposed in [56]. This method was evaluated on two 

new intrusion detection datasets. This network intrusion detection model merged the 

advantages of SAEs and CNNs. It can automatically learn additional unlabelled raw 

network traffic data that contain real-world traffic from botnets and important features 

from large-scale data, such as advanced persistent threats (APTs), normal traffic, 

scans, web-based malware, and exploits. The binary classification result achieved an 

accuracy rate between  97.91% and 98.62%%. 

 
 

E. One-class SVM (OC-SVM) and Gaussian Mixture Model (GMM) 

 
 
This framework was built on the basis of two models to form a clustering model that 

can discover new anomalies [56]. The architecture obtained the capability to detect 

new anomalies. Multi-cluster anomalies were sorted using word2vec and subspace 

spectral ensemble clustering. These anomalies will be ignored by most unsupervised 

anomaly detection methods. The authors used weblogs to extract features manually 

and perform unsupervised anomaly detection by applying the features extracted by 

GMM and OC-SVM. The model outcome achieved approximately 0.8691 Rn and 

0.8321 NMI. The model was 28 times faster than other techniques. The results 

validated that their model can cluster anomalies into correct categories. 

 
 

F. Reservoir Network and Hidden Markov Model 

 
 
Automatic identification is a type of integrity attack that affects cyber-physical 

systems; an innovative framework called ‘IDAS’ was proposed to address this issue 

[57]. The technique’s architecture is on the basis of two models, namely, the reservoir 

network and the hidden Markov model, for a specific application scenario. The pattern 

recognition algorithms of different modelling properties were customised to learn their 

distribution, and a feature set was designed in the spectrum by capturing the 

characteristics of each attack. With regard to handling hidden attacks, a novel 

detection element was integrated. In terms of the future usage of the structure and 
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