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ABSTRACT 

Effective use of energy permits industrial and commercial facilities to cut down 

production costs, boost profits, and stay competitive. Also, the majority of electrical 

energy consumed in most industrial facilities is used to run electric motors. There has 

been a recent interest in flux switching motor (FSM) in which all flux sources are 

stalled in the stator that makes the rotor simple, robust, and brushless. Development of 

current research, particularly in conventional permanent magnet flux switching 

machine (PMFSM) has been with toothed rotor structures that employ permanent 

magnet at the stator that may manipulate the changes of paths for the stator teeth. Still 

this structure produces less torque and power. Hence, the use of multiple rotor 

structures has been developed, along with proposed PM configurations, which give 

significant gains. This research work  focused on a new design of PMFSM employing 

alternate circumferential and radial flux (AlCiRaF) permanent magnet over various 

rotor poles configuration, optimization based on deterministic method and 

performance investigation through 2D-FEA. In this work, four topologies have been 

proposed, such as 6S-10P PMFSM with salient type of rotor (SalR), 6S-10P PMFSM 

with span rotor (SpR), 6S-8P AlCiRaF PMFSM with segmental rotor (SegR AlCIRaF) 

and 6S-10P AlCiRaF PMFSM with salient rotor (SalR AlCiRaF) are modeled and 

simulated using 2D-FEA JMAG v. 14.1 for the initial performance investigation. 

Since, 6S-10P SalR AlCiRaF has shown higher tendency to achieve better 

performances compared to conventional design, the model is then undergo further 

refinement through deterministic optimization method by shifting modeling free 

parameters in rotor and stator part. Finally, 6S-10P AlCiRaF has achieved better 

torque, power, speed ranges and efficiency compared with conventional 12Slot-10Pole 

PMFSM. Besides the optimized 6S-10P AlCiRaF has improved approximately 

85.71% of maximum torque and 156% of maximum power than that of initial design 

machine proving their suitability towards efficient and reliable motors.    
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ABSTRAK 

Penggunaan tenaga yang berkesan membolehkan kemudahan perindustrian dan 

komersil untuk mengurangkan kos pengeluaran, meningkatkan keuntungan dan kekal 

berdaya saing. Di samping itu, kebanyakan tenaga elektrik yang digunakan di 

kebanyakan kemudahan perindustrian digunakan untuk menjalankan motor elektrik. 

Baru-baru ini, terdapat minat yang baru-baru ini dalam mesin pensuisan fluks (FSM) 

di mana semua sumber fluks di pemegun telah menjadikan pemutar lebih mudah, teguh 

dan tanpa berus. Pembangunan penyelidikan semasa terutamanya dalam mesin 

konvensional pensuisan fluks magnet (PMFSM) dengan struktur pemutar bergigi yang 

menggunakan magnet kekal di pemegun yang boleh memanipulasi perubahan laluan 

fluks pada gigi pemegun tetapi struktur ini menghasilkan kurang tork dan kuasa. Oleh 

itu, penggunaan pelbagai struktur pemutar telah dibangunkan, bersama-sama dengan 

konfigurasi magnet kekal (PM) yang dicadangkan dimana memberi kelebihan yang 

ketara. Kerja penyelidikan ini tertumpu pada rekaan baru PMFSM dengan 

menggunakan magnet tetap lilitan dan aliran fluks (AlCiRaF) terhadap pelbagai 

konfigurasi kutub rotor, pengoptimuman berdasarkan kaedah deterministik dan 

penyiasatan prestasi melalui 2D-FEA. Terdapat empat topologi yang dicadangkan, 6S-

10P PMFSM dengan jenis pemutar salient (SalR), 6S-10P PMFSM dengan rotor span 

(SpR), 6S-8P AlCiRaF PMFSM dengan rotor segmen (SegR AlCIRaF) dan 6S-10P 

AlCiRaF PMFSM pemutar (SalR AlCiRaF) dimodelkan dan disimulasikan 

menggunakan 2M-FEA JMAG v. 14.1 bagi penyiasatan prestasi awal. Oleh kerana 6S-

10P SalR AlCiRaF telah menunjukkan kecenderungan yang lebih tinggi untuk 

mencapai prestasi yang lebih baik berbanding dengan reka bentuk konvensional, 

model itu kemudian menjalani penambahbaikan selanjutnya melalui kaedah 

pengoptimalan deterministik dengan mengubahsuai parameter bebas pemodelan di 

bahagian pemutar dan pemegun. Akhirnya, 6S-10P AlCiRaF telah mencapai tork, 

kuasa, julat kelajuan dan kecekapan yang lebih baik berbanding mesin konsional 

12Slot-10Pole PMFSM. Di samping itu, 6S-10P AlCiRaF yang optimum telah 

meningkatkan kira-kira 85.71% tork maksimum dan 156% kuasa maksimum daripada 
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mesin reka bentuk awal membuktikan kesesuaian mereka terhadap motor yang cekap 

dan boleh dipercayai. 
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1CHAPTER 1 

 

 

 

INTRODUCTION 

1.1 Research Background 

The world in the 21st century today saw how the issue of global warming is a major 

concern by the public. Therefore, many extensive studies have been carried out by 

certain parties to prove that this is not an isolated issue that needs to underestimate but 

instead to come out with series of factor findings, promising proposals, and feasible 

solutions [1-5]. As reported in [1-2], one of the major factors in worsening global 

warming is the emission of human-made greenhouse gases (GHGs). Where carbon 

dioxide (CO2) is identified as one of the major GHG released into the atmosphere by 

the combustion of fossil fuel [3]. 

The conventional internal combustion engine (ICE) has been used in vehicles 

for personal transportation for more than 100 years already. Currently, demand for 

private vehicles are increasing due to the rapidly rising rates of the world population. 

Among the main problems related to critical increased use of private vehicles is 

emission, whereby this  has been a significant contributor to global warming, which 

has become an acute issue that must be faced by everyone. As a result, the government 

and related agencies have come up with more stringent standards to curb the problem 

of emissions and fuel efficiency.  To obtain a wide-range full-performance high-

efficiency vehicle while eliminating pollutant emissions, the most workable solution 

at present is the electric vehicle (EV), which driven by battery-based electric motor 

[6]-[10]. 

Generally, there are multiples important steps and attention requirements  to 

make a selection of electric motor for EV propulsion systems, and the automotive 
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industry is still hunting for the most appropriate one. In this case, the key features are 

efficiency, reliability, and cost. The process of selecting the appropriate electric 

propulsion systems should be carried out at the system level. Mainly, the choice of 

electric-propulsion systems for EV depends on three factors; driver’s expectation, 

vehicle design constraints, and energy source. With these considerations,  the specific 

motor operating points are difficult to define [11]. Hence, selecting the most 

appropriate electric-propulsion system for the EV is always a challenging task. At 

present, the major type of electric motors for EVs is the Flux Switching Machine 

(FSM) which has recently become a accessible and attractive design of machine type 

due to its numerous advantages such as high torque density and efficiency [12-16]. 

In 1955, FSM was first introduced as a single-phase alternator by Rauch and 

Johnson, consisting an only permanent magnet as the single magnetic flux source [17]. 

FSM has been receiving significant attention afterward, especially in electric 

propulsion system application and meanwhile, the first three-phase system was later 

developed in 1997 by E. Hoang et al [18]. Firstly, the invented permanent magnet flux 

switching machine (PMFSM), which is a permanent magnet (PM) single-phase limited 

angle actuator, or more well known as Laws relay, with four stator slots and four rotor 

poles was developed. It is extended into a single-phase generator with four stator slots 

and four or six rotor poles. FSM comprises all flux sources in the stator. Besides the 

advantage of brushless machine type, FSM also has a single piece of iron rotor 

structure that is robust and applicable for high-speed applications [19]. Over the past 

ten years, many new FSM topologies have been developed for various applications, 

ranging from low-cost domestic appliances, automotive, wind power, aerospace, and 

others [20]. 

In general, FSM can be broken down into three major clusters namely 

permanent magnet flux switching motor [PMFSM], field excitation flux switching 

motor [FEFSM], and hybrid excitation flux switching motor [HEFSM]. Both PMFSM 

and FEFSM have only one single main excitation flux source, respectively induced by 

permanent magnet and field excitation coil [FEC], whereas both  PM and FECs are 

being used to generate flux in HEFSM. On the other hand, the armature winding and 

permanent magnet are both stationary in PMFSM but magnetic flux linkage can be 

altered either positive or negative polarity depends on the position of the rotating part. 

The concept of FSM is actually involved changing the polarity of the flux linking the 

armature winding by the motion of the rotor [21]. Finally, the excitation flux produced 
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by permanent magnet flows from stator to rotor and oppositely from the rotor to the 

stator to accomplish one complete cycle. Similarly, this particular operation and 

principle take place for the rest of FEFSM and HEFSM as well.  

However, in FEFSM the excitation source used is FE, which has lower flux 

strengthening as compared to PMs and hence, causes the less production of torque 

density. Besides, due to the usage of FEC the copper losses and copper cost is 

increased. On the other hand HEFSM combines the both sources to produce the torque 

however, due the flux cancellation effects HEFSM has complexities to produce torque.  

Therefore, this research mainly focuses on the PMFSM implementing inner 

rotor structure along with various directions of PMs.  

1.2 Problem Statements 

Figure 1.1 shows a conventional 12S-10P three-phase PMFSM in which stator core 

consists of modular U-shaped laminated segments arranged next to each other with 

PMs slotted in between them. For flux switching operation principles, the PM 

magnetization polarity is being reversed from one magnet to another [22-24]. Stator 

armature winding consists of concentrated coils and each coil being wound around the 

stator tooth formed by two adjacent laminated segments and a magnet and it is 

however, inherits the disadvantage of high PM volume. Hence, variety of PMFSM 

designs have been reported since then.  To reduce the consumption of PM, the stator 

 
Figure 1.1: 12S-10P Conventional PMFSM Topologies 
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poles are replaced alternately by a simple stator tooth and therefore the new E-core is 

developed [24]. The stator core is merged to form an E-Core PMFSM stator and half 

of the PM volume in [18] is removed. The E-Core configuration is also presented in 

[25-27] with a combination arrangement between horizontal, and vertical of low-

coercive force (LCF) magnets. The horizontal magnets are alternately attached to the 

stator teeth tips, and the vertical magnets remain identical as the conventional design. 

Moreover, the middle E-stator teeth can be removed to enlarge the slot area, and 

consequently, the new C-core PMFSM is introduced [28-29]. On top of these 

topologies, the main constraints are magnetic flux leakage at the outermost tips PM 

which limits the distribution of flux and also their separated stator from one segment 

to another that is hard to manufacture and assemble. 

Therefore, to address all the shortcomings in existing PMFSMs including high 

PM volume, flux leakage, limited distribution of flux and manufacturing issues, new 

configurations of PMFSM implementing inner rotor structures are proposed in this 

research, such as 6S-10P salient rotor (SalR), 6S-8P spin rotor (SpR), 6S-8P segmental 

rotor (SegR) AlCiRaF, and 6S-10P SalR AlCiRaF are presented to execute 

comprehensive investigations over multiple design possibilities. 

1.3 Objectives of the Study 

The main objective of this research is to propose a new structure of a 3-phase 

permanent magnet flux switching machine using inner rotor configuration for light 

electric vehicles. In achieving the main objective, there are some specific objectives 

that must be fulfilled:  

(i) To design and investigate the new structure model of three-phase PMFSM 

implementing inner rotor configurations for high torque density. 

(ii) To analyse the performance of the proposed machines under various armature 

current densities for flux linkage, back-emf, cogging torque, torque speed 

characteristics, iron losses, copper losses of windings and efficiency. 

(iii) To optimize the proposed inner rotor PMFSM and compare the simulation 

results with conventional PMFSM for optimum performance. 
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1.4 Scopes of the Research 

Commercial Finite Element Analysis (FEA) package, JMAG-DESIGNER vers.14.1, 

released by Japan Research Institute (JRI) is used as a 2D-FEA solver throughout the 

study. Coil test analysis is performed for feasible topologies of inner and outer rotor 

PMFSM to confirm the operating principle. The limit of the current density is set to 

the maximum 30Arms/mm2 for armature winding, and PM is solely used to be the 

magnetic flux source. The electromagnetic performance, including back emf, cogging 

torque and average torque has been analysed and compared using 2D-FEA. The 

torque-speed characteristics are evaluated by varying the armature phase angle, θ. The 

iron and copper losses are calculated based on 2D-FEA and formula, which assist in 

calculating the efficiency of proposed PMFSM. Finally, the deterministic optimization 

technique will be used to achieve better average torque and power for PMFSM. 

1.5 Thesis Outlines  

This thesis deals with the study of newly proposed PMFSM with various rotor 

configurations.  This thesis is divided into five chapters, and the summary of each 

chapter is given below. 

(a) Introduction:  

The first chapter introduces the research, which includes the background of 

FSM and explanation regarding basic operating principle of FSM, problems of 

existing conventional PMFSM employing salient rotor and overlap windings, 

research objectives, research scopes and outlines of the thesis.  

(b) Literature review:  

Chapter two presents the overview and classifications of various electric 

motors used in light electric vehicles grouped under general electric motors and 

flux switching motors. Two kinds of electric vehicles were specified as hybrid, 

and all electric vehicles and two rotor types with configurations have been 

presented. The merits and demerits of general electric motors were highlighted 

and performance of various structures of FSM were comparedand optimization 

methods in electrical machines are discussed. From the findings, it was evident 
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that PMFSM offers free-loss excitation and viable for many applications, 

including automotive.   

(c) Research Methodology:  

Chapter three covers the project implementation has been divided into three 

stages including design various rotor pole of three-phase PMFSM, analysing 

performances of the proposed PMFSM and design optimization process. 

Initially, stage 1 is divided into two parts, namely geometry editor and JMAG 

Designer, while stage 2 is divided into two parts, which are no-load and load 

analysis by 2D FEA. Finally, stage 3 covers the optimization process for further 

design refinement as well as performances improvement. 

(d) Result and Analysis:  

Chapter four  discusses the design and performance analyses of the initially 

proposed motor as well as the optimized design. This chapter is divided into 

two parts: result analysis of machine design with various rotor poles structures 

of three-phase PMFSM using a salient rotor, segmental rotor with non-overlap 

windings, analyse performances of the proposed PMFSM. Performances of 

different PMFSM designs in open-circuit condition were analysed and 

compared. The best performance of the proposed topology has been further 

refined and optimized where maximum load condition is applied in the second 

part. 

(e) Conclusions and Future works: 

Chapter five describes and concludes the research and suggestions for future 

works. 

1.6 Chapter Summary 

This chapter briefly describes the type of motors used on the existing low torque high-

speed applications and identifying motor weaknesses. The 3-phase-phase the PMFSM 

using inner rotor configuration is introduced to overcome the drawbacks of previous 

3-phase PMFSM. Also, the objectives, scopes, and outlines of the research are also 

briefly described in this chapter to explain the implementation of this research. 
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ELECTRIC MACHINES: A REVIEW 

2.1 Introduction 

Electric motor (EM) receives an input electrical energy and transforms it into output 

mechanical energy. The device provides torque action and speed operation. As a result, 

the use of EM has brought significant advancement in all fields of technological 

developments and its application is found in low-cost domestic appliances, aerospace, 

and electric automotive [30].  

Conventional vehicles such as scooters and motorcycles over the years have 

been equipped with an internal combustion engine (ICE) in which fuel oil is fired in a 

closed chamber for propulsion, has posed numerous economic imperatives. Due to the 

high cost of fuel oil, EMs have been developed and installed to complement the torque 

output provided by ICE, and it enhances fuel economy in hybrid electric vehicle and 

scooters. Meanwhile, choosing a suitable electrical motor for electrical applications is 

always a challenging task because certain kinds of machines are not very effective [31-

33]. Motor types such as permanent magnet direct current (PMDC) motor, induction 

motor (IM), switched reluctance motor (SRM) and permanent magnet synchronous 

motor (PMSM) have been developed for automotive applications. Each of these 

motors has its own merits and demerits that need to be further improved [34].  

PMDC is a synchronous magnetic motor that places PMs on the stator and uses an 

electromagnet with its coil wound on a soft magnetic core as the rotor. The working 

principle of PMDC motor is similar to the DC motor such that when a conductor 

carrying current comes inside a magnetic field, a mechanical force is experienced by 

the conductor, and the direction of this force is governed by Fleming’s left hand rule. 
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As in a PMDC motor, the armature is placed inside the magnetic field of permanent 

magnet, the armature rotates in the direction of the generated force. The rotational 

force is obtained between the stator PMs and the electromagnetic induction produced 

on the rotor by the current flowing while the brush magnet poles switch [35]. The 

structure is simple and durable, and do not have field windings in the stator. 

Meanwhile, PMDC motor has been prominent in electric vehicle application because 

its torque-speed characteristics are suitable for propulsion requirements and the control 

of the orthogonal disposition of field and armature magnetomotive force (mmf) is not 

difficult. Unfortunately, owing to thelow permeability of PMs, its armature reaction is 

usually lowered. Moreover, PMDC motors allow a considerable reduction in the stator 

slot area due to the efficient use of radial space. Figure 2.1 presents cross sections of 

PMDC motors. 

IM consists of a stator frame made of laminations of silicon steel. The 

lamination is essential since a voltage is induced along the axial length of the steel as 

well as stator conductor. Construction of machines is rugged, low material cost, and 

its ability to operate in an unfriendly environment. The working principle of IM is 

based on the speed of the rotor at variance with the synchronous speed provided by the 

stator as there will be no relative speed and no induced-emf in the rotor. As a result, 

no current will flow, and torque will not be generated unless there is relative speed. 

Meanwhile, IM is used as a prospective candidate for electric applications due to its 

ruggedness, reliability, and low maintenance. In IM, there is an absence of PM 

 

   
 

Figure 2.1: Cross sections of PMDC motors [35] 
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therefore, no disposition of permeability. Consequently, there is a presence of 

breakdown torque at a critical speed, which limits constant power operation and 

attempts to operate the motor at maximum current beyond the critical speed will create 

a breakdown of the motor. On the downsides, IM is characterised by low efficiency at 

low speed light regions of electric drives arising from the secondary loss. Furthermore, 

IM requires high electrical loading to realize high torque density and low power factor 

[36]. Cross sections of induction motors are shown in Figure 2.2. 

The switched reluctance motor (SRM) like IM, does not utilize PM for 

excitation, the construction includes concentrated windings but no-windings on the 

rotor itself. SRM has the features of synchronous motor and tends themselves to the 

programming of their torque, and speed characteristics. The rotor position moves with 

the induction phase and the inductor changes periodically when the rotor rotates, which 

reflects the magnetic reluctance change. For automotive applications, SRM has 

compatibility of rotor with stator is an attractive motor due to its low-cost in mass 

production, low maintenance cost, high efficiency. Along with the ability to function 

in every harsh environment, easy to regulate, fault tolerant and suitable for high speed 

range [37- 39]. Conversely, SRM has low torque capability and generally noisy and 

can be used where controllability and shaft torque ripple is not critical. Meanwhile, the 

electromagnetic torque of SRM can be calculated as given in [40]. 
 




d
dLiTem      (2.1) 

   

Figure 2.2: Cross sections of IMs [36] 
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 Where emT  is electromagnetic torque, i  is phase current pattern, and L is the 

inductance of winding. 

P.J. Lawrenson (1967) happened to be the first person to champion the 

development of reluctance motors in the segmental rotor. In his work in [41], the 

single- phase 2S/2P SRM is derived from a conventional salient pole machine having 

replaced the central permeable cylinder of the salient pole rotor by a non-magnetic one 

whose magnetic circuit is shown in Figure 2.3 (a). The motor was experimentally 

validated excellent performance in terms of better power factor. Since then, many 

designs of SRM have been developed for various applications for automotive, as 

presented in Figure 2.3 (b) – (j).   

An example of SRM is the work of Ding, Linh & Yunpeng (2014) [42], which 

designed a modular motor comprising 6S/4P with E-core stator for high reliability 

automotive application. The motor is three-phase, composed of a segmented rotor 

which embraced hybrid and axial magnetic paths with cross-sections, as shown in 

Figure 2.3 (b).  

However, in [43], the structure proposed 6S/8P SRM drives to reduce the total 

weight, volume, and increasing the efficiency of the scooter propulsion system. The 

design optimisation of the motor was conducted using Ansoft- Maxwell2D software, 

and compared by simulating different driving conditions of vehicle, the motor is shown 

in Figure 2.3 (c). 

Another design is proposed by Kabir & Iqbal (2015) [44]. It is a 600 W three-

phase 12S/8P SRM using standard inverters to improve machine torque and power 

densities, which is compared with conventional SRM at the same base-speed under the 

same excitation level as shown in Figure 2.3 (d). 

Another design for high torque and low flux leakage is a new double layer per 

phase isolated SRM. The motor consists of different concentric independent windings, 

two layers of the stator poles, and three layers of the rotor pole. There are four types 

of SRM namely regular doubly cylindrical, disc type, multilayer, and linear motors, 

the proposed motor has longer pole length [45] as depicted in Figure 2.3 (e).  

In another example by Lian, et al (2015) in [46] designed a 12S/8P SRM with 

fully pitched windings for high torque suitable for electric vehicle applications. The 

developed motor has the same diameter as referenced in [45-46]. However, the 2D-
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FEA of the motor is based on ANSOFT. Figure 2.3 (f) shows the cross section of the 

motor.  

Taking the advantages of the short end winding and fault tolerance associated 

with SRM, Lorand & Mircea (2012) in [47] designed a 16S/14P SRM for critical 

applications. Figure 2.4 (a) shows this motor with modular stator construction. 

Calculation of the mean diameter of motor measured at middle of the air-gap is shown 

in [48]. 

     
    (a)       (b) 

 

   
    (c)       (d) 

 

   
    (e)       (f) 

Figure 2.3: Cross sections of SRMs for various applications (a) 2S/2P SRM  (b) 
6S/4P SRM (c) 6S/8P SRM (d)12S/8P SRM (e) Double layer SRM  (f) 12S/8P SRM 
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 Where gD is the distance of air-gap length, SQ , RQ are the stator/rotor pole 

numbers, ak , Lk  and are coefficients of the leakage factors chosen between 75-95%, P2N 

is the rated power, nN is the rated speed, Bgmax is the air-gap flux density in aligned 

position 

Another example is multi-layer SRM by Ferhat & Nurettin (2008) in [48] for 

torque ripple reduction, high starting torque and smooth torque performance capability 

[49]. The motor modified the three phase 6S/4P classical model for improved torque 

density. Construction of motor consists of two magnetically isolated components and 

each part is a layer as shown in Figure 2.4 (b).  

While all the aforementioned designs are inner rotors for hybrid applications, 

outer-rotor configuration is for all-electric and direct drive application. Vandana & 

Bayon (2013) had taken a bold step to develop SRM in outer rotor configuration [50]. 

This three-phase motor consists of 12S/26P for high torque and high efficiency. The 

selection of higher number of rotor is aimed at lowering the speed of rotor and thereby 

reducing iron loss. Figure 2.4 (c) shows the design feature of 12S/26P SRM in outer 

rotor. The instantaneous torque t of the designed motor is expressed as (2.3): 

 






d
dNIt       (2.3) 

 

 Where N is the number of turns, I is the peak phase current. 

However, average torque T is given as: 
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 Where m is the number of phases, a is the aligned flux, u  is leakage flux,  rN

number of rotor segments. 
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Another example in [51], outer rotor 8S/6P SRM is designed for high torque 

and to overcome the problem of noise and vibration which is always inherent 

disadvantage of SRM. It utilised the analytical Fourier fitting method for modelling 

which drastically reduced vibration to the minimal level. The cross section of the motor 

is shown in Figure 2.4 (d). 

In other development for improved torque density, permanent magnet 

synchronous motors (PMSM) such as the interior permanent magnet synchronous 

motor (IPMSM), surface mounted PM and inserted PM, the field poles are created by 

using PM. This magnet is made of high permeability and high coercivity materials like 

neodymium -iron-boron. As the name implies, PM is implanted inside, placed on the 

surface or inserted in the salient rotor core, as shown in Figure 2.5.  The design of 

IPMSM tends to be complex in that PMs are embedded right in the rotor core, and 

strength of rotor relies on the increase in the thickness ribs [36]. To overcome the 

    
        (a)      (b) 

 

       
     (c)             (d) 

Figure 2.4: Cross sections of SRMs for various applications, (a) 16S/14P SRM 
(segmented stator), (b) 6S/4P SRM, (c) Double 12S/26P SRM (salient rotor), and (d) 

8S/6P SRM (salient rotor) [48]-[50]. 
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challenges associated with IPMSM, various other designs have been proposed and 

fully discussed in [52-54]. Meanwhile, in all the mentioned motors, one thing is seen 

to be common is the location of active material on the rotor which adversely slows 

down the performance at high speed operation. Table 2.1 shows the performance of 

the general electric motors in terms of flux density, cogging torque, induced-emf 

average torque, and losses based on high level and low level. Furthermore, efficiency, 

weight and cost based on grade marks ranging from 1-5, where 5 represents the highest 

efficiency. 

    
       (a)           (b) 

 
 (c) 

Figure 2.5: Cross sections of PMSMs with different PM orientations, (a) Interior 
PM, and (b) Surface mounted PM (c) Inserted PM [52-54] 

Table 2.1: Performance comparison of general electric motors 
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2.1.1 Electric motors in outer rotor configuration 

Over the years, researchers had focussed on motor design in inner rotor configuration 

that limits the use of electric motors for other various applications. However, the 

application of outer rotor electric motor in the automotive application has assisted in 

the elimination of the mechanical transmission component in conventional vehicles, 

including a hybrid scooters. Therefore, motors in outer rotor design have advantages 

over inner rotor configuration due to the capability of delivering higher torque density 

and higher torque. In fact, the outer-rotor motor configuration offers benefits of space 

reduction and also achieves the high-to-weight ratio in application powered by stored 

electricity [56]. 

In [57], three-phase 24S/32P PMSM has been proposed for driving 

performance and dynamic characteristics. It consists of overlapping armature winding 

and surface mount permanent magnet synchronous machine (SMPMSM). The concept 

is applied to proper dynamic modelling, and control algorithm is required for 

performance and dynamic stability.  

Accordingly, Kong Yong, Mingyao Lin, Da Xu, et al., in [58], proposed a 

three-phase 24S/28P outer rotor permanent magnet synchronous motor (OR-PMSM) 

with amorphous stator core to improve the efficiency of OR-PMSM which is decided 

by magnetic loading while electric loading is proportional to the number of turns.  

Byeong-Mun, Ki-Chan & Jang-Young (2010) in [59] appeared to be the first to 

develop outer rotor type PMSM for an electric scooters as shown in Figure 2.5 (a). 

This motor consists of 24S/20P, a rotor mounted PM using concentrated armature 

winding and analysed using Green Motor Technologies. The electric loading of the 

motor is directly related to the flux density of PM and air-gap value. The electric 

loading, H  is expressed as:  

D
ImN

H ph




2       (2.5) 

 Where m  is the number of phases, phN is the number of turns in series per 

phase, I  is the root mean square phase current ( A ), and D is the diameter of the air-

gap (m). The larger the electric loading, the more copper, and the corresponding less 

iron in the motor.  

Two more examples of three-phase OR-PMSMs for scooter applications are 

shown in Figure 2.6. Figure 2.6 (a) is a three-phase 24S/20P PMSM according to [60], 
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was proposed to improve the efficiency of conventional OR-PMSM with a silicon steel 

core. It consists of amorphous state core and performance was validated using 2D finite 

element analysis, the three-phase 24S/20P PMSM is designed in which PMs have been 

inserted PM for high power performance as shown in Figure 2.6 (b). The two motors 

embrace different winding patterns and installed in the following electric scooters; 

Ujet electric scooter, Z-20 electric scooter, Aima electric scooters, Kingday electric 

scooters, Mobility electric scooter, and Terra motors, E-max, Vectrix and Zapino 

electric scooters and each operates with a different torque capability.  

Furthermore, a segmented stator permanent magnet synchronous motor 

(SegStator-PMSM) has been developed for high torque and high power [29]. It 

consists of a four-cell stator embracing all-stator teeth armature winding with each 

segment, three phase as shown in Figure 2.6 (c). The proposed motor is fault tolerant 

while using surface mounted PM on a cylindrical rotor. Among many electric motors 

for scooters, the proposed motor has achieved high average torque, but its performance 

is constrained by mounting PM on the rotating rotor. Performance comparison between 

    
       (a)           (b) 

 

 
(c) 

Figure 2.6: The cross sections of rotor PMs, (a) Surface mounted PMSM, (b) 
Inserted PMSM, and (c) SegStator-PMSM 
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the designs are presented in Table 2.2 in terms of armature winding, speed, torque 

density, power density, average torque and efficiency.  

 

2.2 Flux switching motor (FSM) 

Research and development have continued to improve on the performance of electric 

motors to overcome construction deficiency suitable for increased precision, less use 

of start-up energy, motor size, and less heat loss for effective output.  FSM has been 

founded with good advantages in terms of construction, average torque, and high 

efficiency. FSM is an advanced form of the synchronous machine with unique 

characteristics. Unlike the machine types in which active materials are also located on 

the rotor, this machine locates all materials on the stator, leaving the rotating rotor to 

remain a single piece of iron. These features project it to be used for speed operation. 

Furthermore, FSM operates with double electrical frequency [61]-[62].  

FSM has three internal types arising from excitation sources, namely, 

permanent magnet FSM, field excitation FSM and hybrid excitation FSM. While 

permanent magnet (PM) excitation flux is used in PMFSM, FEFSM uses field 

excitation coil that also needs external circuitry connection while HEFSM employs 

both PM and FE as main and secondary sources with external circuitry connections.            

In the search for an electrical machine with improved performance, Rauch & 

Johnson in [63] developed the maiden flux switch alternator using PM source located 

on the stator with flux switching principle [64] later known as ‘flux switching 

machine’. FSM is a synchronous machine in which the armature flux linkage changes 

Table 2.2: Performance comparison of outer rotor PMSMs [60] 
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with rotor position due to the change in permeance seen by the armature windings [41, 

65]. This machine consists of a pair of stator windings, a dual set of the laminated 

yoke, and a pair of PMs were located on the stator, while the rotor is a two salient pole 

stack of lamination on the shaft as shown in Figure 2.7.  

The flux paths shown by arrows in Figure 2.7 (a) indicate the flow of flux from 

left to right in both windings. When the rotor position is moved by a half-electrical 

cycle as in Figure 2.7 (b), the flux linkage had the same magnitude but the direction 

had been reversed as in Figure 2.7 (a). A complete reversal of flux was accompanied 

by each revolution of the rotor. Subsequently, the salient pole of the stationary part 

and stator operated in a conventional pulsating flux manner. PMFSM has a simple 

construction and requires no external field circuit connection, thus loss-free excitation. 

Based on the operating principle, the maiden design and development of PMFSM 

locates both PM flux source and armature winding on the stationary stator.  

2.2.1 Field excitation flux switching motor (FEFSM) 

FEFSM is a type of FSM which utilises field coil for excitation requiring external DC 

source. It is a high frequency alternator, proposed by Pollock & Wallace (1999) in 

[66]. They took the bold step to be the first to replace the PM of the machine with the 

appropriate field winding without altering the basic performance. The required 

resultant flux alignment was supplied by a field winding, and the scheme evolves from 

the inductor alternator 4S/2P with bipolar flux linkages and operating principle, as 

shown in Figure 2.8.  

 
       (a)          (b) 

Figure 2.7: Single-phase 4S/2P flux switch alternator (inner rotor) [63] 
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Meanwhile, with the emergence of alternate tooth stator, Dasgupta in [67] 

structurally mentioned the development of heteropolar FEFSM, which appeared 

simpler than all-pole of the same structure. This proposed motor has atime constant, 

more suitable for high frequency heating and other industrial applications. The basic 

configuration consists of slotted stator core laminations carrying both field and 

armature coils. For the 2S/2P FEFSM, the armature winding and field coils are being 

placed in the same armature slot or side by side while in 4S/4P design, the coils were 

arranged in an alternate winding pattern. The structures of both designs are shown in 

Figure 2.9 (a) and (b).  

However, the innovation of FEFSM design, in contrast to PMFSM, is the 

deployment of DC field coil and armature winding to give the required flux direction 

for rotation [17, 68]. Accordingly, the feasibility of FEFSM design is reputable in 

applications requiring high power densities and a good level of durability [69].  

Furthermore, two single-phase topologies 8S/4P [70] and 12S/6P FEFSM [71-

72] have been designed for industrial applications to reduce end-winding conductor 

materials as depicted in Figure 2.10. Each of them embraced overlapping winding 

between FEC and armature coil.  

Meanwhile, single-phase FEFSMs have problems ranging from overlapping 

windings between FEC and armature coil, low starting torque, fixed direction, and 

large torque ripple. In another development, Lian et al., (2015) in [46] designed a three-

 
           (a)             (b) 

Figure 2.8: Basic 4S/2P configuration of FEFSM, (a) 1st alignment: +ve flux 
linkage, and (b) 2nd alignment: -ve flux linkage [66] 

FEC Stator 

Rotor 
Armature coil 

FEC 

Armature coil 

PTTA
PERPUS

TAKAAN
 TUNKU

 TUN A
MINAH



20 

phase 12S/8P FEFSM employing segmented rotor as depicted in Figure 2.11. It 

consists of two sets of armature windings per coil phase and the same number of field 

coil in alternate stator tooth winding, in clockwise direction. Segmented rotor, which 

 
      Aligned poles, maximum flux linkage     Unaligned poles, minimum flux  

(a) 

 
       Aligned poles, minimum flux linkage     Unaligned pole, minimum flux 

(b) 

Figure 2.9: Single - phase FEFSM (alternate poles), (a) 2S/2P common slot, unipolar 
flux linkage, and (b) 4S/4P alternate slot, unipolar flux linkage [67] 

 

 
    (a)       (b) 

Figure 2.10: Single-phase FEFSM, (a) 8S/4P, and (b) 12S/6P [70], [71] 
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has the advantage of short flux path is used to control the saliency in synchronous 

reluctance machines, whose primary function in design is to provide a defined 

magnetic path for conveying the field flux to adjacent stator armature coils as the rotor 

rotates.  

2.2.2 Hybrid excitation flux switching motor (HEFSM)  

HEFSM combines both PM and FE  as primary source and secondary source, the name 

came from its excitation sources. The PM flux source offers loss-free excitation while 

FE requires external circuitry connections.  

Hoang, Lecrivain & Gabsi (2007) in [73], appeared to be the first to design 

three-phase hybrid FSM topology. It consists of 12S/10P HEFSM and 12 PMs in a 

circumferential direction, with 12 FECs distributed uniformly in the midst of each 

armature coil. The motor was designed for high speed application and to operate in a 

hostile environment.  Figure 2.12 (a) shows the proposed motor. So far, HEFSM has 

been investigated and found to have the potential of high torque, high power, variable 

flux capability and high efficiency for automotive application [74-75].  

Similarly, another design is the work of Liao, Liang & Lipo (1992) in [76], 

developed 6S/4P HEFSM which consists of all-tooth armature winding, the 

overlapping field winding with less volume and number of PMs in the circumferential 

direction, shown in Figure 2.12 (b). In the configuration, PMs are located at the end of 

the stator core and an obvious long end DC winding.  This is in series with the field 

excited by PM, and it limits the flux adjusting capability due to low permeability of 

the PM. 

 
Figure 2.11: Three - phase 12S/8P FEFSM (segmented rotor) [45] 
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Another example is a three-phase 12S/10P HEFSM having a higher rotor pole 

number for high torque capability by Hua, et al in [77]. This design consists of U-

shaped stator segments, and PMs are sandwiched between the stator segments leaving 

enough space for DC FEC, as shown in Figure 2.13. Meanwhile, effecting changes in 

a radial direction, the dimension of PM will affect the flux regulation capability of this 

HEFSM design structure.  

Another design is an idealized 6S/10P HEFSM proposed in [78] consisting of 

an E-shaped stator core where both PM and armature coil in the conventional motor 

were sacrificed to reduce PM volume as shown in Figure 2.14(a).   

Another example in [73] is 12S/10P HEFSM E-shaped stator core proposed by 

inserting DC field winding on the middle of E-core, torque density due to less volume 

(
a) 

(
b) 

  
       (a)              (b) 

Figure 2.12: Two examples of three-phase HEFSM, (a) 12S/10P HEFSM (2-layer 
stator core), and (b) 6S/4P HEFSM [76] 

 

 

Figure 2.13: Three-phase 12S/10P HEFSM [77] 

 

FEC 
Stator yoke 

Armature slot 
Rotor 

PM 
Stator PTTA
PERPUS

TAKAAN
 TUNKU

 TUN A
MINAH



23 

of PM may be significantly reduced as in Figure 2.14 (a). It has the same parameter 

dimensions with the HEFSM C-core. 

Another example is three-phase 12S/10P HEFSM, which houses the FEC at 

the extremity of the stator core in [73]. However, the rear diameter of the motor is 

enlarged for the FEC winding. Furthermore, an idealized three-phase 12S/10P HEFSM 

for high torque and high power density application was proposed by Erwan (2012) 

[79]. It consists of concentrated armature winding and alternate PMs arranged in the 

circumferential direction. The cross sections of 12S/10P HEFSM are illustrated in 

Figure 2.15. Table 2.3 is a comparison of the FSMs. It is clear that PM has loss-free 

excitation, and short end winding. These are apparent advantages of PM motors over 

FE and HE motors. Using the advantages offered by PM, more details will be given 

on PMFSM in Section 2.2.3. 

    
 
     (a)                 (b) 

Figure 2.14: Idealized 12S/10P HEFSMs, (a) 12S/10P HEFSM (E-core stator), 
and (b) 12S/10P HEFSM (2-layer stator core) [73], [79] 

 

 

Figure 2.15: Cross sections of 12S/10P HEFSM [79] 
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2.2.3 Permanent magnet flux switching motor (PMFSM) 

The maiden design of flux switch alternator from which the name flux switching 

machine is derived, used PM flux source excitation, thus PMFSM. The flux source is 

not subjected to the force arising from the body moving in a circular path. In PMFSM, 

the two active parts of armature winding and PM source are located on the static part 

of the stator for better heat transfer, the rotor is passive to allow for high rotational 

speed [15, 80]. In the principle of operation, FSM switches its polarity in the stator 

tooth by following the motion of the rotor, giving it an advantage over SRM, which 

operates using magnetic inductance change. PMFSM, based on the principle of flux 

switching, has attracted the researcher’s attention for continuous study. PM has 

additional advantages such as high torque density, good flux weakening capability, 

and high efficiency [81]. Meanwhile, various configurations of PMFSMs have been 

proposed to attain better performances in terms of high torque density, high torque, 

effective speed, and high constant power and efficiency for various automotive 

applications.  

R. Deodhar et al. [82] had proposed a single-phase 2S/3P PMFSM for high-

speed application as shown in Figure 2.16 (a). It has simple rotor construction, fully 

pitched and operating principle had been confirmed in [64]. Another example of 

single-phase PMFSM is 4S/8P designed for high-density application shown in Figure 

2.16 (b) and documented in [83]. The proposed motor consists of concentrated winding 

with PM sandwiched between the stator teeth. Meanwhile, the synchronous motor does 

not have self-starting torque necessary to give it a defined direction. Therefore, 

PMFSM topologies with compact disc-type structures have been designed in [84]. 

Table 2.3: Flux excitation source comparison of FSMs 

FEFSM HEFSM PMFSM 

External DC source for 
excitation is required 

External DC for source 
excitation is needed 

No external DC source is 
needed 

Simple construction Complex stator structure Simple  construction 
Presence of external circuitry 

connections 
Presence of external circuitry 

connections 
No external circuitry 

connections 
Uses field coil  Uses PM and field coil Uses PM flux source 

Presence of winding loss Presence of winding loss No winding loss 
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