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ABSTRACT 

 
 
 

Flowshop is the most common production system in the industry, and there are many 

documented efforts to improve the performance of the flowshop. The range spreads 

from the usage of heuristics to metaheuristics, and one of the promising methods is 

NEH (Nawaz, Enscore & Ham) heuristics. This study aims to improve NEH, using an 

enhanced version of Artificial Bee Colony (ABC) algorithm because the original one 

has the problem of slow converge speed. As a result, this study will propose a 

mechanism to improve the convergence speed of ABC because faster convergence 

speed is the ability to find high-quality results in lesser iterations compared to others. 

The study clusters the Employed Bees (EB) and Onlooker Bees (OB) into several 

groups: Total Greedy, Semi Greedy and Non-Greedy. Upon completion, the study 

selected the Total Greedy (3+0+0) because of the leading performance in makespan 

value (performance indicator), and the author used it for the rest of this study. This 

study proposed two variants of the guided initial ABC or Guided Artificial Bee Colony 

(GABC) with one variant (NEH-based ABC), employing the concept of NEH and the 

second variant (GABC), employing the concept of NEH and First Job Sequence 

Arrangement Method. The study experimented according to ten datasets of Taillard 

benchmark and divided the experiments into several categories and the experiments 

run every data for several iterations, and for each dataset, there are 20 replications. 

This study compared the performance of NEH, ABC, NEH-based ABC and GABC, 

which also act as the validation process. Based on the results, ABC produced 

inconsistent results for a significant amount of times and interestingly, GABC, NEH-

based ABC and ABC produced 68.75%, 63.33% and 0.01% results that are better than 

NEH, respectively. The data also shows that GABC is 37.9% better than its variant. 

Finally, the author can conclude that this study demonstrated the slow convergence 

issue of ABC. 
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ABSTRAK 

 
 

 
Flowshop merupakan sistem pembuatan yang paling kerap digunakan di industry dan 

terdapat pelbagai usaha yang telah didokumenkan bagi meningkatkan keupayaan 

flowshop. Kaedah yang digunakan juga pelbagai, bermula dari heuristik ke heurustik-

meta dan kaedah yang paling popular adalah heuristik Nawaz, Enscore dan Ham 

(NEH). Kajian ini bertujuan untuk meningkat potensi NEH, menggunakan algoritma 

Artificial Bee Colony (ABC) yang telah dipertingkat kerana versi asal ABC adalah agak 

perlahan untuk mendapatkan penyelesaian berkualiti tinggi. Oleh itu, kajian ini 

bertujuan untuk menjadikan ABC berupaya menjana penyelesaian yang baik dalam 

jumlah iterasi yang lebih rendah. Kajian ini membahagikan Employed Bees (EB) dan 

Onlooker Bees (OB) kepada beberapa kluster: Total Greedy, Semi Greedy dan Non-

Greedy. Setelah ujikaji dijalankan, Total Greedy dipilih kerana menjana masa siap 

yang paling baik dan penulis menggunakan pilihan ini di keseluruhan projek. Kajian 

ini mengetengahkan dua varian guided initial ABC atau GABC, dimana varian pertama 

(ABC berdasarkan NEH), menggunpakai konsep NEH dalam pengoperasian. Varian 

kedua pula (GABC), menggunapakai konsep NEH dan teknik first job sequence 

arrangement. Ujikaji dijalankan berdasarkan data dari Piawaian Taillard dan 

membahagikan ujikaji kepada beberapa kategori. Ujikaji juga dijalankan dengan 

beberapa nilai iterasi, dan setiap set data perlu menjalani 20 sesi ulangan. Kajian ini 

membandingkan prestasi NEH, ABC, ABC berdasarkan NEH dan GABC, dan 

peringkat ini juga dinamakan proses validasi. Berdasarkan hasil ujikaji, ABC didapati 

menjana keputusan yang tidak konsisten dalam kekerapan yang tinggi. Agak menarik 

kerana keputusan yang dihasilkan oleh GABC, ABC berdasarkan NEH dan ABC, 

68.75%, 63.33% dan 0.01% lebih baik dari NEH secara keseluruhan. Data ujikaji juga 

menunjukkan GABC adalah 37.9% lebih baik berbanding variannya iaitu ABC 

berdasarkan NEH. Akhir sekali, dapat disimpulkan bahawa kajian ini menunjukkan 

demonstrasi berkaitan isu convergence yang perlahan oleh algoritma ABC. 
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1CHAPTER 1 

 
 

 

5INTRODUCTION 

 
 
 

1.1 Challenges of Flowshop Scheduling 

 
 
Fast, customised, and efficient are the benefits of a flowshop, which Fan & Winley 

(2008) described as a fabrication facility used to manufacture one or more types of 

products. The focus of the flowshop is to make products with the highest quality in the 

shortest time. The flowshop system has a fixed job flow, and this criterion is quite 

useful for a high quantity production system (Bandyopadhyay, 2019; Fan & Winley, 

2008; Park, 1976). The flowshop is also the goal of a lean system, and it is easier to 

control compared to other system types such as Job Shop and Project Shop (Pinedo, 

2012). The most significant advantage of the flowshop is repeatability, and it has a 

linear machines arrangement, and the system processes each job at every machine, 

with only in one direction (Groover, 2016). Permutation flowshop scheduling problem 

(PFSP) is one of the most discussed problems in FSP. The purpose of PFSP is to find 

the best processing (job) sequence to satisfy the optimization requirement. In most of 

the literature, the objective PFSP optimization is the makespan, which is considered 

as an act to minimize the total completion time for the production processes (Liu & 

Liu, 2013; Naderi & Ruiz, 2014; Sidek & Bareduan, 2014). 

The main challenge of using the flowshop is to find the best job sequence that 

will minimise the makespan (Gupta & Stafford, 2006). It is crucial because if the 

manufacturer can churn out a product faster, it will enter the market early, and the 

manufacturer will have a higher chance of gaining the market share (Wolde, Berhan, 

& Jilcha, 2018). Managing the production process with the need for the scheduling 
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processes take part is not easy and is considered as NP-hard (Garey, Johnson, & Sethi, 

2008a; Kan & Kan, 2011). Since it is NP-hard, the heuristic method is the best way of 

solution for the flowshop problem (Liu & Liu, 2013).  After Johnson introduced the 

flowshop problem (Johnson, 1954), it has been a magnet for research.  Previous studies 

proposed a few problems solving approaches using a heuristic method such as Palmer 

heuristic (Palmer, 1965), Gupta heuristic (Gupta, 1971), CDS (Campbell, Dudek, & 

Smith, 1970) heuristic, and NEH heuristic (Nawaz, Enscore, & Ham, 1983a). Nawaz, 

Enscore and Ham introduced the NEH heuristic around three decades ago, but the 

scheduling community still consider it as superior due to its ability to minimize the 

makespan of Permutation Flowshop Scheduling Problems (PFSP) effectively. The 

majority still prefer NEH for its priority order method, and this helps to achieve near-

optimum solutions (Framinan, Leisten, & Rajendran, 2003).   

NEH also has shortcomings, and more research appears to improve NEH such 

as done by Taillard (1990) which applies Tabu Search. A study by Kalczynski & 

Kamburowski (2008a) focuses on improving NEH by proposing a new priority order 

with a simple tie-breaking method. Another effort for improving NEH is made by Ruiz 

& Stützle (2007) by selecting the proper solutions to put into NEH using the iterated 

greedy solution.  

NEH is powerful, but it does not utilize the random selection criteria, and the 

ability to use the random selection of solutions will result in more possibilities of better 

solutions (Emmons & Vairaktarakis, 2013). From this point of view, the effort to 

utilize the metaheuristics seems to be next step, with the hope of finding a method that 

is superior to NEH.  Kouki, Guenaoui, and Jemni (2016) focused on the parameter 

tuning of the Genetic Algorithm (GA) for solving PFSP, and the study managed to 

churn out a better version of GA. Wang and Yin (2013)also discussed the parameter 

tuning of the GA and the parameters in consideration are the number of population, 

probability of crossover and probability of mutation. The parameter tuning process 

managed to produce a better version of GA. Nowicki & Smutnicki (1996) proposed an 

algorithm based on the tabu search technique with the application of a block of jobs 

notion. Another effort made using tabu search was by Gao, Chen, and Deng (2013) by 

proposing a tabu search algorithm for solving Distributed permutation flowshop 

scheduling problem (DPFSP). This algorithm exploited a novel tabu search strategy 

and enhanced the local search method, and it performed better than GA. 
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NEH is very effective for solving PFSP and some research utilizes the concept 

of NEH to make their algorithm perform better. Kurdi (2020) proposed a memetic 

algorithm (MA) combined with a novel semi-constructive crossover and mutation 

operators (MASC) to solve PFSP. The MASC used in the research is a combination of 

genetic algorithm (GA), simulated annealing (SA), and NEH algorithm. Öztop, 

Tasgetiren, Eliiyi, Pan, and Kandiller (2020) proposed a novel PFH_NEH(x) which is 

the combination of profile-lifting (PF) constructive heuristic and NEH algorithm. The 

main reason for the team to choose NEH is because it is a simple and effective 

heuristics for solving PSFP. Wang, Gao, Li, Li, and Tasgetiren (2020) proposed a 

hybrid version of the whale swarm algorithm with DNEH. In the study, DNEH is used 

to optimize the makespan's initial solution objective. 

Lin and Ying (2013) proposed a bi-objective multi-start simulated annealing 

algorithm (BMSA) to solve the PFSP by minimizing the makespan. The researchers 

tested the algorithm using the Taillard benchmark, and as a result, the BMSA managed 

to contribute 64% of the solutions in the non-dominated front. Osman and Potts (1989) 

proposed the simulated annealing method to optimize PFSP and experimented with 

problems of up to 20 machines and 100 jobs. From the study, the researchers found 

that simulated annealing produced slightly better results compared to NEH in some 

cases.  

When it comes to the ant colony algorithm, Ahmadizar (2012) proposed a 

novel ACO algorithm which initializes the pheromone trails based on the initial 

sequence. The algorithm also employs a local search to improve the solution quality, 

and it managed to perform better than other variants of ant colony optimization in the 

literature at that time. Mirabi (2011) utilized the ACO algorithm on the sequence 

dependent PFSP with modifications to the approach for computing pheromone values 

and the employment of a local search. Meanwhile, Tasgetiren, Liang, Sevkli, and 

Gencyilmaz (2007) managed to utilize a modified Particle Swarm Optimization (PSO) 

algorithm for solving PFSP. Modifications made to the PSO algorithm are the 

application of a heuristic rule named smallest position value (SPV), genetic algorithm 

(GA), random keys for sequencing and optimization, and the variable neighbourhood 

search (VNS). In 2004, the same researchers embedded the VNS in the PSO algorithm 

for solving PFSP, and it produced competitive results. For the total flowtime and 

makespan criteria (2007 version), the modified PSO managed to improve the solutions 
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generated by other competitive algorithms with 63% and 24.4%, respectively 

(Tasgetiren et al., 2007). 

Tasgetiren, Pan, Suganthan, and Chen, (2010) proposed the Discrete Artificial 

Bee Colony (DABC) algorithm with the inclusion of the iterated greedy (IG) and 

iterated local search (ILS) algorithm. The researchers compared the algorithm to the 

estimation distribution algorithm (EDA) and hybrid genetic local search (hGLS), and 

it managed to improve 43 out of 60 solutions. In 2011, the same research team 

proposed the DABC with hybrid differential evolution algorithms, and the results were 

quite competitive (Tasgetiren, Pan, Suganthan, & Chen, 2011). Liu and Liu (2013) 

proposed a hybrid discrete artificial bee colony (HDABC) that utilised Greedy 

Randomized Adaptive Search Procedure (GRASP) inspired by NEH heuristics. 

HDABC also used discrete operators and algorithms to generate new solutions and it 

applied the local search to find the best one.  From the literature, the author can 

conclude that the efforts to improve the ABC algorithm in solving PFSP in an ongoing 

journey. There will always be some aspects of the algorithm that can be enhanced. 

Artificial Bee Colony (ABC) algorithm is preferred in this study because it has 

fewer parameters to control compared to other population-based algorithms. ABC 

algorithm is also a robust, fast to converge, and flexible type of algorithm (Anam, 

2017; Ayan & Kiliç, 2012).  ABC is also known to perform better than Genetic 

Algorithm, Differential Equation (DE) and Particle Swarm Optimization (PSO) 

(Karaboga & Basturk, 2008; Karaboga & Akay, 2009; Karaboga & Basturk, 2007; 

Sulaiman, Mohamad-Saleh, & Ghani Abro, 2013). Other than that, ABC is proven to 

produce good results in optimizing permutation flowshop scheduling (Marinakis, 

Marinaki, & Matsatsinis, 2009; Tasgetiren et al., 2010). 

 

1.2 Problem Statements 

 
 
Lately, the ABC algorithm has attracted several researchers in studying its capability 

for solving manufacturing scheduling problems.  Chong, Sivakumar, Low, and Gay, 

(2006a) used the ABC methodology to construct schedules for job shop problems; Pan, 

Fatih Tasgetiren, Suganthan, and Chua (2011) proposed a discrete ABC algorithm to 

solve lot-streaming flowshop scheduling  while (Tasgetiren, Pan, Suganthan, & Chen, 
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2010) reported the ABC application for permutation flowshop scheduling problem 

(PFSP) using total flowtime criterion. Hakli and Kiran (2020) proposed three search 

equations for the employed bees and another three for onlooker bees to improve the 

slow convergence problem. Wang, Shi, and Wang (2020) proposed a formula for 

location update into ABC to improve the optimization’s iterative process. The group 

also integrate the scout bee phase with a beta distribution function to prevent the ABC 

to fall easily into local extremum. All these researchers have identified the weakness 

of ABC is that it is always slow to converge.  As such, it will be useful to recommend 

the future works to be focused directly on establishing mechanisms to help the ABC 

converge with a low number of iterations. 

 The original ABC algorithm is known to be slow to converge (Banharnsakun, 

Achalakul, & Sirinaovakul, 2011; Luo, Wang, & Xiao, 2013; Sulaiman et al., 2013), 

and when it comes to PFSP, this drawback will delay the process of getting high-

quality makespan values. The algorithm works in the iteration mode, which means that 

it will repeat the same process to find a better solution as the iteration goes. As the 

iteration proceeds, the candidate solutions tend to get closer to the desired location and 

this is when the convergence occurs (Gao & Cao, 2012; Trelea, 2003). In ABC, the 

researchers claimed that the convergence speed is quite slow, and the algorithm will 

take some time to get the desired solution (Chen, Daud, Zhou, & Elisha Nyamasvisva, 

2019; Shubham Gupta & Deep, 2020; Zhang, 2020). The exploitation and exploration 

activities in the algorithm are said to be well balanced but the convergence speed is 

still wide open for improvement and ABC is easy to fall into local optimum 

(Banharnsakun et al., 2011; Gupta & Deep, 2020). 

Based on the above literature review, the author can conclude that it is 

beneficial to explore the ABC algorithm further in the context of solving scheduling 

and other optimization problems. To improve the ABC effectiveness, an additional 

mechanism must be added to the current algorithms to help it converge to the desired 

performance measures. This study aims towards developing a new, improved ABC 

algorithm consisting of additional converging mechanisms that will make it converge 

more effectively. To achieve the mentioned goal and based on the trends in the 

previous related works, researchers tend to assimilate the concept of the leading 

heuristics, NEH in the development of their algorithm. The common practice is to 

employ the NEH arrangement in their proposal and hybridizing the NEH concept in 
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their algorithms. However, the practice of utilizing the first job sequence method is 

never reported and for that reason, this study aims to use the method to improve the 

performance of ABC in solving PFSP. The whole process is known as a new Guided 

Artificial Bee Colony (GABC) heuristic specifically intended for solving PFSP.  

  
  
1.3 Research Objectives 

 
 
This study embarks on the following objectives: 

i. To determine the effectiveness of the ABC algorithm using different bee 

characteristics in optimizing PFSP. 

ii. To improve a new heuristic identified as Guided Artificial Bee Colony 

(GABC) heuristic to solve PFSP. 

iii. To assess the convergence performance of the GABC heuristic against the 

normal ABC algorithm method. 

 
 
1.4 Research Scopes 

 
 
This study consisted of several scopes: 

i. This study focuses on permutation flowshop scheduling problems (PFSP). 

ii. This study focuses on developing an appropriate algorithm representing the 

clustered behaviour that is useful to improve the scheduling solution from the 

normal ABC method. In the behaviour clustering, the bees are grouped into 

similar behaviour in the context of trial counter number and location of bees. 

iii. Visual Basic for Application (VBA) coding embedded within Microsoft Excel 

is used to develop the GABC program to evaluate flowshop scheduling 

solutions. 

iv. This study utilizes the iteration limits from 500 to 5000 iterations. The number 

of EB and OB is set between 5 to 15 and the swarm size is limited to 10 until 

30. 
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1.5 Thesis Organization 

 
 
This chapter presents a brief introduction about the challenges in PFSP, and many 

efforts by previous researchers to improve the system. The author also highlighted the 

weaknesses of the ABC algorithm to expose the need to work on a solution. This 

chapter also covers the objectives and scopes of the study, and the author ended the 

introduction chapter with the organization of the thesis. 

 In the next chapter, the study uncovers some theories and significant 

contributions related to production scheduling, permutation flowshop scheduling 

problems, metaheuristics used in solving PFSP, and ABC algorithm. This chapter is a 

strong base for the author to develop the research methodology. 

 The third chapter covers the general research methodology for this study. In 

this chapter, the author explained the processes for developing the research 

methodology.  

 The fourth chapter focuses on the contribution of the study and the steps to 

develop the novelty. The author explained the procedure to develop the Guided 

Artificial Bee Colony (GABC) algorithm.  

 In the fifth chapter, the study covers the details about the performance 

measurement of GABC. This chapter also documented the results and discussion for 

this study as well as the validation process. 

 Finally, the final chapter provides a conclusion for this study and some 

recommendations for future works. Moreover, this section also highlighted the 

contributions made by this study. 

.
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2CHAPTER 2 

 
 
 

LITERATURE REVIEW 

 

 

 

This chapter focuses on the fundamental theories and knowledge related to the research 

topics such as scheduling, PFSP, optimization methods, and ABC algorithm. This 

chapter starts with the broader scope of scheduling and the author will narrow down 

the scope to the application of the nature-inspired algorithm in solving PFSP. 

 
 
2.1  Introduction to Scheduling 

 
 
Scheduling is a decision-making process used in the manufacturing and services 

industries. The main objective of scheduling applications in both industries is to 

minimize the completion time or makespan (Lapierre & Ruiz, 2007).  

 Scheduling is also known as a plan made to fulfil a particular objective. Other 

elements included in the plan are the time frame and activities of a particular project 

or process. Additionally, scheduling is useful for assigning workers for a particular job 

when the project is ongoing. Interestingly, the scheduling process can also help to 

optimize a system to make it work with better efficiency (Md Fauadi & Murata, 2010). 

This process is feasible by performing a well-executed scheduling process. From here, 

the author can claim that a scheduling system can improve the output of a particular 

system. In most cases, scheduling is useful for determining the duration needed to 

complete an activity, the completion time, and the predecessor activities (Kerzner, 

2013; Lapierre & Ruiz, 2007; Pinedo, 2012).  
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Similarly, scheduling is also known as a way to manage a particular project as 

it provides the guidance and pathway that need to complete a project. Scheduling also 

contains the milestones for completing a particular project (Ballard, 2000). Scheduling 

is also useful for improving productivity, reducing delivery cost and utilizing the 

manufacturing resources optimally (Md Fauadi & Murata, 2010).  

In some industries, scheduling is very crucial for transportation and distribution 

settings, and it will also assist most industries in fulfilling their customers' demands 

while minimizing the total setup time. Moreover, proper scheduling can maximize the 

throughput of a particular production enterprise. This step can be done by improving 

the equipment utilization, and from here, scheduling can minimize the number of idle 

times and setup times. Interestingly, scheduling is also able to minimize the amount of 

work needed to achieve specific goals, and it is also a useful tool to minimize delays 

in the production process because the delays in production are equal to the low 

reliability of the company (Pinedo, 2012). Typical applications of scheduling are 1) 

Procurement and production, 2) Transportation and distribution, and 3) Information 

processing and applications (Sauer, 1999). 

The practitioners change the plan and control production over time due to 

customer requirements and environment and technology improvements. Therefore 

effective manufacturing control processes based on planning and scheduling represent 

the key to the success of a manufacturing company (Vollmann, William, Whybark, & 

Jacobs, 2005). Scheduling as a decision process represents an essential tool to 

determine the sequential order of activities identified by the work breakdown structure 

(WBS), as part of the project scope (Baldwin & Bordoli, 2014). To do that, the 

practitioners must perform a well-executed scheduling process. From here, the author 

can conclude that a scheduling system can improve the output of a particular system. 

 

2.2 Production Scheduling 

 
 
Production scheduling is known as the process of arranging, controlling, and 

optimizing all the production budget timescale for every phase of a business project. 

It has robust and complicated precedence relationships between the manufacturing 

activities and the production resources. The available production resources and in-
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house capacity must be adequate, which deserves to enhance the current resources 

utilization to fulfil the critical tasks or customer demands (Baker, 1974; Leitão, 2009). 

The production environment also contains high levels of uncertainty, which leads to a 

more complex situation.  

Flowshop scheduling as a class of scheduling problems is a particular case of 

production scheduling. Practitioners use different techniques to solve industrial 

scheduling problems, and recently, most of the studies have turned to deal with 

simulation and artificial intelligence techniques. These methods have demonstrated a 

significant step forward in solving Flowshop Scheduling (FSS) problem with less 

computational exertion and more powerful results. Given this section, a brief survey 

of the FSS issues is presented based on previous works (Pinedo, 2012; Ruiz & Maroto, 

2005). 

 
 

2.3 Flowshop Scheduling 

 
 
A sound scheduling system will contribute directly to the performance of a 

manufacturing enterprise. In industries, the most common scheduling layout is the 

flowshop scheduling problem (FSP). Additionally, the practitioners apply the FSP in 

a manufacturing environment where a family of products (with some similar features) 

to be manufactured (Fan & Winley, 2008; Moccellin, 1995; Naderi & Ruiz, 2014a) 

Flowshop scheduling is one of three main problems of shop scheduling; the other 

two problems are open shop scheduling and the job shop. Generally, if the job shop 

has n jobs to be processed through m machine. In this case, the number of possible 

sequences is (n!) m, where n represents the number of jobs, and m represents the 

number of machines, as shown in Figure 2.1. The flowshop scheduling problem is 

consequent of the job shop where all jobs contain the same technological sequence. It 

has the same amount of operations for each route of machines, and each job should 

pass the same. The objective is to find the best sequence of jobs based on applying for 

the same order according to technological constraints. The decision of scheduling 

problems will concern two bases (Jemni & Ladhari, 2011; Park, 1976): 
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i. At least two machines should consider the sequence for orders of the jobs.  

ii. The machine loading schedule considers the time sequence of each machine for 

different jobs.  

 

For that, researchers agree to consider the flowshop scheduling problem is NP-

hard problem (Garey, Johnson, & Sethi, 2008b; Park, 1976). Furthermore, the first step 

to investigate the effective optimization method in the scheduling problem is by 

specifying the scheduling objectives. The objective classification paves the way to 

analyses the critical parameters to detect the root cause. 

 

2.3.1 NP-Hard Problems 

 

NP-hard (non-deterministic polynomial-time hard) is a class of the hardest problems 

in computer science. Non-deterministic means that to get the solution of a problem, 

one has to go through the trial and error process (Laudis, Shyam, Suresh, & Kumar, 

2018). The is no exact solution for the NP-hard problems but it gets better after the 

iterations process. The obtained solution from the optimization process will always 

converge near to the exact solution (Mahapatra, Dash, & Pradhan, 2017). 

 

Figure 2.1: Flowshop problem (Garey, Johnson, & Sethi, 2008) 
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Figure 2.2: Hierarchy of problems based on solving difficulties (Laudis et al., 2018) 

 

NP-hard is a class of problems that have the same or higher level of hardness 

compared to the hardest problems in NP (refer to Figure 2.2). Generally, P-class are 

problems that can be solved in polynomial time and NP-class problems are harder than 

the P-class. The problems under this category are hard to solve but easy to check 

(Mahapatra et al., 2017). NP-problems can be solved by the non-deterministic Turing 

machine in polynomial time (Laudis et al., 2018; Woeginger, 2003a).  

NP-hard is a sophisticated way to describe the complex and difficult problems 

and it is also considered as the initial steps to the development of approximate 

algorithms which are not able to provide an exact answer for a problem because these 

algorithms are only capable of finding a near-optimum solution (Woeginger, 2003b; 

Yang, 2008). 

The NP-hard problems are common and available in various fields such as 

approximate computing, configuration, cryptography, data mining, decision support, 

planning, process monitoring and control, routing/vehicle routing, scheduling and 

phylogenetics (Yang, 2008). 

Product manufacturing may involve a few jobs that are completed by several 

machines. Each job has to be performed sequentially on different machines in the 

production line. This kind of scenario is known as Flowshop. Additionally, the process 

focus on doing the operations in the flowshop on all jobs in the same order (sequence). 

All jobs need to go through the same series of machines in a predetermined sequence, 

and the machines are in a series arrangement. Usually, the problem to be solved in a 

flowshop is to find the minimum completion time of the processing time of the last job 
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(on the last machine). This kind of scenario is also known as the makespan (Jemni & 

Ladhari, 2011; Pinedo, 2012; Eric Taillard, 1990). 

To depict an example of flowshop scheduling, Table 2.1 shows the lists of 

processing times for each job on a particular machine. The makespan value is equal to 

the total time needed to complete all jobs, and based on the example in Table 2.1, the 

makespan value is 47 minutes (refer Figure 2.3). 

 

Table 2.1: Processing time example of 6 jobs in 3 machines 

Number of Jobs Number of Machines 

Machine 1 Machine 2 Machine 3 

Job 1 5 6 8 

Job 2 4 5 7 

Job 3 7 5 6 

Job 4 6 4 5 

Job 5 5 3 6 

Job 6 8 3 4 

 

 

Figure 2.3: Gantt chart for the flowshop. The green, orange, and blue coloured bars 

represent Machine 1, Machine 2 and Machine 3 respectively (The number in each 

bar is the processing time in minutes) (Sidek & Bareduan, 2014) 
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According to Figure 2.3, the waiting time is the gap between jobs. In 

Permutation Flowshop Scheduling Problem (PFSP), it is imperative to minimise the 

waiting time as much as possible. From here, an effective arrangement of jobs 

(permutation) is the way to reduce the amount of waiting times. 

Managing a production process that has some involvement with the scheduling 

process is not an easy task. Moreover, the literature manages to prove that the flowshop 

scheduling problem is under the NP-hard category (Garey et al., 2008b; Park, 1976). 

Researchers proposed some heuristics over the years such as Palmer heuristic (Palmer, 

1965), Gupta heuristic (Gupta, 1971), CDS heuristic Campbell et al. (1970), and NEH 

(Nawaz, Enscore, and Ham, 1983b) heuristic. NEH heuristics is the leading heuristic 

in the field of flowshop scheduling. However, this heuristic also has its shortcoming 

and research conducted to overcome the shortcoming of NEH (Fan & Winley, 2008). 

 The heuristic approaches to solve the flowshop scheduling problem now 

developed with the adaptation of particle swarm optimization on it.  For instance for 

flowshop scheduling problems where the researcher is finding the makespan and 

lateness minimization using the Particle Swarm Optimization algorithm (Tasgetiren et 

al., 2007a) 

Researchers also used the ant colony algorithm to solve the permutational 

flowshop scheduling problems, which are to minimize the makespan and outsourcing 

cost in a single machine environment (Tavares Neto & Godinho Filho, 2011).  Apart 

from the particle swarm optimization and ant colony, some studies used the artificial 

bee colony algorithm to solve the flowshop scheduling problem (Han, Duan, & Zhang, 

2011; Liu & Liu, 2013; Pan, Tasgetiren, Suganthan, & Chua, 2011; Tasgetiren et al., 

2010).  

 
 
2.3.2 Scheduling Objectives 

 
 
Scheduling systems using the heuristic approaches facilitate the matching activity 

decisions of a set of tasks within a period (Bard, 1995). Many researchers concern with 

the real problems and in the last two decades, a significant amount of research 

activities focused on the manufacturing management. Cerdá, Henning, & Grossmann 

(1997) discussed the multi-objective problem proposition intending to minimize total 
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tardiness, makespan, and the total number of tardy orders. The researchers used three 

separate objective functions. Hui & Gupta (2001) present a method to handle two 

separate objective functions. The presented method aimed to minimize makespan and 

tardiness. Chen, Lu, & Yu (2002) extend the objectives to five functions for the same 

type of problem.  

Loukil, Teghem, & Tuyttens (2005) present a multi-objective simulated 

annealing method. The method concern with the multi-objective production 

scheduling able to design a general method based on efficient schedules for a broad 

set of scheduling models. The researchers introduce the models to treat one machine, 

parallel machines, and permutation flowshops and the corresponding notations. 

Janak, Floudas, Kallrath, & Vormbrock (2006) introduce a mathematical 

production scheduling model for multi-purpose batch plants based on multi-product 

industries.  The objective function concerns the weighted individual functions. In this 

method, the main target is to maximize sales in parallel with the minimizing number 

of binary variables, orders satisfaction, overall demand satisfaction, resources, orders, 

due date order, and inventory level. Quadt & Kuhn (2007) introduce a taxonomy for 

flow lines with parallel machines scheduling procedures. They divide the problem 

concerning the production stages, the individual jobs, or the sub-problems to be solved 

(batching, loading, and sequencing). 

Paternina-Arboleda, Montoya-Torres, Acero-Dominguez, & Herrera-

Hernandez (2008) propose a k -stage Jobs Schedule algorithm based on the 

identification and exploitation of the bottleneck stage. They consider minimizing the 

makespan problem of k stages and ms machines at any stage. The results observed 

smaller variance and less computational requirements. 

Kulcsar & Forrai (2009) propose new modelling based on rescheduling the 

discrete production scheduling. They solve the problem of multi-objective scheduling 

and rescheduling using a new interpretation relational operator. The results were 

encouraging for the application of the method in multi-objective optimization 

problems. Based on the present literature, the author can conclude that the scheduling 

objectives can be classified into four types as presented in the next sections. 

 

 

PTTA
PERPUS

TAKAAN
 TUNKU

 TUN A
MINAH



16 

2.3.2.1 Minimize the Flow Time 

 

The problem of minimizing average flow time on identical parallel machines has 

received much attention in the past few years. Leonardi & Raz (2007) showed that the 

Shortest Remaining Processing Time (SRPT) algorithm has a competitive ratio. The 

same authors also showed a matching lower bound on the competitive ratio of any on-

line (randomized) algorithm for this problem. It is worth to note that this setting 

produced the leading results in the off-line setting of this problem. Garg, Kumar, & 

Muralidhara (2008) gave on-line algorithms for minimizing average flow-time on 

related machines with a poly-logarithmic competitive ratio. Much less is known when 

we impose the constraint that a job can be scheduled only on a subset of machines. 

 

2.3.2.2 Minimize the Makespan 

 

Minimize the makespan means to complete all jobs as soon as possible. Several 

published papers focused on the flowshop problem for makespan minimization. For 

instance, Grabowski & Pempera (2007) propose two tabu search (TS) algorithms. 

Wang, Zhang and Zheng (2006) proposed a hybrid genetic algorithm (HGA), Liu, 

Wang and Jin (2008) proposed a hybrid algorithm based on particle swarm 

optimization (HPSO) and Qian, Wang, Huang, Wang and Wang (2009) took the 

differential evolution (DE) as inspiration and later, Qian, Wang, Huang and Wang 

(2009) adapted the methodology to the multicriteria case. Wang, Pan, Suganthan, 

Wang, & Wang, (2010) proposed a Hybrid Discrete Differential Evolution (HDDE) 

and Ribas, Companys, & Tort-Martorell (2011) proposed an iterated greedy (IG) 

algorithm to work on the makespan minimization. 
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2.3.2.3 Minimize Job Lateness 

 

One of the more common scheduling problems in batch production involves the trade-

off between achieving batch size efficiency and meeting customer due dates.  At one 

extreme, scheduling large batches means that relatively little time spent for setup, and, 

as a result, efficiency is high.  However, long runs on a given product may mean that 

the company will miss the due dates for other products.  At the other extreme, 

scheduling based on due dates aligns priorities with customer needs, but the shorter 

runs mean more substantial amounts of setup time, and, as a result, capacity may 

become inadequate to meet demand on time (McMahon & Florian, 1975; Uzsoy, Lee, 

& Martin‐Vega, 1992; Hinder & Mason, 2017; Allahverdi & Allahverdi, 2018).   

 

2.3.2.4 Minimize Average Tardiness 

 

Average tardiness represents the order time difference due to the actual completion 

time and the due date. Scheduling, according to this performance measure, helps 

companies offer a high service level to their customers, which is essential for survival 

in the market. To minimize job earliness and tardiness, Zhu & Heady (2000) developed 

a mixed-integer programming formulation for multi-machine scheduling problems. 

The study managed to come out with a model that is useful for finding the optimal 

solutions for problems with nine jobs and three machines. Yalaoui & Chu (2002) used 

an exact method to minimize the tardiness in an identical parallel machine scheduling. 

The study proposed a branch and bound (BAB) algorithm to do the optimization which 

covers the theoretical properties, upper and lower bounds. 

 

2.4 Metaheuristic Optimization methods 

 

Practitioners use scheduling as a decision-making practice regularly in many 

manufacturing and services industries. For this reason, researchers developed several 

algorithms to optimize one or more objectives with the allocation of resources to work 

on over given periods. In this section, the researcher will provide a survey of the most 
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prominent and successful meta-heuristic algorithms used to solve the scheduling 

problem. Heuristic techniques are any method for solving hard problems. The 

researchers used these methods to speed up the process of finding a satisfactory 

solution when classic methods are less efficient or for finding an approximate solution 

when classic methods fail to find any exact solution.  

The algorithms managed to achieve this excellent feature by trading optimality, 

completeness, accuracy, or precision for speed. In a way, it can be considered a 

shortcut. Principal considerations in creative problem solving are the need for an 

adequate knowledge base. The type of heuristics that the practitioners choose to apply 

to a given problem area is "vitally important but largely unexplored". Thus, the method 

maintains the feasible solution throughout the procedure of searching proceed by 

moving from one feasible solution to one of its neighbours while improving the 

objective function (Gupta, Zanakis, & Mandokovic, 1988).  

Johnson (1954) proposed a method of scheduling for two machines with the 

aim to find the optimal sequence for the jobs to minimize makespan. The method 

managed to reduce the amount of idle time between the two machines and it is also 

worked with three machines but with some restrictions. Lee (1997) provided the 

extension of the Johnson’s rule (method) by considering the constraint in the 

availability of machines. This is because in some scenarios, one of the machines need 

to be stopped due to breakdown or preventive maintenance and the production still 

must proceed. From here, Lee (1997) proposed two-time heuristic algorithms. 

Palmer algorithm is used to perform scheduling in a simple flowshop with more 

than two machines and the objective of the algorithm is to achieve the minimum 

completion time. One advantage of using Palmer algorithm is the low computational 

time complexity because of the simplicity of the algorithm (Palmer, 1965). Hong, 

Huang and Horng (2006) proposed a combination of Longest-Processing-Time-first 

(LPT) and Palmer algorithms to solve flexible flow-shop problems with more than two 

machines. The propose algorithm generated competitive results and with more time 

allocated for the computation, better results can be achieved. Hundal and Rajgopal 

(1988) proposed an extension of Palmer heuristics by adding some set of 

computational mechanism. With the minor extension, the heuristic managed to 

perform better than other more sophisticated competitor. 
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In the field of scheduling, several rules are commonly used by the researchers 

and industry partners. One of the common rules is the First Come First Serve (FCFS) 

which is also known as First In First Out (FIFO). In this rule, the job is processed as 

soon as it enters the production system (Xoxa, Zotaj, Tafa & Fejzaj, 2014). Another 

rule is the Last Come, First Served (LCFS) where the last job that enter the queue will 

be processed first. An example for LCFS is in a warehouse where the items are stacked 

on each other and when they need to be used, the operator will choose the uppermost 

item first (Jouini, 2012). He and Alfa (1998) reported that in the field of advanced 

telephone networks, LCFS is more efficient than FCFS. 

The Earliest Due Date (EDD) rule prioritizes jobs based on the due dates where 

the job with the nearest due date will be processed first. EDD scheduling is ideal for 

products that are not behind-schedule in the context of many problem formulations 

(Wu, Yin & Cheng, 2011). Roychowdhury, Allen and Allen (2017) proposed a GA 

based on the EDD rule for the automotive stamping operations. Another well-known 

rule is the Shortest Processing Time (SPT) which arrange jobs in the order of 

increasing processing times. The job with the shortest processing time will be worked 

on first and this rule is able to minimize the number of jobs completed at any point 

(Zhou, Feng & Han, 2001). According to Qi, Bard and Yu (2006), although SPT can 

minimize the average flow time and average number of jobs, it will be pushed back 

the long job in the schedule. 

In hard problems and to find efficient optimal solutions, meta-heuristics 

algorithms are higher-level heuristic that designed to find, generate, or select a 

heuristic (partial search algorithm). Meta-heuristics algorithms are the iterative 

generation process that guides a secondary heuristic for exploring and exploiting the 

search space. The literature divides the meta-heuristics algorithms into two categories; 

trajectory and population-based searches (Blum & Roli, 2003; Talbi, 2009; Toutouh, 

2015), as shown in Figure 2.4. 
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Figure 2.4: General classification of the optimization techniques (Toutouh, 2015) 

 

Natural Computing (NC) is a process of developing artificial systems inspired by 

nature. The inspiration from nature is used to develop algorithms to solve complex 

problems. The first mathematical model of a neuron, proposed by McCulloch & Pitts 

(1943) becomes the foundation base of Artificial Neural Network.  After that, nature-

inspired optimization techniques are divided into three groups (de Castro, 2006; 

Toutouh, 2015): 

i. Evolutionary Computing (EC), that utilize the ideas of the evolution of 

species to develop Evolutionary Algorithms (EAs). 

ii. Swarm Intelligence (SI), that is inspired by the movement and behaviour of 

organisms. 

iii. Artificial Immune Systems (AIS), that is used to develop models based on the 

immune systems. 

 

However, there is also a bio-inspired algorithm that does not fall into any categories 

mentioned above such as Simulated Annealing (SA). 
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2.4.1  PSO Optimization 

 

The PSO algorithm has several features, such as a new encoding scheme, the 

implementation of the best velocity equation and neighbourhood topology among 

several different variants, and effective incorporation of local search. For this reason, 

researchers applied this algorithm to job schedule processes (Yi, 2016). PSO is known 

to exploits particles to search for areas with high-quality solutions. Each particle 

moves in the search space in the preset velocity with the previous high-quality 

memories as guidance (Md Fauadi & Murata, 2010). 

Tasgetiren, Sevkli, Liang, & Gencyilmaz (2004) proposed a discrete particle 

swarm optimization algorithm to determine a sequence of n jobs for the method to 

process through m machines that minimize the number of tardy jobs. The group 

implemented the algorithms using the due date configurations of the data sets by 

Demirkol, Mehta, & Uzsoy (1998). The study concluded that the particle swarm 

optimization algorithm gives promising solutions utilizing the proposed SPV (Smallest 

Position Value) heuristic rule. 

Liao, Tseng, & Luarn (2007) presented a PSO-LS algorithm by extending from 

discrete PSO for flowshop scheduling. They developed the particle movement to the 

new sequence and incorporated a local search scheme into the proposed algorithm. 

Computational results show that the proposed algorithm is exceptionally modest in 

case of a total flowtime criterion. 

Lian, Gu, and Jiao (2008) presented a novel particle swarm optimization 

(NPSO) algorithm, which applied to permutation flow-shop scheduling to minimize 

makespan. The algorithm applied based on the discrete characteristic of FSSP, and the 

results observed more efficacious than standard GA for FSSP to minimize makespan. 

Tseng and Liao (2008) solved the multistage hybrid flow-shop scheduling 

problem with multiprocessor tasks by using particle swarm optimization (PSO). Based 

on the results, the proposed PSO algorithm seems to perform better compared to all 

the existing algorithms for the considered problem. 

Sha and Hung Lin (2009) proposed a particle swarm optimization-based 

multiobjective algorithm for flowshop scheduling to meet the requirements of realistic 

manufacturing systems. The proposed evolutionary algorithm searches the Pareto 

optimal solution for objectives by considering the makespan, mean flow time, and 
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machine idle time. The results show that the modified particle swarm optimization 

algorithm performed better in terms of searching quality and efficiency than other 

traditional heuristics. 

Li, Pan, and Mao (2014) presented a hybrid algorithm by combining particle 

swarm optimization (PSO) and iterated local search (ILS) for solving the hybrid 

flowshop scheduling (HFS) problem with preventive maintenance (PM) activities. The 

ILS-based local search procedure is embedded in the algorithm to improve the 

exploitation ability of the proposed algorithm. Detailed comparisons verify the 

efficiency and effectiveness of the proposed algorithm. 

Ramanan, Iqbal, and Umarali (2014) used a particle swarm optimization (PSO) 

approach for optimizing the makespan of an FSSP. In this method, the group employed 

a Variable neighbourhood search (VNS) to overcome the early convergence of the 

PSO and helps in global search. The experimental results show that the solution quality 

of FSSP can be improved if the method can direct the search in a quality space based 

on the proposed PSO approach (PSO-NEH-VNS). 

Given the swarm behaviour is tested for solving a combinatorial optimization 

problem such as a sequencing problem under constraints. The computational results 

show that this approach outperforms the compared methods in terms of the quality of 

solutions in short time requirements. Also, the researchers evaluated the performance 

of the proposed approach according to a real-world industrial problem. 

 The reasons for PSO algorithm to be favourable by some researchers because 

of its simplicity and easy implementation. However, PSO algorithm tends to fall easily 

into local optimum especially in complex problems (Choi, Ohmori, Yoshimoto, & 

Ohtake, 2010). The algorithm also suffers the issue of premature convergence and this 

is the main reason for the improvements made by previous researchers (Abdmouleh et 

al., 2017; Li, Du, & Nian, 2014; Yi, 2016). PSO also known to be problematic with a 

problems of scattering and the task to define the initial design parameters might not be 

straight forward (Abdmouleh et al., 2017). 
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2.4.2  Ant Colony Optimization 

 

ACO algorithms are population-based search algorithms based on the food hunting 

patterns of real ants that utilize agents (ants), single or multiple, to construct the 

optimal solution iteratively. 

Rajendran and Ziegler (2004) focused on the problem of scheduling in 

permutation flowshops by using two ACO algorithms to minimize the sum of the total 

flow time of jobs and makespan. The group evaluated the effectiveness of the proposed 

ant-colony algorithms by considering the benchmark problems and upper bound 

values for the makespan given by E. Taillard (1993). It has found that both the 

proposed ant-colony algorithms perform well than the existing ant-colony algorithm 

in the case of relatively large-sized than small-sized permutation flowshop problems. 

Shyu, Lin, and Yin (2004) developed an ACO-based algorithm to solve the 

two-machine flowshop scheduling problem with no waiting between operations and 

including set up time. They have shown that the ACO algorithms outperform previous 

algorithms and considered to be effective and robust in dealing with the said 

scheduling problems.  

Rajendran and Ziegler (2005) proposed two ACO-based algorithms to 

minimize the total flow time in permutation flow-shops. The algorithm generates an 

initial seed sequence and carries out a local search at the end of each iteration. The 

authors observed that it is not possible to identify one heuristic that is best for the entire 

set of benchmark problems.  

Yagmahan and Yenisey (2008) introduced ACO for minimizing multi-

objectives, including makespan, total flow time, and total machine idle time. The 

computational results show that the proposed algorithm is more effective and better 

than other methods compared.  

Zhou, Lee, and Nee (2008) proposed ant colony optimization for dynamic jobs 

scheduling problems and showed that ACO performed excellently, but the however 

performance of ACO does not improve with increasing the iterations and ants per 

iteration. They have also concluded that the ACO can be enhanced when the machine 

utilization increases. 

Yagmahan and Yenisey (2010) considered the flowshop scheduling problem 

concerning the minimization of both objectives of makespan and total flow time. The 
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proposed algorithm based on the ACS metaheuristic called a multi-objective ant 

colony system algorithm (MOACSA). They concluded that the proposed MOACSA 

performs better than CR (MC) algorithm, HAMC algorithms, and GA for said multi-

objective flowshop scheduling problem. 

Rabanimotlagh (2011) developed the ant colony optimization algorithm to 

solve the permutation flowshop scheduling problem. This problem is optimized 

considering two criteria, makespan and total flow time. Then the results observed that 

the proposed approach performs best among all other algorithms.  

Zhong and Zhang (2012) improved ACO algorithm to solve the PFSP, which 

takes the minimum of makespan as the objective function. Also, they integrate NEH 

heuristic with ACO for scheduling problems cooperatively, define the heuristic 

information of ACO via makespan increment, and come up with a new priority rule 

for PFSP. The experiment results show that the proposed algorithm is productive and 

competitive. 

Chen, Zhang, and Ma (2013) present a novel hybrid ant colony optimization 

(ACO&VNS) to solve the permutation flow-shop scheduling problem (PFS) in 

manufacturing systems and industrial processes. The main feature of this hybrid 

algorithm is to hybridize the solution construction mechanism of the ACO with 

variable neighbourhood search (VNS), which can also be embedded into the ACO 

algorithm as a neighbourhood search to improve solutions. Moreover, the hybrid 

algorithm considers both solution diversification and solution quality. The 

experimental results for benchmark PFS instances have shown that the hybrid 

algorithm is very efficient in solving the permutation flow-shop scheduling in 

manufacturing engineering compared with the best existing methods in terms of 

solution quality. 

ACO is suitable for problems with specific and predefined sources and 

destinations. It is an algorithm with great capabilities, but its weaknesses should be 

taken into consideration. The theoretical analysis of utilizing ACO is not easy and it 

requires some extra effort with the initial settings. ACO is also known to be not 

independent because it operates on the sequence of random decisions (Selvi & 

Umarani, 2010). The probability distribution of ACO are said to change by iteration 

and it also suffers the weakness of poor global search ability (Cui & Han, 2013; Zhang, 

Xiao, & Fei, 2017). The convergence is guaranteed for ACO but the time for 

convergence is uncertain. Some researchers mentioned the convergence rate of the 
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