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ABSTRACT 

 
 
 
 

Osteoarthritis due to rapid aging population in Malaysia and developed countries leads 

to an extensive application of titanium artificial hip implants. However, titanium alloys 

(Ti-6Al-4V) cannot directly adhere with human bone due to bio-compatibility issue. 

Thus, Hydroxyapatite (HAp:Ca10(PO4)(OH)2) coating which consists of main 

composition of human bone is plasma sprayed on titanium implants to maintain 

fixations during bone in-growth process. HAp coatings are susceptible to fail due to 

brittle fractures (coating through thickness crack) to initiate delamination which 

promotes fretting wear behaviour. Fretting wear particles are concerned for activating 

inflammations at surrounding organs, which lead to loosening of implants or 

subsequent failures. Present research aims to develop a finite element model to 

examine delamination-fretting wear behaviours that can suitably mimic actual loading 

conditions at HAp-Ti-6Al-4V interface of hip implant femoral stem component to 

formulate maximum wear depth predictive equation as a novel and fast failure 

prediction tool. Three simple finite element contact configuration models subjected to 

different mechanical and tribological properties consist of contact pad (bone), HAp 

coating and Ti-6Al-4V substrate are developed using contact modelling, cohesive zone 

modelling (CZM) and adaptive wear modelling (UMESHMOTION) approaches to be 

examined under static simulation. The developed finite element models are validated 

and verified with modified Hertzian theoretical solution and reported literatures. The 

findings revealed that significant delamination-fretting wear is recorded at contact 

edge (leading edge) as a result of substantial contact pressure and contact slip driven 

by stress singularity effect. Tensile-compressive condition (R = -1 ) experiences most 

significant delamination-fretting wear behaviour (8 times higher) compared to stress 

ratio R = 0.1 and R = 10. Finally, maximum delamination-fretting wear depth 

predictive equations are successfully formulated with significant goodness of fit and 

reliability as a fast failure prediction tool.     
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ABSTRAK 

 
 
 
 

Osteoarthiritis disebabkan populasi penuaan yang pantas di Malaysia dan negara maju 

yang lain membawa kepada penggunaan prostesis pinggul aloi titanium secara meluas. 

Namun, aloi titanium tidak dapat dicantum secara langsung pada tulang manusia 

disebabkan masalah ketakserasian bio. Oleh itu, lapisan Hidroksiapatit 

(HAp:Ca10(PO4)(OH)2) disalutkan pada prostesis pinggul untuk mengekalkan 

penetapan semasa proses pertumbuhan tulang. Lapisan HAp terdedah kepada 

keretakan ketebalan menyeluruh sampai antara muka HAp-Ti-6Al-4V dan 

menyebabkan delaminasi lapisan serta mempercepatkan proses haus penggeselsuaian. 

Partikel-partikel haus penggeselsuaian boleh mengaktifkan keradangan pada organ 

sekitarnya sehingga boleh melonggarkan prostesis pinggul serta kegagalan berikutnya. 

Penyelidikan ini bertujuan membangunkan model kaedah unsur terhingga (FEM) 

untuk menganalisis haus penggeselsuaian-delaminasi pada antara muka HAp-Ti-6Al-

4V yang tertakluk kepada keadaan beban yang sebenar dan merumuskan persamaan 

ramalan kedalaman maksimum haus penggeselsuaian-delaminasi sebagai alat ramalan 

kegagalan yang pantas. Tiga model FEM yang terdiri daripada pad kontak, lapisan 

HAp dan substrat Ti-6Al-4V tertakluk kepada sifat mekanikal dan tribologikal yang 

berbeza dibangunkan menggunakan pendekatan contact modelling, cohesive zone 

modelling (CZM) dan adaptive wear modelling (UMESHMOTION) untuk dikaji di 

bawah simulasi statik. Model FEM disahkan dengan teori Hertzian yang diubahsuai 

dan kajian sebelumnya. Hasil kajian menunjukkan bahawa haus penggeselsuaian-

delaminasi yang ketara direkodkan pada pinggiran kontak disebabkan singulariti 

tegasan didorong oleh tekanan sentuh dan slip sentuh. Nisbah tegasan (R = -1) 

menunjukkan haus penggeselsuaian-delaminasi yang 8 kali lebih tinggi berbanding 

dengan nisbah tegasan R = 0.1 and R = 10. Akhirnya, persamaan ramalan kedalaman 

maksimum haus penggeselsuaian-delaminasi berjaya dirumuskan dengan ketepatan 

dan reliabiliti yang tinggi untuk digunakan sebagai alat ramalan kegagalan yang pantas 

dan tepat. 
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CHAPTER 1 
 
 
 
 

1 INTRODUCTION 
 
 
 
 

1.1 Background of study 

 
 

Hip joint is one of the important synovial ball and socket joints which connecting 

femur with pelvis in human body (Abd-elsayed, 2019). Basically, hip joint is made up 

of femoral head (ball) and acetabulum (socket) as shown in Figure 1.1. The hip joint 

transmits load from lower limb through the pelvis to the axial skeleton. However, hip 

diseases are prone to occur due to injuries, infections, chronic conditions and 

developmental conditions. Osteoarthritis, inflammatory arthritis, bone fracture, 

slipped capital femoral epiphysis, abnormal developmental conditions, soft tissue pain 

and perthes disease are among the common hip disorders (Fallahnezhad, 2018). 

Osteoarthritis is the most common form of hip disorders that affecting millions 

of people around the globe. Osteoarthritis is a condition where the protective cartilage 

that cushions at hip ball and socket joint is worn out over time as illustrated in Figure 

1.2. The deterioration of protective cartilage will cause bone rubbing on bone and 

worsening of connective tissues/muscles at hip joint. Osteoarthritis is one of the critical 

hip disorders, especially in developed countries due to rapid aging population (Otsuka 

et al., 2016). In fact, osteoarthritis is a degenerative disorder that worsens over time 

and can lead to several complications such as chronic joint pain, immobility and 

disability. Thus, total hip replacement (THR) surgery is required to replace damaged 

or worn out hip joints. Damaged protective cartilage and femoral head of hip joint are 

removed and replaced with hip prosthetic components (artificial hip implants) which 

made up of acetabular cup, plastic inner, femoral head and stem which connecting 

pelvis with femur as shown in Figure 1.2.        
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Figure 1.1: Hip joint anatomy (Fallahnezhad, 2018) 

 

 

Figure 1.2: Osteoarthritis and total hip replacement (THR) surgery (Fallahnezhad, 
2018) 

 

The Australian Orthopaedic Association National Joint Replacement Registry (Graves 

et al., 2004; System, 2019) has reported that 88.8 % of total hip replacement (THR) 

surgery is attributable to osteoarthritis condition. 

 Artificial hip implants utilised in total hip replacement (THR) surgery is 

normally made of titanium alloys (Ti-6Al-4V). The extensive application of titanium 
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alloys (Ti-6Al-4V) in biomechanics field mainly as artificial hip implant is 

predominant due to its low weight, high strength and corrosion resistance 

characteristics (Nagentrau et al., 2019). However, titanium alloys (Ti-6Al-4V) cannot 

directly adhere to human bone due to biocompatibility issue (Nagentrau et al., 2020). 

Thus, bonds/coating that having similar properties of bone minerals is necessary to 

increase bone bonding ability with titanium (Ti-6Al-4V) artificial hip implants. 

Hydroxyapatite (HAp:Ca10 (PO4) (OH)2), a bio-ceramics material which contains main 

composition of human bone is broadly used to promote bonds between bone and 

titanium (Ti-6Al-4V) artificial hip implants (Otsuka et al., 2016).  

Hydroxyapatite (HAp) coating is deposited on Ti-6Al-4V artificial hip implant 

femoral stem by plasma spraying technique. Practically, Hydroxyapatite (HAp) coated 

Ti-6Al-4V artificial hip implant femoral stem can achieve good fixation with human 

bone upon completion of subsequent adhesion due to bone ingrowth process. On the 

other hand, Hydroxyapatite (HAp) coating is susceptible to fail due to fatigue cracks, 

brittle fracture, delamination and fretting wear (Otsuka et al., 2016). Consequently, the 

effectiveness of Hydroxyapatite (HAp) coating is greatly challenged in long term 

usage more than 10 years. Hydroxyapatite (HAp) coating can experience coating 

through thickness crack (vertical crack) due to fretting fatigue as results of gait cycle.  

Hydroxyapatite (HAp) coating interfacial delamination is initiated as coating 

through thickness crack (vertical crack) reached until the interfaces of HAp-Ti-6Al-

4V and HAp-human bone respectively. The coating delamination condition can lead 

to relative contact slip which accelerating fretting wear behaviour at interfaces. Figure 

1.3 presents the delamination-fretting wear mechanism at hip implants. Wear particles 

are formed from delamination-fretting wear mechanism able to activate inflammations 

at surrounding organs, which causes implant loosening and subsequent failures 

(Nagentrau et al., 2019). Thus, such a condition can increase the risk of artificial hip 

implant revision surgery. 
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Figure 1.3: Delamination-fretting wear failure mechanism (Nagentrau et al., 2019) 

 

However, to the best of authors knowledge, far too little attention has been paid 

to combined delamination and fretting wear behaviours at artificial hip implant 

femoral stem part that can suitably mimic actual loading conditions. In fact, most of 

the open literatures are focussing on failure behaviour at  acetabular cup (ball-socket 

interface) and very limited studies are considering artificial hip implant femoral stem 

part (English et al., 2015; Fallahnezhad et al., 2017; Otsuka et al., 2016). Therefore, 

this research aims to develop a delamination-fretting wear finite element model to 

formulate maximum wear depth predictive equation as a novel and fast failure 

prediction tool. In addition, present research addresses contact pressure, contact slip, 

interface damage, delamination initiation and delamination-fretting wear behaviours 

at HAp-Ti-6Al-4V interface of artificial hip implant femoral stem component by 

adopting finite element approach using contact modelling, cohesive zone modelling 

(CZM) and adaptive wear modelling (UMESHMOTION subroutine) respectively. The 

influence of delamination length, loading condition, bone elastic modulus, stress ratio, 

number of cycles along with interfacial properties are among the focus of present 

study. 

 
 

1.2 Problem statement 

 
 
Artificial hip implant failure is commonly occurring at acetabular cup (ball-socket 

interface) and femoral stem region. Research on delamination and fretting wear in 

artificial hip implant has been carried out for many years. However, far too little 

attention has been paid to femoral stem region and in-depth research are required to 

investigate delamination and fretting wear failure behaviour at that region. Previous 

researchers have explored cyclic delamination of plasma sprayed Hydroxyapatite 
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(HAp) coating and its effect on fretting wear behaviour. However, no study has been 

examined combined delamination-fretting wear behaviour at artificial hip implant 

femoral stem component. Delamination of Hydroxyapatite (HAp) coating due to 

coating through thickness crack (vertical crack) initiated by fretting fatigue can 

promote fretting wear behaviour in femoral stem region of artificial hip implant 

(Nagentrau et al., 2019; Otsuka et al., 2016). In fact, there is absence of combined 

delamination-fretting failure prediction model that could suitably mimic actual loading 

conditions at HAp-Ti-6Al-4V interface accurately. This clearly shows that limited 

attempt has been done to explore the potential of developing a reliable combined 

delamination-fretting wear failure prediction model. It appears from the reported 

literatures that most attention has been paid to experimental work and it is essential to 

develop a finite element model to perform detailed parametric studies at HAp-Ti-6Al-

4V interface. Combined delamination-fretting wear failure prediction model is very 

crucial for better design process of Hydroxyapatite (HAp) coated Ti-6Al-4V implants 

to minimize artificial hip implant in service failure. Besides that, research studies 

focussing the effect of mechanical and tribological properties of HAp-Ti-6Al-4V 

interface on delamination-fretting wear are still lacking in biomechanics field. 

 In fact, delamination-fretting wear possibly can occur at two artificial hip stem 

interfaces such as HAp-Ti-6Al-4V and HAp-human bone respectively (Otsuka et al., 

2016). HAp-Ti-6Al-4V interface solely focussed in present study rather than in HAp-

human bone interface as Hydroxyapatite (HAp) coating able to achieve good fixation 

and subsequent adhesion with human bone once bone ingrowth. Thus, fretting wear 

particles generated in HAp-human bone interface will be suppressed. However, HAp-

Ti-6Al-4V is considered as critical interface as fretting wear particles will be ejected 

and transported along the surrounding region as shown in Figure 1.4. Present study is 

designed to shed a light to explore the combined delamination-fretting wear behaviour 

at HAp-Ti-6Al-4V interface since no attempt has been done previously by other 

researchers. 

In addition, the lack of new findings and advancement in fundamental 

knowledge about delamination-fretting wear failure behaviour using finite element 

methodology requires in-depth exploration. It should be noted that no attempt is done 

previously to develop a delamination-fretting wear model using finite element 

methodology to formulate maximum wear depth predictive equation as a novel and 

fast failure prediction tool which able to assist in reducing the amount of testing 
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required and better design process of Hydroxyapatite (HAp) coated artificial hip 

implant femoral stem component. Besides that, there have been no controlled studies 

which compare the influence delamination length, loading condition, bone elastic 

modulus, stress ratio, number of cycles along with interfacial properties on 

delamination-fretting wear behaviour to minimise associated failure because such a 

flaw is life threatening and also costly. 

  

 
Figure 1.4: Possible delamination interface of HAp coated Ti-6Al-4V hip implant 

(English et al., 2015) 

 
 

1.3 Research questions 

 
 
This research will contribute in enhancing knowledge about delamination-fretting 

wear behaviour at HAp-Ti-6Al-4V interface of hip implant femoral stem by imposing 

following research question: 
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i. How does the different mechanical and tribological properties affect contact 

pressure and contact slip distribution at HAp-Ti-6Al-4V interface of artificial 

femoral stem component? 

 

ii. How does the different mechanical, tribological and interfacial properties such 

as interfacial stiffness, strength and energy release rate  affect interface damage 

along with coating delamination at HAp-Ti-6Al-4V interface of artificial 

femoral stem component? 

 

iii. How does the finite element methodology can be implemented to perform 

detailed parametric studies and develop delamination-fretting wear model 

subjected to different mechanical and tribological properties to formulate 

maximum wear depth predictive equation using multiple linear regression as a 

novel and fast failure prediction tool at HAp-Ti-6Al-4V interface? 

 
 

1.4 Research objectives 

 
 
The objectives of present research work are presented as follows: 

 

i. To develop finite element contact model of HAp-Ti-6Al-4V interface 

subjected to different mechanical and tribological properties to predict contact 

pressure and contact slip distribution.  

 

ii. To analyse HAp-Ti-6Al-4V interface damage and coating delamination 

initiation behaviour under different mechanical, tribological and interfacial 

properties using cohesive zone modelling (CZM). 

 

iii. To evaluate proposed delamination-fretting wear finite element model 

subjected to different mechanical and tribological properties to formulate 

maximum wear depth predictive equation as a novel and fast failure prediction 

tool. 
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1.5 Research scopes and limitations 

 
 
The scopes and limitations of the present research are established in order to achieve 

focused goals in line with research questions and aims. Hence, the scopes and 

limitations of this research are drawn as following: 

i. Modelling ¼ symmetric two-dimensional (2D) plane strain case HAp coated 

Ti-6Al-4V based on fretting fatigue specimen to represent artificial hip implant 

femoral stem using ABAQUS commercial finite element software (version 

6.13). 

ii. Modelling HAp coated Ti-6Al-4V substrate contact configuration subjected to 

normal and fatigue loading condition. 

iii. Ti-6Al-4V substrate and HAp coating are modelled as fully elastic bodies with 

elastic modulus of 110 GPa and 70 GPa respectively. 

iv. HAp coating thickness is modelled as 150 μm representing plasma sprayed 

coating deposition. 

v. PU foam contact pad with elastic modulus of 0.1 - 1.0 GPa and 2.0 - 20.0 GPa 

are modelled to represent porous (cancellous) and cortical bones respectively. 

vi. Friction and wear coefficients at HAp-Ti-6Al-4V interface are modelled as 0.7 

and 2.0×10-8(mm3/N.mm) respectively. 

vii. HAp coating vertical crack is applied by ¼ symmetric modelling approach to 

represent coating through thickness crack until the interface to initiate 

delamination.   

viii. Evaluating concerned variables of fatigue loading (250 - 350 MPa), normal 

loading (20 - 30 MPa), delamination length (0.25 - 1.0 mm), stress ratio (0.1, 

10, -1) and bone elastic modulus (0.1 - 20 GPa) at HAp-Ti-6Al-4V interface. 

ix. Only HAp-Ti-6Al-4V interface of artificial hip implant femoral stem 

component is focussed.  

x. Delamination length is controlled by implementing tie constraint technique 

during finite element contact and wear modelling.  

xi. Cycle jump technique with ΔN=1 × 104 is implemented during finite element 

wear modelling.  

xii. The developed delamination-fretting wear model can be utilised for 

delamination length ranging from 0.25 mm - 1.0 mm, normal loading of 
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20 MPa - 30 MPa with fatigue loading of 250 MPa - 350 MPa subjected to 

stress ratio, R = 0.1, R = 10 and R = -1 and number of cycle up to 1,000,000. 

 
 

1.6 Research novelty 

 
 
It appears from the aforementioned investigations that most attention has been paid to 

artificial acetabular cup (ball-socket interface) and very few studies examined artificial 

hip implant femoral stem component. Thus, present research is mainly focussing on 

the combined delamination-fretting wear behaviour at artificial hip implant femoral 

stem. Besides that, delamination-fretting wear behaviour at HAp-Ti-6Al-4V interface 

has not been considered before. Nevertheless, limited attempt has been done to explore 

the potential of developing a delamination-fretting wear behaviour model using finite 

element methodology to formulate maximum wear depth predictive equation as a 

novel and fast failure prediction tool. In addition, present research is hoped to shed 

some light in evaluating different mechanical and tribological properties such as 

delamination length, loading condition, bone elastic modulus, cycle number and stress 

ratio at HAp-Ti-6Al-4V interface and its response on contact pressure, contact slip, 

interface damage, delamination initiation and delamination-fretting wear behaviour. 

 
 

1.7 Research significance 

 
 
The contribution of present research is obvious as resulting outcomes can be 

capitalised as guideline to evaluate artificial hip implant femoral stem failure 

associated with delamination and fretting wear through implementation of finite 

element methodology. In addition, the proposed finite element model can be easily 

accommodating different mechanical, tribological and interfacial properties of 

artificial femoral stem component HAp-Ti-6Al-4V interface to perform detailed 

parametric studies with minimal costly experimental works. The uniqueness of this 

research will be an advancement in fundamental understanding of delamination-

fretting wear behaviour at HAp- Ti-6Al-4V interface.  
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The outcome of this research is a novel and fast failure prediction tool which 

can be used to better assist in maximum delamination-fretting wear depth prediction 

at artificial hip implant femoral stem component. The maximum delamination-fretting 

wear depth prediction tool will assist in reducing the amount of testing required and 

better design process of HAp coated hip implants. Besides that, accurate prediction 

and speedy assessment of delamination-fretting wear could contribute in improving 

service life of implants. Present research also relevant and inline to with Malaysian 

Sustainable Development Goals (SDG) focussing on Goal No. 3 and Goal No.4 which 

are Good Health and Well-being and Quality Education respectively. Besides that, 

present research also can be related to Science, Technology, Innovation & 

Commercialisation from Economic Empowerment pillar and Health & Education from 

Social Re-engineering pillar under Twelfth Malaysian Plan (RMK-12).  

 

 

1.8 Thesis organisation 

 
 
The outline of the thesis is presented as below: 

 

Chapter 1: Presents research background, problem statement, research questions, 

objectives, scopes and limitation. In addition, novelty and significance of research also 

highlighted.  

 

Chapter 2: Presents extensive literature review on anatomy of hip, artificial hip 

implant, contact mechanics of HAp coated Ti-6Al-4V addressing delamination and 

fretting wear failure, finite element contact modelling, cohesive zone modelling and 

wear modelling. The research gap is identified towards the end of literature review. 

 

Chapter 3: Outlines whole methodology including contact modelling, cohesive zone 

modelling (CZM) and wear modelling using finite element methodology to develop 

novel and fast failure prediction tool. 

 

Chapter 4: Evaluates influence of different mechanical and tribological properties 

such as delamination length, loading condition, bone elastic modulus, cycle number 
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and stress ratio on contact pressure, contact slip, interface damage, delamination 

initiation and delamination-fretting wear behaviour at HAp-Ti-6Al-4V interface of 

artificial hip implant femoral stem. 

 

Chapter 5: Draws conclusion and knowledge contribution of present work with .  

recommendation for future works.  
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CHAPTER 2 

 
 
 
 

2 LITERATURE REVIEW 

 
 
 
 

2.1 Introduction 

 
 
In this chapter, the overview of total hip replacement (THR) using artificial hip implant 

is highlighted to firmly understand contact mechanics associated failures. In addition, 

HAp coated artificial femoral stem failure due to fretting condition is discussed in 

detail. HAp-Ti-6Al-4V interface delamination and fretting wear experimental studies 

are focussed. Apart from that, cohesive zone modelling and fretting wear modelling 

approaches to predict delamination and fretting wear behaviour are reviewed 

comprehensively. Based on the literature review, several research gaps are identified 

to be addressed in present study. 

 
  

2.2 Anatomy of hip joint 

 
 
Hip joint is basically ball and socket connection which made up of femoral head (ball) 

and acetabulum (socket) (Hongyu & Blunt, 2009). Although, hip joint is stable to bear 

more weight but only can carry less range of motion compared to other ball-socket 

joints in human body such as shoulder joint (English et al., 2015). Human hip joint 

comprises several parts i.e. femur bone head, acetabulum, joint capsule/ligaments, 

cartilage and tendons as illustrated in Figure 2.1. In fact, the human hip joint is 

supported with tendons, ligaments and muscles.  
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The human hip joint is enclosed by ligaments (joint capsule) which assists in 

stabilising hip motion during human activities. This thick ligament (joint capsule) 

contains pubofemoral, ischiofemoral and ilofemoral ligaments which located near 

ligmentum teres and labrum as shown in Figure 2.1. In addition, these ligaments cover 

femur head cartilages along with acetabulum. The thigh bone or femur is the heaviest, 

longest and strongest bone in human body (English et al., 2015). The main function of 

femur is to transmit and support body weight during various human activities. It is 

noteworthy to mention that femur is always exposed to extreme force and can be 

stabilised with attached muscles strength. Meanwhile, acetabulum is a cup dented in 

the pelvis (concave surface). The hip joint is formed when pelvis and femur head is 

connected at this concave surface. 

     

 

Figure 2.1: Human hip joint anatomy (English et al., 2015) 

 
Cartilage on femur head and acetabulum is responsible to lubricate the joint by 

providing smooth surface with the purpose of facilitate smooth or nearly frictionless 

motion. From a mechanical perspective it acts in similar manner as lubricant in 
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machineries. The human hip joint performance can be affected if damaged due to bone 

disease, overweight, overuse and others. Furthermore, the damaged or worn out 

cartilage can lead to articulation of high friction as hard bone surfaces such as femur 

head and acetabulum contact upon each other (English et al., 2016). This condition 

will be causing high stresses and results in making the hip joint stiffer and painful.           

 
 

2.3 Hip joint disorders 

 
 
Human hip joint can transmit significant dynamic loads and extensive range of 

movement during human activities. The ability of hip joint in carrying and transmitting 

loads to provide mobility is remarkable. However, it is susceptible to deterioration and 

functional loss due to certain types of hip joint disorders. Hip joint can experience 

osteoarthritis, rheumatoid arthritis, avascular necrosis, trauma and bone fracture 

(English et al., 2016). Osteoarthritis is a common and high-risk hip disorder due to 

worn cartilages which causing femur head and acetabulum bone contact each other 

and results in stiffness, immobility and chronic pain (Loeser, 2006).  

 Rheumatoid arthritis is a disorder where human suffer because of hip joint 

ligaments damage and bone erosion. Meanwhile, a condition of limited blood supply 

at joint tissue which leads to organ cells death in femur bone top region is known as 

avascular necrosis. This hip disorder can change bone shape, joint stiffness, loss of 

movement range and pain (English et al., 2015). Besides that, trauma and bone fracture 

can be arisen due to sudden impact or fall and medical complication such as stress 

injuries, cancer and osteoporosis which weaken the bone and susceptible to fracture. 

 Physiotherapy and drugs can aid in reducing pain for patients experiencing hip 

joint disorders. However, effective treatment such as affected hip joint replacement is 

required to eliminate chronic pain in severe hip joint disorder cases. Total hip 

replacement (THR) is key solution to restore mobility and normal lifestyle of hip 

disorder patients as shown in Figure 2.2. Among all the hip disorders, Osteoarthritis is 

the principal cause for total hip replacement surgery as reported in The Australian 

Orthopaedic Association National Joint Replacement Registry (Graves et al., 2004). 
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Figure 2.2: Osteoarthritis and total hip replacement (THR) surgery (Hongyu & 
Blunt, 2009) 

        
 

2.4 Total hip replacement (THR) using artificial hip implant 

 
 
Total hip replacement surgery is most effective orthopaedic surgery performed 

worldwide with the aim of dramatically enhance mobility and life of patients suffering 

from hip related disorders such as osteoarthritis (Hongyu & Blunt, 2009). Total hip 

replacement (THR) surgery is commonly carried out using metallic artificial implant. 

Such a metallic artificial implants normally made up of Titanium alloys (Ti-6Al-4V) 

due to its interesting properties (Nagentrau et al., 2019; Otsuka et al., 2016). Titanium 

alloys (Ti-6Al-4V) is a high interest material in engineering application due to their 

low weight, excellent corrosion resistance, high ductility and fatigue resistance 

characteristics (Nagentrau et al., 2016; Nagentrau et al., 2015; Siswanto et al., 2016; 

Siswanto et al., 2015). 

 Total hip replacement surgery can bring immediate relief to patients who 

experiencing unremitting pain. In fact, this surgical procedure performed as a last 

attempt to relief pain and improve mobility of hip disorder patients. The very first total 

hip replacement is performed by Sir John Charnley (1911-1982) in November 1962 

by replacing entire hip joint with metallic artificial implant and established surgical 

approach of implantation. The implantation foundation proposed by Charnley leads to 

advancement in surgical technique to facilitate active lifestyle of patients in present 

day. Artificial hip implant is a ball and socket joint which comprising femoral head, 

acetabular cup and femoral stem as shown in Figure 2.3. 
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Figure 2.3: Artificial hip implant parts (English et al., 2015) 

       

There are two types of hip implant fixation approach as illustrated in Figure 

2.4 to secure metallic femoral stem into femur such as cemented and uncemented total 

hip replacement respectively. Acrylic bone cement is utilised during metallic implant 

fixation to act as an intermediary agent stabilising femoral stem and transferring 

loading in cemented total hip replacement. Meanwhile a porous bio ceramic coating is 

applied on artificial femoral stem surface to enhance bone ingrowth in uncemented 

total hip replacement. Generally, bonds between metallic titanium alloy and bone are 

required as both cannot adhere directly (Laonapakul et al., 2012). 

Acetabular cup is fixed into artificial femoral stem in similar way under both 

uncemented and cemented total hip replacement (THR) techniques. The acetabular cup 

is held by fit tightness or with screws in uncemented THR, whereas bone cement is 

utilised to stabilise acetabular cup in cemented THR. The fixation method of THR 

using cemented or uncemented is highly personal and different according to counties 

and surgeons. For instance, national variations across the Europe ranges from 91% 

cemented THR in United Kingdom to 10% in Austria (Graves et al., 2004). The 

combination of uncemented acetabular cup and cemented femoral stem is known as 

Hybrid THR which becoming popular in treating elderly patients (50 - 60 years old) 

in present day. However, the present research is focuses on uncemented THR where 

Hydroxyapatite (HAp) coating is plasma sprayed on metallic femoral stem.    
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Figure 2.4: Uncemented and cemented total hip replacement (THR) (Hongyu & 
Blunt, 2009) 

 
 

2.5 Hydroxyapatite (HAp) coated uncemented THR  

 
 
Despite prior evidence, debates still ongoing concerning the ideal choice of total hip 

replacement (THR) fixation methods i.e. cemented THR and uncemented THR. The 

primary goal of uncemented THR is to enhance long term success in younger patients 

(Hongyu & Blunt, 2009). Ideally, Hydroxyapatite (HAp) coating is applied on Ti-6Al-

4V metallic femoral stem in order to achieve osseointegration by promoting bone 

ingrowth. Potential benefits of HAp coated femoral stem fixation are capability of 

remodel activity and self-restoration over time. 

   Hydroxyapatite (HAp) (Ca5(PO4)3(OH)) is broadly used as bio ceramic 

material because of its exceptional compatibility with bone (Lindahl, 2012). HAp 

coating is  having similar properties with bone minerals. Several researchers have 

revealed that HAp coating is utilised as autogenous free bone grafting substance for 

past 30 years. In fact, it is most promising bioactive ceramics that widely used in 

orthopaedic, alveolar ridge, dental implants and scaffolds for bone growth during 

surgery (Haibo Wang, 2004). Plasma sprayed HAp coating on femoral stem surface 

forming textured or irregular surface for better mechanical interlock is fixed as shown 

in Figure 2.5.    
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Figure 2.5: Typical procedures of HAp coated uncemented THR (Hongyu & 
Blunt, 2009) 

 
 

2.6 Material of artificial hip implant 

 
 
The material utilised to manufacture artificial hip implants should be biocompatible to 

reduce rejection risk and minimise toxicity. The increase in number of young patients 

using artificial hip implant has maximise application of bearing materials. The material 

characteristics of artificial hip implant components play a vital role in improving 

durability as human body environment is highly corrosive (English et al., 2015). The 

components material of artificial hip implant in total hip replacement (THR) surgery 

is as below: 

 

Acetabular cup: The acetabular cup which held into pelvis or bearing surface is 

typically fabricated from Ultra-High-Molecular-Weight Polyethylene (UHMWPE). 

UHMWPE is an appealing material due to its low wear rate, low friction, good impact 

resistance, high toughness and good biocompatibility characteristics. Besides that, 

Highly Cross-linked Polyethylene (HXLPE), alumina ceramics, zirconia ceramics and 

cobalt-chrome alloy are also common materials to manufacture acetabular cup 

(English et al., 2016). 
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Femoral head: Artificial hip implant femoral head are commonly manufactured using 

cobalt-chrome alloys, stainless steel (high grade) and ceramic. Cobalt-chrome alloys 

usually compatible with UHMWPE acetabular cup besides displaying superior 

corrosion resistance, reduced inflammation, high wear resistance, high hardness and 

excellent biocompatibility characteristics. Thus, it enables comparatively successful 

performance to be utilised in orthopaedic application (Brown & Lemons, 1996; Kohn, 

1998). In addition, ceramic material also suitable for femoral head due to its low 

friction which can reduce wear rate and wear debris. 

 

Modular stem: Artificial hip modular stem which fixed into femur bone medullary 

cavity is made up of titanium alloys (Ti-6Al-4V). Ti-6Al-4V is low weight high 

strength material compared to other orthopaedic alloys (Apostu et al., 2018; Fokter et 

al., 2017). In addition, Ti-6Al-4V alloy exhibiting good tissue tolerance, high wear 

and corrosion resistance. Cobalt-chrome alloy or stainless steel also used to fabricate 

modular stem but very seldom (Malahias et al., 2020). 

 Different materials are combined to manufacture artificial hip implant 

components to achieve different interfacial properties. Material combination term is 

basically referring to bearing material combination in acetabular cup and femoral head. 

There are numerous material combinations for surface articulation in manufacturing 

artificial hip implants i.e. Ceramic-on-plastic (CoP), Metal-on-Plastic (MoP), Metal-

on-Metal (MoM) and Ceramic-on-Ceramic (CoC). 

 

CoP and MoP: High cross-linked Polyethylene and UHMWPE are common plastics 

employed in CoP and MoP application due to high wear resistance compared to other 

types of plastics. However, it exhibits high wear rate if compared with ceramic and 

metal materials (English et al., 2015). UHMWPE plastic permits the usage of larger 

femoral head and perform well as good shock absorber to allow greater mobility during 

human activities. 

 

CoC: This category of artificial hip implant protects the surface by minimising scratch 

possibilities and ensure couples experience limited deterioration due to wear. In fact, 

CoC displaying 10% of less wear compared to MoM type artificial hip implant. The 

application of thinner acetabular cup is possible using CoC type due its strength. Thus, 

larger femoral head can be fitted into smaller acetabular shell. Besides that, it offers 
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wider motion range, good bearing and higher stability in young patients. However, 

CoC artificial hip implants are expensive, squeaking, brittle and unpleasant to patients 

(Wu et al., 2016).      

 

MoM: The key advantage of MoM type artificial hip implant is hardness differences. 

The MoM type artificial hip implants are manufactured from various metallic alloys 

i.e. cobalt-chromium alloys. MoM type implants are hard and not brittle compared to 

ceramic types. Meanwhile, MoM hip implants displaying higher scratch and wear 

resistance when compared with plastic type. MoM type also permits larger femoral 

head diameter for constant acetabular shell size which able to provide wider hip motion 

range along with lower bone resorption, less wear, lower dislocation risk, minimised 

offset problems and easier revision surgery. The MoM coupling is susceptible to 

metallosis and infection which leads to increased failure rate (Milošev et al., 2000). 

Thus, there is great necessity for smooth articulating bearing surface in femoral head 

and acetabular cup to minimise wear accompanied by allowing required hip 

movement. It has been suggested that UHMWPE acetabular cup with cobalt-chrome 

femoral head offer excellent bearing surfaces combination. Besides that, the 

combination of cobalt-chrome femoral head and titanium modular stem extensively 

used in hip related orthopaedic devices (English et al., 2015). 

 
 

2.7 Metallic artificial femoral stem 

 
 
The artificial femoral stem design transformed in many ways in term of design since 

the introduction of Charnley femoral stem in 1960’s. As a result, more diverse types 

of artificial stems are manufactured as shown in Figure 2.6. Artificial hip implant 

technology continuously evolving as new methodologies and designs have been 

introduced. There are 62 types of artificial hip implant manufactured by 19 different 

companies (Hongyu & Blunt, 2009).   
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Figure 2.6: Different artificial femoral stem designs (Hongyu & Blunt, 2009) 

 

The metallic artificial femoral stem offers geometry and cost flexibilities 

without any doubt. However, difficulty arises in choosing optimal artificial femoral 

stem for patients by considering long term follow up requirement in order to evaluate 

new femoral stem performance (Salentiny et al., 2018). It is reported that several new 

designs cause patient’s discomfort and premature failure which requires revision 

surgery in less than 5 years. Thus, new femoral should be tested in term of 

sustainability before market release. Continuous development should be given an 

insight to improve longevity of total hip replacement surgery (THR) (Johanson, 2017). 

In recent time, Charnley, Stanmore, Exeter and Müller artificial femoral stems are used 

as benchmark compared to other stem designs due to better evaluation and long term 

durability (Hongyu & Blunt, 2009). 

There are two major design categories such as modular and monoblock 

artificial femoral stems as shown in Figure 2.7. Femoral stem and head are fabricated 

as a single component in modular stem design which able to solve complications of 

monoblock design femoral stem application in special hip joint anatomy patients 

(Hongyu & Blunt, 2009). In addition, modular design femoral stem provides flexibility 

of femoral head size, neck length and combination material variation. For example, 

combination of material improves the wear resistance in femoral head (cobalt chrome 

alloy) and excellent mechanical properties is achieved by femoral stems when 
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manufactured by titanium alloys or stainless steel. Femoral head polished smoothly 

prior to fixation with femoral stem to facilitate less friction rotation in prosthetic 

socket. 

 

 

Figure 2.7: Different designs of artificial femoral stems (Hongyu & Blunt, 2009) 

 

 

2.7.1 Stem material 

 
 
In artificial femoral stem designing process many variables such as material, geometry 

and surface finish should be considered. Optimal tribological and mechanical 

characteristics, biocompatibility, human body physical environment and loading 

regime in femoral stem significantly influences material selection (Hongyu & Blunt, 

2009).  

The material of artificial femoral stem should withstand active individual’s 

physical loading according to their activities and day-to-day utilisation. The material’s 

strength in term of yielding and fatigue no longer a critical issue as most of the 

materials used to fabricate femoral stems are stronger. However, stress shielding 

should be given an attention as one of the material selection design constraint. 

Reduction in bone density as stiffer implant transmits much load and initiating high 
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stress gradient between femur lower section and cancellous bone is known as stress 

shielding (Hongyu & Blunt, 2009).  

Stress shielding can cause discomfort and pain to patients. Therefore, material 

selection should be performed considering similar stiffness, strength, mechanical 

properties and density to minimise stress shielding effect. Lately, titanium alloys, 

cobalt chrome alloys and stainless steels are most common materials to manufacture 

artificial femoral stem because of their excellent biocompatibility, tribological and 

mechanical characteristics (Nagentrau et al., 2019).  

Unfortunately, these materials are much stiffer with higher yield strength than 

bone which might results in stress shielding. Besides that, artificial femoral stem made 

from titanium alloys susceptible to fail earlier compared to cobalt chromium and 

stainless-steel materials as occurrence of crevice corrosion due to gap generation 

between stem-bone/cement or head-taper. Present study focussing on artificial hip 

stem manufactured from titanium alloy.  

 
 

2.7.2 Stem geometry 

 
 
Stem geometry is an important variable in artificial femoral design as it can affect 

directly in-vivo behaviour and subsequent failure mechanism of total hip replacement 

(THR) (Fokter et al., 2017). In fact, certain artificial femoral stems have been removed 

from market due to their poor short-term survival rate which is highly design 

dependent. The optimal design of femoral stem should be able to transfer load in axial 

and torsional direction without stress singularity and excessive micromotion between 

cement-implant (cemented THR) and HAp-implant (uncemented THR) interfaces as 

shown in Figure 2.8.  

Artificial femoral stem geometry encompasses overall shape 

(anatomical/symmetrical), cross-section (square/oval), flange and collar presence, 

stem tip shape and stem length. Besides that, double/triple taper design and 

greater/lesser degree of rounded edges are influencing stem geometry (Hongyu & 

Blunt, 2009). Femoral stems with symmetrical geometry design exhibiting excellent 

clinical performance. The number of artificial femoral hip stem geometry designs 

rapidly increasing in market. Thus, effective clinical assessment in term of 

performance and durability should be performed on new design femoral stem.    
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Figure 2.8: Load transfer patter with and without artificial hip implant (Hongyu & 
Blunt, 2009) 

 
 

2.7.3 Stem surface finish      

 
 
Artificial femoral stem surface finish is another vital design property which vary 

among different type of femoral stems. The effect of stem surface finish on total hip 

replacement (THR) performance have been disputed for long time as no specific 

standard available regarding this variable (Hongyu & Blunt, 2009). Certainly, the 

texture of femoral stem surface having direct influence on bonding strength at stem-

HAp coating/stem-cement interfaces. Matte femoral stems could promote bond 

strength at interface compared to polished femoral stems which as HAp coating or 

bone cement attachment will be enhanced.  

Matte and polished femoral stems often known as closed design and force 

closed design which depend on stem mechanical taper locking to accomplish self-

tightening properties. Although matt surface finished stem can promote bonding at 

interface but inclined to generate more debris and sourcing severe interfacial damage 

once delamination/debonding occurs. This indicates thick and good quality with strong 

interface are required to minimise delamination failure. From clinical point of view, 

stem surface finish is a complex matter and still under investigation since there is not 
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