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ABSTRACT 

 

 

Knock avoidance is crucial to establish a proper Diesel-CNG Dual Fuel (DDF) engine. 

The causes of this phenomenon are still vague due to the lack of knock detection and 

characterization methods available. This study presents a knock characterization 

technique using a statistical analysis based on engine block vibration signal. Several 

experiments were conducted on a 2.5-litre converted DDF engine running at a constant 

engine speed between 1400 rpm and 3000 rpm with several diesel to CNG fuel ratio. 

This study found that when the diesel to CNG fuel ratio reached 70:30 at 1800 rpm to 

3000 rpm, and 60:40 at 1400 rpm and 1600 rpm, engine knock was detected. A knock 

index was calculated from the vibration signal using Band-pass, Rectify, Integrate, and 

Compare (BRIC) method to determine knock intensity for each engine cycle. A three-

sigma rule was applied to determine the threshold level of knock occurrence at the 

tested engine speeds. The knock thresholds at 1400 rpm, 1600 rpm, 1800 rpm, 2000 

rpm, 2200 rpm, 2400 rpm, 2600 rpm, 2800 rpm, and 3000 rpm were found to have a 

knock index of 3.72, 3.49, 3.21, 2.71, 2.27, 1.80, 2.02, 1.80, and 1.73 respectively. 

Using a 5% knock cycle occurrence within the third and sixth standard deviation as a 

deciding criteria, a knock quality level was categorised as a vague, light, medium, and 

heavy knock. The analysed result shows that a severe knock occurred due to a sudden 

transition between a low and high knock intensity in a consecutive engine cycle, which 

yields a non-periodic mechanical shock. The calculated coefficient of variation of the 

knock index (COVKI) shows that the severe knock occurred when the COVKI is 0.30 

and above. It suggests that the knock phenomenon on a DDF engine occurs due to an 

abrupt heat release rate during the mixing-controlled combustion phase and micro-

explosion during the late combustion phase.
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ABSTRAK 

 

 

Fenomena ketukan perlu dicegah untuk menghasilkan enjin dwi bahan api diesel-CNG 

(DDF) yang sempurna. Punca berlakunya fenomena ini masih lagi samar disebabkan 

kurangnya kaedah pengesanan dan penciriannya. Kajian ini menghuraikan teknik 

pencirian fenomena ketukan menggunakan analisa statistik berdasarkan isyarat dari 

getaran bongkah enjin. Beberapa ujikaji telah dijalankan keatas enjin DDF berkapasiti 2.5-

liter pada kelajuan malar diantara 1400 rpm dan 3000 rpm dengan beberapa nisbah bahan 

api diesel kepada CNG. Kajian ini telah menemui bahawa fenomena ketukan berlaku 

apabila nisbah bahan api diesel kepada CNG mencapai 70:30 pada 1800 rpm ke 3000 rpm, 

dan 60:40 pada 1400 rpm dan 1600 rpm. Indeks ketukan telah dikira menggunakan kaedah 

Band-pass, Rectify, Integrate, dan Compare (BRIC) daripada isyarat getaran bongkah 

enjin untuk menentukan kekuatan ketukan untuk setiap kitaran enjin. Peraturan tiga-sigma 

telah diguna pakai untuk menentukan nilai ambang fenomena ketukan yang berlaku pada 

setiap kelajuan putaran enjin. Nilai ambang yang ditemui pada 1400 rpm, 1600 rpm, 1800 

rpm, 2000 rpm, 2200 rpm, 2400 rpm, 2600 rpm, 2800 rpm, dan 3000 rpm masing-masing 

berada pada indeks ketukan 3.72, 3.49, 3.21, 2.71, 2.27, 1.80, 2.02, 1.80, dan 1.73. Tahap 

kekuatan ketukan telah dikelaskan kepada samar, perlahan, sederhana, dan kuat 

menggunakan kriteria 5% kitar ketukan yang berlaku di dalam setiap sisihan piawai ketiga 

hingga keenam. Hasil analisa menunjukkan bahawa ketukan yang teruk berlaku 

disebabkan oleh perubahan mengejut antara ketukan berkekuatan perlahan dan kuat di 

dalam suatu kitar enjin yang berterusan, yang mana ianya membentuk suatu kejutan 

mekanikal yang tidak menentu. Pekali variasi indeks ketukan (COVKI) menunjukkan 

bahawa ketukan yang teruk berlaku apabila nilai COVKI pada 0.30 dan keatas. Hasil 

penelitian juga mencadangkan bahawa fenomena ketukan yang berlaku pada enjin DDF 

adalah disebabkan oleh peningkatan kadar pelepasan haba yang mendadak ketika fasa 

pembakaran pencampuran-terkawal dan letupan mikro ketika fasa hujung pembakaran. 
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CHAPTER 1 

 INTRODUCTION 

1.1 Background of Study 

 

Organization of the Petroleum Exporting Country (OPEC) has reported that the proven 

crude oil reserve had increased in 2017 (OPEC, 2018). Along with that, the 

International Energy Agency (IEA) has reported the fuel consumption in the 

transportation sector has been drastically growing for a few decades from 1980 to 

2015. In accordance with the projection, the growth will continuously increase by 1.2 

% annually until 2022 (IEA, 2017).  

Fossil fuel combustion emits harmful pollution. Some of the emissions are 

poisonous and causing serious health problems through direct exposure. The rest of 

the non-poisonous emissions affect health indirectly through climate change. As 

reported in 2017, about tens of thousands of death are estimated every year caused by 

climate change (WHO, 2017). 

Air pollution from the transportation sector has been listed as Short-Lived 

Climate Pollutants (SLPC), which contributes to global warming and climate change 

(WHO, 2015). Based on these issues, most of the developed countries, especially the 

United Kingdom and the United States have ruled some policies to mitigate this matter. 

In the United Kingdom, renewable energy regulation was proposed in 2001 and 

focused on electricity generation. The regulation was amended in 2009 by including 

the biofuel consumption for a vehicle (European Union, 2001, 2009a). Energy Policy 

Act of 2005 was introduced in the United States to enhance the utilization of efficient 

and renewable energy (42 USC 15801, 2005). This policy provides an incentive to the 
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program regarding renewable and efficient energy. Continuing from this policy, 

Environmental Protection Agency (EPA) launched the Renewable Fuel Standard 

Program in 2010 to replace the existing fuel programs. This program highlights the 

standard of biofuel used and has been amended to enhance sustainable energy 

utilization (40 CFR Part 80, 2010, 2012a, 2012b, 2013, 2016, 2017). 

 Global implementation of the sustainable energy policy will reduce fossil fuel 

demand. However, an encouraging increment of the world’s proven natural gas 

resources may lead to over-abundance. A study done by IEA in 2017 was showed that 

the natural gas supply and demand could be rebalanced by making a new policy to 

enhance the natural gas demand by switching coal and oil utilization to natural gas in 

the power, industrial, and transportation sectors (IEA, 2018).  

 Compressed Natural Gas (CNG) is a flexible fuel and suitable for various types 

of energy generators and has been used as the alternative for an internal combustion 

engine. Its application on a Spark Ignition (SI) engine is straight forward by installing 

an additional gas fuel system and promotes lower carbon emission than the gasoline 

fuel. However, its application on a diesel engine is not straight forward. A high octane 

rating of the CNG fuel needs a source of ignition for combustion. The dedicated 

Compression Ignition (CI) engine is converted to the SI engine by a major 

modification, but it demands a high initial cost and effort. Thus, a Diesel-CNG Dual 

Fuel (DDF) system is preferred to be applied by installing an additional gas fuel system 

on the diesel engine. This system operates by injecting the CNG fuel inside the 

cylinder and ignited by a small portion of the diesel fuel.  

According to the author’s previous study, the DDF engine promotes lower 

Carbon Dioxide (CO2) and Nitrogen Oxide (NOX) emission with comparable 

performance than the diesel engine. However, its Hydrocarbon (HC) emission was 

typically higher than the diesel engine and increased against the CNG fuel quantity 

increment (Ismail et al., 2018). Yet, several studies found that the over-increment of 

the CNG fuel quantity led to the knock phenomenon occurred and resulting in the 

engine damage (Wannatong et al., 2007).  
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1.2 Problem Statement 

 

The knock phenomenon is a part of the obstacle to establishing a DDF engine. It occurs 

when the CNG fuel quantity exceeds a certain limit in the diesel to CNG fuel ratio. 

Although this phenomenon is audible, its occurrence is difficult to be seen via 

combustion analysis from the in-cylinder pressure signal because it occurs at high 

speed and a certain bandwidth. Thus, the root cause of its occurrence when the CNG 

fuel exceeds the limit is still vague and uncharacterised due to the limitation of 

available technology. Various knock detection methods were proposed by post-

processing in-cylinder pressure trace, engine vibration signal, and ion signal even with 

mathematical analysis. However, those methods were complex, needs high-resolution 

equipment, and prone to false detection especially if it occurs at a low-intensity. Up to 

now, the best knock detection method is still unclear (Gómez Montoya et al., 2018). 

Therefore, in this work, an alternative knock detection method using an engine 

vibration signal with a statistical approach was evaluated, and the causes of the knock 

phenomenon on the DDF engine can be investigated to find opportunities for further 

improvement. 

 

1.3 Objectives 

 

The objectives of this study are: 

i. To determine diesel to CNG fuel ratio limits on a DDF engine before the knock 

occurrence. 

ii. To evaluate the use of the statistical method to index the knock phenomenon. 

iii. To classify the knock phenomenon of a DDF engine combustion using standard 

deviation. 

iv. To propose the probable causes of the knock phenomenon occurrence on a 

DDF engine. 
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1.4 Scopes of Study 

 

The scopes of this study are as below: 

i. The engine studied is a 4-cylinder 2.5-litre diesel engine with common-rail 

direct injection (2KD-FTV). Two gas injectors are installed on the intake 

manifold. 

ii. The diesel to CNG fuel mass ratio tested are 90:10, 80:20, 70:30, and 60:40, or 

until the knock phenomenon onset within the operating range from 1400 rpm 

to 3000 rpm engine speed on a chassis dynamometer. 

iii. The total fuel mass flow rate is set according to the 0.7 equivalence ratio. 

 

1.5 Significance of the Study 

 

This study evaluates an alternative knock detection method using statistics and 

analyses probable causes of the knock phenomenon occurrence on a DDF engine. The 

findings of this study can be applied to detect, predict, and prevent knock phenomenon 

occurrence on any fuel converted engine; and also to improve the DDF engine 

combustion. This study may also be a jumping-off point towards mitigating climate 

change through a low carbon emission by the DDF engine. 
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CHAPTER 2 

LITERATURE REVIEW 

2.1 Diesel Engine 

 

A diesel engine was invented by Rudolf Diesel in 1897, which was the golden era of 

the coal steam engine. It was designed to provide a higher brake power with greater 

efficiency than the steam engine. An early diesel engine uses a governor to regulate 

the desired fuel quantity. The fuel is premixed with air in the intake manifold before 

entering the cylinder. The air-fuel mixture is compressed to generate heat inside the 

cylinder. When it reaches its certain limit temperature, the fuel is auto-ignited and 

spontaneously combusted.  

Ideal combustion of the diesel engine should produce only CO2 and 

Dihydrogen Monoxide (H2O) emissions; however, it is hard to be achieved in actual 

combustion due to it being affected by several conditions. The diesel fuel presence is 

in a liquid form and not homogeneously mixed with air. It yields a non-uniform local 

air-fuel ratio region in the cylinder. When the combustion occurs, the flame propagates 

to the combustible air-fuel ratio zone either in a lean, stoichiometric, or rich zone. The 

local rich air-fuel ratio zone has a lack of oxygen content, forms soot and Carbon 

Monoxide (CO) emission due to poor oxidization of air-fuel mixture. Therefore, the 

diesel engine is operated in a lean air-fuel ratio below equivalence ratio 0.8 to keep 

soot formation below a tolerable limit. 

Diesel engine technology has been continuously improved to reduce hazardous 

emissions. Emission standard regulation has also been implemented to protect the 

environment and health from the internal combustion engine emissions. A well-known 
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emission standard is the European Emission Standard which has been implemented 

since 1970. In 1992, the regulation was amended and known as EURO 1, which 

controls the limit of CO, NOX and soot emissions from the vehicle. The regulation has 

been continuously amended following the needs, the capability of current vehicle 

technology and the capability of fuel. After several amendments, the current emission 

regulation is EURO 6 and has been implemented since 2014. 

 Today, diesel engine technology has gone further by lowering its emissions 

and improving its efficiency. The diesel common-rail direct injection system was 

introduced in 1995 and pioneered by Denso Corporation. The system was 

electronically controlled and adapted from the gasoline Electronic Fuel Injection (EFI) 

system, as shown in Figure 2.1. A high-pressure diesel fuel is supplied by a high-

pressure pump into the fuel rail. The fuel pressure is regulated by a pressure limiter 

and a suction control valve to ensure consistency of fuel pressure supplied. The fuel 

injector is controlled by an Engine Control Unit (ECU), and the fuel is directly injected 

into the cylinder. This system is able to supply a highly-pressurized fuel consistently 

at entire engine speed so that a proper combustion can occur since the cold start.  

 

 

Figure 2.1: Diesel common-rail direct injection system diagram 
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Since it was introduced in 1995, the diesel common-rail technology was 

expanded and followed by Bosch and Delphi, which were the well-known company in 

the automotive industry. The evolution of diesel common-rail technology is still on-

going and focusing on lower fuel consumption and CO2 emission to comply with the 

current emission regulation. The improvement has been made by increasing its 

operating pressure and fuel injection strategy so that it increases its efficiency. Today, 

the current diesel common-rail system is capable to operate up to 300 MPa, as shown 

in Figure 2.2. Several data in Figure 2.2 were collected from Flaig et al. (1999), Dohle 

et al. (2004), Koji Nagata (2004), Nagata et al. (2004), Kumano et al. (2006) and 

Matsumoto et al. (2013). 

 

 

Figure 2.2: Evolution of diesel common-rail technologies and European Emission 

Standard Compliance 
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2.2 Diesel Fuel 

 

Diesel fuel is distilled from the crude petroleum oil. It is less volatile and has higher 

energy density compared to petrol fuel. Thus, it releases more energy per volume and 

provides better fuel economy than petrol. Diesel fuel is commonly used in a 

compression ignition engine and characterized by its Cetane number. It is 

corresponding to the period of fuel to self-ignite and indexed on a special compression 

ignition engine. The higher Cetane number represents the shorter period of ignition 

delay. 

Diesel fuel has high sulphur content and pollutes the environment. The 

oxidization of sulphur during the combustion potentially produces sulphuric acid when 

it combines with water vapour (from the combustion or atmospheric) and contributes 

to the acid rain. The amount of sulphur content on the diesel fuel is directly linked to 

the production of pollution. Therefore, the standard regulation has been enforced to 

control the sulphur content of diesel. 

Starting from 1993, the Europe Union has reduced the allowable sulphur 

content of the diesel fuel from 5000 ppm to 2000 ppm; meanwhile, the United States 

has reduced it from 5000 ppm to 500 ppm (European Union, 1993). This level is set 

according to the capability of fuel refiner and current vehicle. Thus, the regulation took 

a long period for full implementation with some amendment and is continuously 

stringent. In 2001, the United States reported the exhaust catalytic converter damages 

due to the current level of sulphur content (40 CFR Parts 60 et al., 2001). Thus, the 

sulphur content was drastically reduced from 500 ppm to less than 15 ppm in the 

United States. In the European Union country, the reduction of sulphur content was 

made gradually, as shown in Figure 2.3. Since the regulation was implemented in 

1993, the sulphur content limit was set below 2000 ppm. It was reduced gradually to 

500 ppm in 1996, 350 ppm in 2000, 50 ppm in 2005 and 10 ppm in 2009 which was 

the Ultra-Low Sulphur Diesel (ULSD) (European Union, 1993, 1998, 2009b). 
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Figure 2.3: Diesel sulphur content according to the European Emission Standard 

 

 Besides lowering its sulphur content, an improvement of the diesel fuel has 

been made by blending it with biodiesel, which is derived from animal fat or vegetable 

oil. Biodiesel fuel for a vehicle was introduced in 2005 to promote renewable fuel for 

transportation in the United States and European Union countries (42 USC 15801, 

2005; European Union, 2003). 100% biodiesel fuel for fuelling a vehicle has faced a 

challenge due to its limitation. Besides the climate and engine design factors, 100 % 

biodiesel fuel is acidic and contains particle which damages the engine component. A 

high cost is needed to refine this fuel for vehicle use. Some country such as the United 

States provides 99.99 % biodiesel fuel for the vehicle due to incentive given by the 

government to the refiner. However, some country blends the biodiesel with petro-

diesel with a certain portion and gradually increasing it depending on the engine 

capability. Diesel blended with biodiesel was implemented by the European Union in 

2005 by mixing 2 % biodiesel with diesel fuel and known as diesel B2. According to 

the plan, the implementation of diesel B5 was scheduled in 2010, but it was done 

earlier as it has shown positive feedback. Later in 2009, diesel B7 was introduced and 

immediately implemented until today (European Union, 2003, 2009b).  

 

ULSD < 15 ppm 
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In Malaysia, biodiesel is derived from palm oil which is the second largest 

commodity after petroleum. The crude palm oil is refined to get Palm Methyl Ester 

(PME) which is a fuel agent. The implementation of diesel-biodiesel blend in Malaysia 

started with diesel B5 in 2014, diesel B7 in  2015, and diesel B10 in 2019 (The Star, 

2019). As it is blended with biodiesel, this fuel is still recognized as diesel fuel and 

should meet the local standard regulation. In the standard, the main properties concerns 

are Cetane number, density, distillation point and sulphur content so that it is safe and 

suitable to use for the vehicle. Table 2.1 shows the properties of diesel fuel with various 

biodiesel blends in Malaysia. 

Table 2.1: Diesel fuel properties by various blends in Malaysia (Malaysian Standard, 

2014; Petron Malaysia, 2014; Petronas Dagangan Berhad, 2005) 

Properties 

Standards 

Malaysia 

(EURO 2M) 

Petronas 

High-

Speed 

Diesel 

Petronas 

Dynamic 

Diesel  

(Euro 2M) 

Petron 

Diesel MAX 

(EURO 2M) 

Diesel Type N/A Diesel Diesel B5 Diesel B7 

Cetane Number > 49 55 49 54 

Ash, Mass % < 0.01 0.002 0.01 <0.01 

Pour Point, °C < 19 9 15 9 

Flash Point, °C > 60 91 60 63 
Kinematic Viscosity at 
40 °C, mm2/s  1.5 – 5.8 4.0 1.5-5.8 2.9 

Copper Corrosion  
(3 h at 100 °C) < 1 1 1 1 

Density at 15 °C, kg/l 0.810 – 0.870 0.8443 0.810-0.870 0.8314 
Acid Number, mg 
KOH/g < 0.25 0.1 0.25 - 

Electrical Conductivity, 
pS/m > 50 - 50 243 

Distillation at 95%, °C < 370 365.7 370 369 

Total Sulphur, mg/kg < 50 - 500 330 

Lubricity, µm < 460 - 460 240 
 

2.3 CNG as Alternative Fuel 

 

Natural gas is a by-product from upstream petroleum activity. It is trapped between 

the layer of rock and crude oil, and these layers should be penetrated to harvest the 
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crude oil, as shown in Figure 2.4. At the beginning of petroleum production, the 

trapped natural gas was released as waste or flared because it contains a harmful gas 

such as methane which pollutes the environment. After a few decades, the natural gas 

was refined as a by-product and utilized as fuel (Speight, 2007). 

 

 

Figure 2.4: Natural gas layer in petroleum reservoir (Chandra, 2006) 

 

 The natural gas composition contains up to 80% of methane (CH4), followed 

by ethane (C2H6), propane (C3H8), butane (C4H10), pentane (C5H12), and other inert 

gases. It has lower carbon to hydrogen ratio compared to gasoline (C8H18) and diesel 

(C12H24). Thus, it produces lower CO2 emission than gasoline and diesel. It has a lower 

density than air and typically stored at high pressure and called as Compressed Natural 

Gas (CNG). 

 OPEC has reported that the world proven natural gas had been encouragingly 

increasing from 1960 to 2017. On the other hand, the world natural gas demand was 

also increasing but still low compared to its production. In 2017, the world proven 

natural gas recorded was 199.4 trillion meter cubic while the world natural gas demand 

was 3.7 trillion meter cubic. The significant difference between reserve and demand 

Rock Layer 
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was 195.7 trillion meter cubic proving that the natural gas was abundant and capable 

to be sustained for an extended period. Natural gas is mainly utilized for power 

generation, and its demand is expected to continuously increase. However, sustainable 

energy policy by worldwide countries may reduce the natural gas demand since it 

promotes the utilization of renewable energy and reduces dependency on fossil fuel, 

as shown in Figure 2.5 (IEA, 2018). Since the natural gas reserve is still increasing, 

the decrement of its demand may lead to the over-abundance crisis for the next 

decades.  Therefore, a new policy scenario was simulated by IEA to rebalance its 

supply and demand. This policy enhances the natural gas utilization in power, 

industrial, and transportation sectors by switching coal and oil to natural gas. 

 

Figure 2.5: World proven natural gas reserves and demand (IEA, 2018; OPEC, 2018) 

 

 CNG fuel is widely utilized for power generation in the gas turbine engine. As 

it is abundant and has lower CO2 emission, it is preferred as an alternative for fuelling 

an internal combustion engine. CNG has a high Rating Octane Number (RON) which 

is up to 120 and suitable for an SI engine. Thus, it can be applied on a dedicated 

gasoline engine by an additional gas fuel system and called as a bi-fuel system. This 

system is capable of switching either to gasoline or CNG fuel mode and suitable for 

vehicle purposes. A study conducted by Aslam et al. (2006) using a CNG retrofit kit 

on a gasoline engine shows that the CNG engine emitted less CO2, CO and HC 

emissions than the gasoline engine. However, the NOX emission for the CNG engine 

was higher than the gasoline engine. Another study was done by Honda Research and 

Development using a special ECU for a CNG fuel system. This study shows that the 

World demand projection by IEA Reported by OPEC 
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CNG engine had lower performance than the gasoline engine with a 12 % power 

reduction and 13 % torque reduction (Yamamoto et al., 1994).  

 The CNG fuel application on a diesel engine is not straight forward. It is unable 

to self-ignite by the compression and demand a source of ignition for combustion. An 

existing diesel engine was converted to the CNG engine by removing an original diesel 

fuel system and replaced by a gas fuel system. A major modification was done by 

altering compression ratio (to suit with the CNG fuel for knock avoidance) and ignition 

system installation (Raine et al., 1988). The conversion process was irreversible and 

only allowed the engine to operate by a single type of fuel. Thus, the system is called 

a mono-fuel system. A study done by Azmir et al. (2013) shows that the CNG engine 

performance was lower than the diesel engine. Although the CO2 emission was 38 % 

lower, the HC, CO and NOX emission were higher than the diesel engine.  

The CNG mono-fuel system shows several disadvantages as an alternative for 

a diesel engine. A high investment is needed for the engine conversion, and it limits 

the fuel type usage (Chouykerd et al., 2008). Therefore, a DDF system is preferred to 

be applied for fuelling the CNG fuel on the diesel engine. This system uses CNG as 

the main fuel and ignited by a portion of the diesel fuel. This system is more practical 

and economical than the mono-fuel system. It is able to perform either with the DDF 

system or diesel mono-fuel system, and the conversion consists of an additional gas 

fuel system without modifying the existing engine system or geometry.  

 

2.4 DDF Engine 

 

DDF engine is an alternative way for fuelling the CNG fuel on a dedicated diesel 

engine. Since the CNG fuel needs a source of ignition for combustion, a small amount 

of diesel fuel is used as the igniter. The system operates by supplying a portion of the 

CNG fuel into the intake manifold either by using induction or injection method. The 

CNG fuel is premixed with air in the intake manifold before entering the cylinder. The 

air-fuel mixture is compressed in the cylinder, and the diesel fuel is injected to ignite 

the combustion. Therefore, this engine comprises the Otto cycle and Diesel cycle 

(Weaver & Turner, 1994).  
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 The DDF engine conversion on the dedicated diesel engine is straight-forward. 

It can be achieved by installing an additional gas fuel system without altering the 

original engine geometry. The CNG fuel can be supplied by induction method using a 

gas mixer or injection method using a gas injector at the intake manifold. The 

compression ratio of the engine is maintained to ensure self-ignition of the diesel fuel. 

This simple conversion process makes it easier and economical than a CNG mono-fuel 

system. Christopher S. Weaver (1994) stated that the DDF engine is highly useful 

because its operation is interchangeable either diesel single fuel or DDF mode. It 

provides a benefit when it operates at the lack of CNG supply area and makes it more 

convenient than the CNG mono-fuel system. Compared to a diesel engine, the DDF 

engine promotes lower soot emissions and becomes an alternative for ULSD (Mattson 

et al., 2018).  

Previous studies have shown that the DDF engine performance is comparable 

to the diesel engine and promotes lower CO2 and NOX emissions at a certain condition, 

such as fuel ratio and engine speed (Ismail et al., 2018). It can be better or worse than 

the diesel engine due to several factors. According to several studies, the factors 

affecting the DDF engine performance and emissions are diesel to CNG fuel ratio, 

diesel injection timing, diesel injection quantity, intake temperature and the others.  

 

2.4.1 DDF Engine Performance 

 

Brake Specific Fuel Consumption (BSFC) is one of the common practice to compare 

the engine performance between different fuels. The BSFC is calculated by dividing 

fuel mass flow rate respective to the brake power to obtain fuel mass consumed to 

produce 1 kW.h of power. Most of the studies have shown that the fuel consumption 

of a DDF engine is higher than a diesel engine (Karagöz et al., 2016; Lounici et al., 

2014; Papagiannakis & Hountalas, 2004). The poor utilization of the gaseous fuel is 

observed by a high HC and CO emissions (Lounici et al., 2014). However, an 

improvement of fuel utilization is observed at higher engine load where less fuel is 

consumed to generate the brake power.  
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Figure 2.6: Total BSFC against engine load at various engine speeds (Lounici et al., 

2014) 

 

Since the DDF engine uses different fuels with different calorific values, Brake 

Specific Energy Consumption (BSEC) is preferred to be used to compare the engine 

performance (Misra & Murthy, 2011; Ryu, 2013a, 2013b). The BSEC is calculated 

using the following equation: 

 

BSFC 
Power

m
  (2.1) 

BSEC 
Power
m CV


  (2.2) 

 

Power
CNGCVCNGmDieselCVDieselm 




 (2.3) 

Where,   

m  = Mass flow rate (2.4) 

CV = Calorific value (2.5) 
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 A study done by Ryu (2013b) showed that the BSEC for the DDF engine was 

higher than the diesel engine. The study was done at 1800 rpm engine speed across the 

engine load. The BSEC for the DDF engine was significantly higher than the diesel 

engine at low engine load. When the engine load was increased, the BSEC for the DDF 

engine was slightly higher than the diesel engine. In this study, the equivalent ratio 

was not kept constant across the engine load and made it incomparable. 

 In the author’s previous study, the air-fuel ratio was kept constant across the 

engine speed with various diesel to CNG fuel ratio tested. As shown in Figure 2.7, the 

BSEC for the DDF engine is mostly higher than the diesel engine against the engine 

speed. However, the BSEC for the DDF engine is slightly lower than the diesel engine 

at 2500 rpm engine speed using 70:30 diesel to CNG fuel ratio. It shows that 30 % of 

CNG fuel mass fraction is able to improve the DDF engine performance at certain 

engine speed and the DDF engine has a potential to be an alternative for a diesel engine 

by controlling its fuel ratio (Ismail et al., 2018). 

 

 

Figure 2.7: BSEC between the DDF engine and diesel engine (Ismail et al., 2018) 

 

 On the other hand, BTE is used to determine the energy balance of the engine. 

This parameter indicates the efficiency of fuel burned to produce a brake power. A 

study done by Karagöz et al. (2016) showed that the BTE of the DDF engine was lower 

than the diesel engine, as shown in Figure 2.8. The experiment was done at a constant 

1500 rpm engine speed with the various CNG fuel fractions. It showed that 15 % of 
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the CNG fuel fraction leads to a significant reduction of BTE; however, it was 

improved with further increment of the CNG fuel fraction. 

 

 

Figure 2.8: BTE at various CNG fuel fractions (Karagöz et al., 2016) 

  

 Based on the previous study, the CNG fuel fraction increment improves the 

DDF engine performance even lower than a diesel engine. A study of the CNG fuel 

fraction and equivalence ratio was done by Vávra et al. (2017) as depicted in Figure 

2.9. The experiment was done at 1500 rpm engine speed with various CNG fuel 

fraction and equivalent ratio. At stoichiometric condition, Indicated Mean Effective 

Pressure (IMEP) was increased with the increment of the CNG fuel fraction. When the 

equivalent ratio was lean, the IMEP was retarded and slightly decreased in respect to 

the increment of the CNG fuel fraction. The DDF engine efficiency was lower than 

the diesel engine, and the increment of CNG fuel fraction led to a reduction of its 

efficiency. As shown in the figure, smoke emission for the DDF engine is higher than 

the diesel engine. The smoke emission increased when the equivalent ratio was close 

to stoichiometric. When the CNG fuel fraction was increased, a significant increment 

of smoke emission appeared to be in between 20 % and 50 % CNG fuel fraction at 

stoichiometric. However, the smoke emission decreased when the CNG fuel fraction 

exceeded 50 %.  
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Figure 2.9: DDF engine efficiency and smoke emission across IMEP and fuel ratio 

(Vávra et al., 2017) 

 

2.4.2 DDF Engine Combustion 

 

According to Christopher S. Weaver (1994), DDF engine combustion is a combination 

of the Diesel cycle and Otto cycle. Several factors which influence the quality of 

combustion are engine load, pilot injection timing, pilot injection pressure, and fuel 

ratio of diesel and CNG. The combustion duration and its intensity are estimated from 

the heat release rate diagram, which is the most valuable information for the engine 

combustion (Heywood, 1988).  

 The study conducted by Papagiannakis & Hountalas (2004) showed that in-

cylinder pressure for a DDF engine was lower than a diesel engine. However, Lounici 

et al., (2014) and Selim (2001) showed that the in-cylinder pressure and heat release 

rate for the DDF engine was lower than the diesel engine at low-load and low-speed 

engine operation. When the engine speed was increased, the in-cylinder pressure and 

heat release rate for the DDF engine was higher than the diesel engine. At high-load 

engine operation, in-cylinder pressure and heat release rate for DDF engine were 

higher than the diesel engine for both low-speed and high-speed. The comparison of 

the in-cylinder pressure and heat release rate between the DDF engine and diesel 

engine are tabulated in Table 2.2. 
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Table 2.2: In-cylinder pressure and heat release rate comparison of a DDF engine to 

diesel engine (Lounici et al., 2014; Selim, 2001) 

In-Cylinder Pressure and Heat Release Rate 

Engine Operation Low Speed High Speed 

Low Load 
DDF engine was lower than 

the diesel engine 

DDF engine was higher 

than the diesel engine 

High Load 
DDF engine was higher 

than the diesel engine 

DDF engine was higher 

than the diesel engine 

 

In-cylinder pressure and heat release rate for the DDF combustion compared 

to the diesel combustion are fluctuated against the combustion phases, as shown in 

Figure 2.10. During the compression stroke, in-cylinder pressure for the DDF engine 

was lower than the diesel engine. The lower in-cylinder pressure during compression 

stroke for the DDF engine was due to the higher specific heat capacity of CNG and air 

mixture. At the initial stage of the combustion stroke, the DDF engine combustion was 

retarded by a few degree crank angle, but it released significant higher energy than the 

diesel engine. However, the combustion duration for the DDF engine was shorter than 

the diesel engine. 

 

 

Figure 2.10: In-cylinder pressure and heat release rate for diesel engine and DDF 

engine (Lounici et al., 2014) 

 

Effect of diesel injection timing on the DDF combustion was investigated at 

constant engine speed, load and fuel quantity (Aroonsrisopon et al., 2009; Ryu, 2013b; 

Selim, 2001; Zhang et al., 2015). According to the results, pressure rise rate and heat 
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release rate were increased against the diesel injection timing advancement. An early 

diesel fuel injection at low in-cylinder pressure prolonged ignition delay resulting in 

increased pressure rise rate and heat release rate. As shown in Figure 2.11, pressure 

rise rate for the DDF and diesel engine are almost similar between -20 °CA and -28 

°CA; however, pressure rise rate for the DDF engine is significantly higher than the 

diesel engine when the diesel injection timing exceeds -30 °CA. It is because of the 

presence of methane in fuel mixture that prolongs ignition delay and increases the 

pressure rise rate (Selim, 2001).  

 

 

Figure 2.11: Pressure rise rate against pilot injection timing for diesel and DDF 

engine (Selim, 2001) 

 

 Over-advancement of diesel injection timing has led to misfire combustion. A 

study conducted by Aroonsrisopon et al. (2009) stated that the misfired combustion 

occurred in several engine cycles when the diesel fuel injection timing was at -45 °CA. 

When it was retarded to -30 °CA, an early start of combustion was observed by 

maximum in-cylinder pressure. Ryu (2013b) suggested that the IMEP should be 

increased against the diesel injection timing advancement. The highest IMEP was 

found when the diesel injection timing was at -23 °CA and this is almost similar to the 

study by Aroonsrisopon et al. (2009).  
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In another case, double-pulse diesel injection timing was introduced using first 

diesel injection at -45 °CA with various second-pulse diesel injection timing from -38 

°CA to -10 °CA (Aroonsrisopon et al., 2009). The stable engine operation was found 

when the second pulse diesel injection timing was at -30 °CA; however, it drastically 

increased the NOX emission. The unstable engine operation was found when the 

second-pulse diesel injection timing was retarded after -20 °CA. The late diesel fuel 

injection retards fuel vaporization and air-fuel mixture resulting in poor combustion 

and exhaust emissions. 

 Effect of diesel injection pressure on a DDF engine was studied by Ryu (2013a) 

and Zhang et al. (2015). It showed that the increment of diesel injection pressure 

improves combustion and IMEP on the DDF engine. When the diesel injection 

pressure was increased, better fuel atomization occurred and improved the ignition 

process. It fastens the combustion and increases the heat release rate.  

 Fuel ratio of diesel fuel to CNG fuel is the main factor that affects combustion. 

In actual practice, the fuel ratio for the DDF engine does not necessarily need to be 

constant but is specified to the engine speed and load. In term of its ignitability on a 

stock diesel engine, 30:70 of diesel fuel to CNG fuel ratio is easy to be combusted 

(Zulkifli et al., 2015). Another study shows that it is possible to obtain up to 90 % of 

CNG fuel fraction with higher power output than the diesel engine (Dahodwala et al., 

2014; Lim et al., 2012).  

Wannatong et al. (2007), Zhang et al., (2015) and Karagöz et al. (2016) 

demonstrated that in-cylinder pressure increased respectively with the CNG fuel 

fraction increment. However, the in-cylinder pressure dropped when the CNG fuel 

fraction reached 86 %, as shown in Figure 2.12. When the CNG fuel fraction reached 

the limit, the combustion characteristic changed. Besides retarded ignition delay, the 

premixed and mixing-controlled combustion phases were unrecognizable. When the 

CNG fuel fraction was below the limit, the ignition delay was shortened against the 

CNG fuel increment, but an excessive CNG fuel fraction led to the knock phenomenon 

occurrence. 
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Figure 2.12: DDF combustion against CNG fuel fraction (Wannatong et al., 2007) 

 

An experiment conducted in a constant volume chamber showed that the 

increment of CNG fuel fraction increases in-cylinder peak pressure, speed heat release 

rate and shortens combustion duration. However, it drops when the CNG fuel fraction 

is over than 40 % (Firmansyah et al., 2017, 2015). As shown in Figure 2.13, in-cylinder 

pressure was increased against the CNG fuel fraction increment from 0 % to 40 %. 

However, ignition delay started to prolong at the 40 % CNG fuel fraction. In-cylinder 

pressure was slightly decreased at the 50 % CNG fuel fraction, but ignition delay was 

significantly high.  

 

Figure 2.13: In-cylinder pressure at various fuel ratios in a constant volume chamber 

(Firmansyah et al., 2017) 
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 In the same study, high-speed combustion images were photographed to 

investigate the combustion phase for the DDF combustion, as shown in Figure 2.14 

(Firmansyah et al., 2015, 2017). According to the figure, the diesel fuel combustion 

shows diffusion flame and occurs in a long duration; meanwhile, the DDF combustion 

shows a bright spot flame with a short duration. It yields a scattered hotspot and could 

increase heat release rate four times faster than the diesel combustion. The scattered 

hotspot is formed by the diesel fuel which is distributed due to the CNG fuel 

combustion. The CNG fuel combustion suppresses and delays the diesel fuel 

combustion until it is scattered inside the chamber. This scattered fuel yields a multi-

ignition point inside the cylinder.   

 

 

Figure 2.14: Photography image of the DDF and diesel fuel combustion (Firmansyah 

et al., 2015, 2017) 

 

 On the other hand, the DDF engine combustion with constant diesel fuel was 

experimented by Shioji et al. (2001), as shown in Figure 2.15. The experiment was 

conducted using a fixed diesel fuel quantity, and the CNG fuel quantity was regulated 

to reach the desired equivalence ratio. This study showed that the heat release rate 

increased against the equivalence ratio increment. The shape of the heat release rate 

graph for the DDF combustion and diesel combustion was quite identical when the 

equivalence ratio was at 0.5 and below. At equivalence ratio above 0.5, the heat release 

rate graph showed a significant increment of heat release rate during the mixing-

controlled combustion phase. A sharp spike of heat release rate at equivalence ratio of 

0.90 indicated that rapid combustion occurred at the mixing-controlled combustion 
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phase. According to this study, Shioji et al. (2001) stated that a high-frequency 

vibration was detected during the experiment and due to the knock phenomenon 

occurrence. It was unable to be seen in the plotted graph due the sample was averaged 

from 25 combustion cycles.  

 

 

Figure 2.15: DDF engine combustion at various equivalence ratios (Shioji et al., 

2001)  

 

 The previous study reported that stoichiometric combustion of the DDF engine 

was less efficient than the diesel engine due to deterioration of chemical efficiency and 

higher heat losses to the cylinder wall (Vávra et al., 2017). During the stoichiometric 

condition, maximizing CNG fuel fraction ledto the temperature increase and exceeded 

the reliable limit of the diesel injector operation. The diesel injector tip was overheated 

and led to coking and fouling. The wear assessment study on the diesel injector tips 

was done at the stoichiometric condition and showed the increment of CNG fuel 

fraction increased the diesel injector tip temperature, as shown in Figure 2.16. When 

the CNG fuel fraction decreased, the diesel injector tip temperature was also decreased. 

The diesel injector tip temperature after 2925 second was not measured because the 
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