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ABSTRACT 

Optimization in an essential element in mechanical engineering and has never 

been an easy task.  Hence, using an effective optimiser to solve these problems with 

high complexity is important. In this study, two metaheuristic algorithms, namely, 

modified flower pollination algorithm (MFPA) and carnivorous plant algorithm (CPA), 

were proposed. Flower pollination algorithm (FPA) is a biomimicry optimisation 

algorithm inspired by natural pollination. Although FPA has shown better convergence 

than particle swarm optimisation and genetic algorithm in the pioneering study, 

improving the convergence characteristic of FPA still needs more work. To speed up 

the convergence, modifications of: (i) employing chaos theory in the initialisation of 

initial population to enhance the diversity of the initial population in the search space, 

(ii) replacing FPA’s local search strategy with frog leaping algorithm to improve 

intensification, and (iii) integrating inertia weight into FPA’s global search strategy to 

adjust the searching ability of the global strategy, were presented. CPA, on the other 

hand, was developed based on the inspiration from how carnivorous plants adapt to 

survive in harsh environments. Both MFPA and CPA were first evaluated using 

twenty-five well-known benchmark functions with different characteristics and seven 

Congress on Evolutionary Computation (CEC) 2017 test functions. Their convergence 

characteristic and computational efficiency were analysed and compared with eight 

widely used metaheuristic algorithms, with the superiority validated using the 

Wilcoxon signed-rank test. The applicability of MFPA and CPA were further 

examined on eighteen mechanical engineering design problems and two challenging 

real-world applications of controlling the orientation of a five-degrees-of-freedom 

robotic arm and moving-object tracking in a complicated environment. For the 

optimisation of classical benchmark functions, CPA was ranked first. It also obtained 

the first rank in CEC04 and CEC07 modern test functions. Both CPA and MFPA showed 

promising results on the mechanical engineering design problems. CPA improved over 

the particle swarm optimisation algorithm in terms of the best fitness value by 69.40-
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95.99% in the optimisation of the robotic arm. Meanwhile, MFPA demonstrated a 

better tracking performance in the considered case studies by at least 52.99% better 

fitness function evaluation and fewer number of function evaluations as compared with 

the competitors.  
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ABSTRAK 

Pengoptimuman adalah satu elemen penting dalam kejuruteraan mekanikal dan 

tidak pernah menjadi satu kerja yang mudah. Oleh itu, penggunaan suatu 

pengoptimum yang efektif untuk menyelesaikan masalah yang berkerumitan tinggi ini 

adalah mustahak. Dalam kajian ini, dua algoritma metaheuristik, iaitu algoritma 

pendebungaan bunga yang ditambahbaik (APBT) dan algoritma tumbuhan karnivor 

(ATK), telah dicadangkan. Algoritma pendebungaan bunga (APB) adalah algoritma 

pengoptimuman biomimikri yang diilhamkan oleh pendebungaan semula jadi. 

Walaupun APB telah menunjukkan penumpuan yang lebih baik daripada 

pengoptimuman kumpulan zarah dan algoritma genetik dalam kajian perintis, 

peningkatan ciri penumpuan APB masih memerlukan lebih banyak usaha. Untuk 

mempercepatkan penumpuan, pengubahsuaian (i) Menggunakan teori kekacauan 

dalam permulaan populasi awal untuk meningkatkan kepelbagaian populasi awal di 

ruang carian; (ii) Menggantikan strategi pencarian tempatan APB dengan algoritma 

lompatan katak untuk meningkatkan intensifikasi; dan (iii) mengintegrasikan berat 

inersia dengan strategi pencarian global APB untuk menyelaraskan kemampuan 

pencarian strategi global, telah dibentangkan. ATK, di sebaliknya, telah dibangunkan 

berdasarkan inspirasi daripada bagaimana tumbuhan karnivora menyesuaikan diri 

untuk bertahan hidup dalam suasana yang sukar. Kedua-dua APBT dan ATK pada 

mulanya dinilaikan pada dua puluh lima fungsi penanda aras terkenal dengan ciri-ciri 

yang berbeza dan tujuh fungsi ujian Congress on Evolutionary Computation (CEC) 

2017. Ciri penumpuan dan kerumitan pengiraan mereka telah dianalisis dan 

dibandingkan dengan lapan algoritma metaheuristik yang digunakan secara meluas, 

dengan kelebihan yang disahkan dengan menggunakan ujian Wilcoxon signed-rank. 

Kebolehlaksanaan APBT dan ATK dikaji dengan lebih lanjut dalam lapan belas 

masalah rekabentuk kejuruteraan mekanikal dan dua aplikasi dunia sebenar yang 

mencabar, iaitu pengawalan orientasi lengan robot dengan lima darjah kebebasan dan 

pengesanan objek bergerak di dalam persekitaran yang rumit. Bagi pengoptimuman 
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fungsi ujian penandaaras klasik, ATK memperolehi kedudukan pertama. Ia juga 

mendapat kedudukan pertama dalam fungsi ujian moden CEC04 dan CEC07. Kedua-

dua ATK dan APBT menunjukkan hasil yang meyakinkan di dalam masalah reka 

bentuk kejuruteraan mekanikal. Berbanding dengan algoritma pengoptimuman 

partikel berkelompok, ATK bertambah baik dari segi nilai kecergasan terbaik 

sebanyak 69.40-95.99% dalam pengoptimuman lengan robot. Sementara itu, APBT 

menunjukkan prestasi pengesanan yang lebih baik dalam kajian kes yang 

dipertimbangkan, dengan sekurang-kurangnya 52.99% penilaian fungsi kecergasan 

yang lebih baik dan jumlah penilaian fungsi yang lebih rendah berbanding dengan 

pesaing. 
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CHAPTER 1 

INTRODUCTION 

In this chapter, the definition of optimisation is first introduced, followed by a brief 

explanation of mathematical optimisation methods and stochastic methods. 

Subsequently, the problem statement of this study is presented, where the solutions to 

resolve the limitations of the flower pollination algorithm (FPA) are suggested and a 

new bio-inspired algorithm, specifically, carnivorous plant algorithm (CPA) is 

proposed. The objective, scope and contributions of this study are then stated. Lastly, 

the organisation of the thesis is presented.  

1.1. Research Background 

Optimization attempts to find the best combination of the design parameters in a given 

problem under some definite constraints, such that the objective of that particular 

problem can be met [1]. For single-objective optimisation problems, the mathematical 

model can be written as: 
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where  f x  is the function of the single-objective optimization problem, 

1 2 1,  ,  ...,  ,  n nx x x x x  is the design variable, n  is the number of design variables, 

 jg x  is the inequality constraint, J  is the number of inequality constraints,  kh x  
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is the equality constraint, K  is the number of equality constraints, iLb  is the lower 

boundary of the ith input and iUb  is the upper boundary of the ith input.  

The importance of optimization has roots in multitudinous areas; particularly 

in mechanical engineering, optimization is often related to system performance 

improvement, cost reduction, process streamlining, efficiency and reliability. An 

example of optimization in mechanical engineering would be to find the optimal 

combination of depth of cut, feed per tooth and cutting speed such that the total 

production time for milling a workpiece is minimized. A slight change in one 

parameter will affect the cost and production time of the milling process as well as the 

product quality. Conventionally, the parameter setting relies on the operator’s 

experience, which is even a challenging task for an experienced operator. Thus, a 

successful optimisation of these parameters is critical so that the manufacturer can 

increase production in limited time to survive in a competitive market. 

Optimization, however, has never been an easy task due to the nonlinearity 

feature of the objective function. The design parameters are discontinuous and some 

of the design parameters are only considered discrete value [2]. The increase in the 

number of design variables and constraints makes the optimisation even more 

complicated and therefore more computationally costly [3]. Before the emergence of 

the stochastic methods, deterministic approaches, such as hill-climbing, Simplex 

method, Bundle method and Newton-Raphson, are commonly used to solve 

optimisation problems [4, 5]. Despite these techniques continuing to receive 

widespread attention in various domains, challenges still remain of local optima 

entrapment if given a poorly defined starting point [6]. Furthermore, these methods are 

usually slow in convergence and incur a high number of function evaluations (NOFE) 

to search for feasible solutions. In addition, deterministic algorithms, especially the 

gradient-based approach, are ineffective in solving non-differentiable/discontinuous 

problems [7] or when the objective function has sharp or multiple peaks. Thus, these 

methods have limited applicability in solving complex real-world problems. 

The rise of the stochastic method as a promising alternative to the deterministic 

approach indeed lies with its inherent randomness and gradient-free calculation. The 

use of randomness can be found in different components of a stochastic optimization 

method, such as the crossover and mutation operators in the popular genetic algorithm 

(GA) and the hill-climbing method with random restart, allowing the stochastic 
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method to escape from local optima. Moreover, moving the solutions towards the 

global optima is based on the evaluation of the objective function and a set of rules. 

This is in contrast with the mathematical optimisation method, which requires the 

calculation of gradient by the derivative of the objective function. Given this 

superiority, rapid progress in the research on the stochastic method has spawned the 

development of a broad range of optimisation solutions, falling into two categories: 

heuristic and metaheuristic [5]. 

 Bio-inspired and population-based metaheuristic algorithms are gaining steam 

today and are often implemented in different domains [8]. This is because 

metaheuristic algorithms are simple to use, only needing the information of fitness 

function during optimisation. Additionally, metaheuristic algorithms, which use a set 

of solutions with probabilistic rules in finding the global optima in the search space, 

also improve the success rate of optimisation. In metaheuristic algorithms, two major 

elements, namely, exploration and exploitation, play an important role during 

optimisation. Exploration enables the algorithm to explore the promising areas in the 

search space and also to escape from the local optima [8, 9]. Meanwhile, exploitation 

enables the algorithm to obtain a highly accurate solution from the promising areas [7]. 

In this regard, an algorithm with a good combination of these two elements will 

prevent itself from premature convergence in the early phase of the optimisation 

process and quickly converge towards the global optima at the end. 

Most metaheuristic algorithms are inspired by nature, such as GA [10] — the 

most popular metaheuristic algorithm—which imitates the biological evolution of 

mutation, recombination and selection of biological systems. This has opened a new 

way of thinking for researchers to link nature to the mathematical computational skill 

in solving challenging optimisation problems. Since then, a lot of metaheuristic 

algorithms have been developed and the list is still growing, which can be referred to 

in [11].  

These metaheuristic algorithms can be categorised based on their inspiration 

source as follows: 

a) Evolutionary techniques: GA [10] and differential evolution (DE) [12]. These 

algorithms are derived from biological evolution, such as mutation, crossover, 

selection and reproduction. 

b) Animal-based techniques: artificial bee colony (ABC) [13], particle swarm 

optimization (PSO) [14], cuckoo search algorithm (CSA) [15], bat algorithm 
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(BAT) [16], squirrel search algorithm (SS) [17] and sailfish optimizer (SFO) 

[9]. Such algorithms are inspired by the behaviour of animals, for instance, bee, 

bird, bat, squirrel and fish. 

c) Plant-based techniques: invasive weed optimization (IWO) [18] and flower 

pollination algorithm (FPA) [19]. These algorithms imitate plants’ behaviour, 

where IWO mimics the process of weed invasion, while FPA simulates the 

pollination process of flowers. 

d) Human activity-based techniques: harmony search (HS) [20], teaching learning 

based optimization (TLBO) [21], league championship algorithm (LCA) [22] 

and imperialist competitive algorithm (ICA) [23]. These kinds of algorithms 

are derived from human activities, such as guitar tuning, teaching and learning 

method, the championship process of sports leagues and the colonisation of an 

empire. 

e) Physics-based techniques: gravitational search algorithm (GSA) [24], water 

cycle algorithm (WCA) [25], Big Bang–Big Crunch (BBBC) [26] and multi-

verse optimiser (MVO) [27]. These algorithms mimic the phenomena on earth 

and also in the universe, for example, the law of gravity, the flow of rivers and 

streams towards the sea, the Big Bang and Big Crunch theories and the 

concepts of white holes, black holes and wormholes.  

1.2. Problem Statement  

Optimisation is an essential and indispensable element in almost every engineering 

vertical. Minimising the total mass of a speed reducer, maximising the dynamic load-

carrying capacity of a rolling bearing and minimising the total cost of a welded beam 

are examples of optimisation problems in the mechanical engineering field. Hence, 

liable optimisers are often needed to solve those engineering problems with high 

complexity. Most real-world engineering problems are constrained optimisation 

problems. To solve these problems, there are two types of optimisers available: 

mathematical programming methods and metaheuristic algorithms [28]. Mathematical 

programming methods, also known as deterministic approaches, are feasible only if 

the derivatives of the underlying problems are available. These methods, too, are 

highly affected by the number of local optima and the selection of the initial points. In 
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addition, handling problems with discontinuities still pose a challenge for deterministic 

approaches. Metaheuristic algorithms, on the other hand, are able to overcome the 

shortcomings of mathematical programming methods, as shown in the literature [29-

32].  

 Despite the consistently promising performance of metaheuristic algorithms, 

the increasing complexity of real-world problems has prompted the search for better 

solutions. For performance enhancement, the studies on metaheuristic algorithms can 

be divided into three main directions: (i) improving existing metaheuristic algorithms, 

(ii) hybridising different metaheuristic algorithms, and (iii) proposing new 

metaheuristic algorithms. The intent of this study focuses on all these three directions. 

For the first and second direction, FPA was chosen to be modified due to the 

preliminary results showing that FPA is far better than GA and PSO [19]. However, 

scrutinising the literature showed that FPA utilises a typical random technique to 

initialise the population, contributing to low population diversity, and is prone to poor 

and premature convergence [33]. The searching process may, therefore, start in an 

unsuitable search space, which further affects the competence of the algorithm, 

particularly with regard to the convergence rate. In addition, the local search approach 

of FPA lacks knowledge sharing among the good solutions and, in turn, may require 

more function evaluations for convergence. Random walks throughout FPA’s 

exploration phase may also impede the convergence. This is because, at the end of the 

optimisation system, the ongoing exploration significantly increases the search time. 

The ideal searching operation in an optimisation system should initially concentrate 

more on exploration and progressively move towards exploitation at the end. Realising 

this shortcoming, the formulation of modified flower pollination algorithm (MFPA) is 

studied in this work, where the following modifications were included: (i) 

incorporation of the circle map in population initialisation to enhance the diversity of 

the population, (ii) integration of the frog leaping algorithm to improve information 

sharing among the good solutions, and (iii) using inertia weight in the search process 

to balance exploration and exploitation. The performance of the developed MFPA was 

evaluated using different test problems. 

The increasing complexity of real-world problems has prompted the 

development of more metaheuristic optimisation approaches. One might question the 

need to have a new metaheuristic algorithm since there are many existing metaheuristic 

algorithms out there. A positive answer to this question is because of the No Free 
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Lunch (NFL) Theorem, proposed by Wolpert and Macready [34]. According to the 

NFL theorem, if algorithm A performs better than algorithm B in the specific problem 

X, it is not necessary for algorithm A to outperform algorithm B in the specific problem 

Y. The performances of all algorithms are equally well on average. Concisely, there is 

no universal optimisation procedure that works perfectly for all optimisation problems 

and, thus, the continuing flourish of the diversity of optimisation algorithms is 

encouraged. Hence, a new population-based metaheuristic algorithm, namely, CPA, is 

proposed, corresponding to the third direction. CPA imitates how carnivorous plants 

adapt to survive in harsh environments, specifically, hunting insects for its food and 

pollinating for reproduction. Although MFPA and CPA are in the same class, which 

is plant-inspired algorithm, the CPA proposed in this work is completely different as 

compared with former works in terms of biological inspiration, mathematical 

formulation for solutions updating and real-world applications. To the best of the 

author’s knowledge, an algorithm inspired by the survival skills of carnivorous plants 

has not yet been studied in the literature. It will be shown that the proposed CPA can 

successfully address the issues of high-dimensional design variables, the existence of 

various constraints and the search space with many local optima without having a 

structural bias in its searching operator.  

1.3. Objective 

The aim of this study gears towards an modified FPA and a new optimisation algorithm, 

specifically CPA, for engineering optimisation problems. The objectives of this study 

are as follows: 

1) To formulate an MFPA, incorporating the frog leaping local search, chaos 

theory and inertia weight. 

2) To develop an efficacious novel CPA inspired by the survival skills of 

carnivorous plants. 

3) To assess the beneficial impact of MFPA and CPA on the optimisation of test 

functions, benchmark mechanical engineering optimisation problems and real-

world problems.  

4) To compare the optimisation performances of MFPA and CPA with other 

approaches available in the literature.  
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1.4. Scope of Study 

The scope of this study is as follows:  

(i) The optimisation problems were limited to single-objective optimisation 

problems. 

(ii) The performances of MFPA and CPA were evaluated through assessment 

in thirty-two benchmark test functions and eighteen mechanical 

engineering optimisation problems. 

(iii) Two real-world applications, which were controlling the posture of a 5-

degrees-of-freedom (DOF) robotic arm for gripping a target object 

precisely without colliding with any obstacle and tracking a moving object 

on visible image sequences in a complicated environment, were selected. 

(iv) The results obtained by MFPA and CPA in solving classical benchmark 

test functions were compared with FPA, Improved PSO, DE, CSA, BAT, 

firefly algorithm (FA), salp swarm algorithm (SSA) and GA. 

(v) The results obtained by MFPA and CPA in solving Congress on 

Evolutionary Computation (CEC) test functions were compared with FPA, 

Improved PSO, DE, CSA, BAT, FA, SSA, GA and success-history-based 

adaptive differential evolution with linear population size reduction 

(LSHADE). 

(vi) The results obtained by MFPA and CPA in the first real-world problem, 

namely, posture control of a 5-DOF robotic arm, were compared with FPA, 

DE, PSO and GA. 

(vii) The results obtained by MFPA and CPA in the second real-world problem, 

specifically, moving-object tracking in a complicated environment, were 

compared with FPA, DE, PSO, GA and particle filter (PF). 

(viii) The NOFE required by each algorithm was compared for optimising 

benchmark test functions.  

(ix) The best fitness value obtained by each algorithm was compared in solving 

mechanical engineering optimisation problems. 

(x) The derivation of MFPA and CPA were performed using the MATLAB 

R2016a software. 



8 
 

1.5. Contributions of the Study 

In this study, significant contributions to the field of optimization using bio-inspired 

metaheuristic algorithms have been made. The main contributions and its novelty are 

as follows: 

1) A new variant of FPA, specifically MFPA, has been developed. A considerable 

contribution is made in terms of the diversity of the initial population, the 

enhancement of the local search ability and the balancing of exploration and 

exploitation. The proposed MFPA demonstrates higher solution accuracy and 

better convergence characteristic than the classical FPA in solving global 

optimisation problems. 

2) A novel bio-inspired CPA is proposed and presented for the first time in this 

study. The close mimicking of how carnivorous plants adapt themselves to 

circumstances that are constantly changing is mathematically formulated. The 

proposed CPA can effectively deal with optimisation problems with high-

dimensional design space that involves 30 design variables, the presence of 

different constraints and the high complexity landscape of the search space. In 

addition, the proposed CPA shows no structural bias from the results of 

optimising seven CEC 2017 test functions. 

3) The effectiveness of the proposed MFPA and CPA were tested using the 

benchmark test functions, benchmark mechanical engineering optimisation 

problems and real-world applications. Both proposed algorithms are competent 

algorithms in terms of faster convergence rate and higher solution accuracy.  

1.6. Thesis Organization  

Chapter 2 begins with the discussion on the preliminaries and the definition of the 

optimisation problem. The history of optimisation techniques is touched on, followed 

by the exploration on the literature of metaheuristic algorithms. The procedure of FPA 

and its applications in the real world is given. The limitations of FPA are reviewed and 

the need to improve FPA from various aspects is then presented. Lastly, a review of 

two real-world applications, specifically, the posture control of a 5-DOF robotic arm 

and dynamic object tracking in a complex environment, is provided. 
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 The formulation of the proposed MFPA and CPA, which is the core of this 

thesis, is presented in Chapter 3. The proposed MFPA is introduced first in the chapter, 

followed by the discussion on each component used to improve FPA, which are chaos 

theory, frog leaping local search and inertia weight. The detailed procedure of MFPA 

is then explained. Next, the inspiration, mathematical model and flowchart of the 

proposed CPA are provided. Lastly, the derivation of the mathematical models for the 

two real-world applications are given. 

 The performance assessment of MFPA and CPA on solving thirty-two 

benchmark test functions, eighteen mechanical engineering design problems and two 

real-world problems are given in Chapter 4. The benchmark test functions are divided 

into two categories, which are classical benchmark test functions and CEC test 

functions. The classical benchmark test functions are used to evaluate the exploitation 

and exploration of the proposed algorithms, while CEC test functions are used to 

examine whether the proposed algorithms have a structural bias. It will be shown that 

both proposed algorithms have faster convergence rates and higher solution accuracy 

as compared with other optimisers. 

 The conclusions of this research work are provided in Chapter 5. Lastly, the 

recommendations for further research are given. 

2. 11CHAPTER 2 

 

 

 



10 
 

CHAPTER 2 

LITERATURE REVIEW 

2.1. Introduction 

The optimisation problem is the primary issue in the optimisation process. Thus, this 

chapter begins with the preliminaries of the optimisation problem. Then, the classical 

optimisation methods, which are typically used to solve optimisation problems, are 

discussed, followed by their disadvantages. The advantages of metaheuristic 

algorithms are presented and several examples of metaheuristic algorithms are 

provided, which are designed to resolve the shortcomings of the classical optimisation 

methods. Subsequently, the details of FPA, which is the selected algorithm for 

modification in this study, are thoroughly explained, and followed by the discussion 

of the background of CPA. Lastly, the review of the selected first and second 

challenging real-world applications - the controlling of robot motion and the tracking 

of the moving object - are presented.  

2.2. Preliminaries of Optimization Problem 

The optimisation problem can be categorised as a single-objective optimisation 

problem and a multi-objective optimisation problem. The former has only one 

objective, while the latter has more than one objective. Dealing with a multi-objective 

optimisation problem requires special mechanisms, namely, relational operators such 

as Pareto optimal dominance, which is the core operator [35]. However, the work 

studied here focuses on single-objective optimisation problems; interested readers may 
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refer to the work by Zhou et al. [36] for more information on multi-objective 

optimisation problems.  

The problem in optimisation is defined by design parameters, which are real 

numbers (design variables) that have to be determined to obtain the minimum or 

maximum of the fitness value [37]. These decision variables are known as inputs. 

Examples of input are the number of teeth in the gear, the face width of the gear, the 

number of coils in the spring and material of the gear [37]. There are three types of 

inputs: continuous, discrete and integer. The continuous type of input, which is 

commonly found in many optimisation problems, is free to assume any value. The 

discrete type of input, on the other hand, is only assigned to a particular range of value; 

for instance, the diameter of a screw can only be chosen from a set of standard size. 

Lastly, the integer type of input considers integer values only, such as the number of 

threads in a screw and the number of teeth in a gear [37].  

Optimisation problems with and without constraint are known as constrained 

and unconstrained problems, respectively. For constrained optimisation problems, the 

constraint can be categorised as inequality constraint and equality constraint. The 

former is represented by  jg x , while the latter is denoted by  kh x , as explained in 

Section 1.1. To differentiate them, an optimisation problem with two inputs and 

constraints constructed in a graph is illustrated in Figure 2.1. An optimisation problem 

with constraints increases the difficulty level for an algorithm to solve it, since the 

solution provided by the algorithm cannot violate the constrained areas. Some 

algorithms might be good in solving the unconstrained problem but are inefficient in 

solving the constrained problem. Therefore, the proposed new algorithm should be 

able to handle both instead of solving the unconstrained problem alone. 

 In addition, the landscape of the objective function can classify optimisation 

problems into unimodal and multimodal problems. Since a 3D graph can be 

constructed from a single-objective problem with two inputs, a single peak shown in 

the graph of the nonlinear case is known as a unimodal problem. In contrast, when 

more than one peak appear in the graph, it is considered a multimodal problem. The 

global optimum of the multimodal problem is hard to find due to many local optima, 

where the algorithm may get trapped. To visualise them, a 3D graph of the unimodal 

and multimodal problems with two inputs are generated, as shown in Figure 2.2.  
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Figure 2.1. Sphere Function with and without Constraint 

  

Figure 2.2. Example of unimodal and multimodal functions 

A newly proposed or modified metaheuristic algorithm should be able to 

address the challenges concerning high-dimensional design variables, the existence of  

various constraints and the search space with many local optima. It shall be able to 

search for the optimal solution within the shortest period of time despite a large number 

of design variables to be optimised. In addition, the increasing optimisation difficulty 

due to the modelling constraints shall not impede the algorithm from reaching the 

optimal solutions with no violated constraints. Most importantly, a successful search 

mechanism shall not be prone to stagnation due to the existence of the local optima as 

in the multimodal function. 

2.3. Classical (Deterministic) Optimization Methods 

Most classical optimisation methods are deterministic. Since no degree of randomness 

is involved in the deterministic technique, it always outputs the same optimal solution, 
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if given the same starting point. This technique is considered a gradient-based 

algorithm if it uses gradient information to solve the optimisation problem. Examples 

of such technique are Newton’s method and the steepest descent method. Meanwhile, 

a deterministic technique that does not use derivative information is known as a 

gradient-free algorithm. This technique, such as the Nelder-Mead method, is required 

when the problem is unsolvable due to the non-differentiable characteristic of the 

objective function. In addition, linear programming and nonlinear programming are 

also categorised as deterministic techniques. These techniques, on the other hand, are 

used to solve constrained optimisation problems. The methods are briefly explained in 

the following section. 

2.3.1. Steepest Descent Method 

The steepest descent method is gradient-based optimisation algorithm for searching 

the optimal solution of a continuous function [38]. This method iteratively searches 

for the neighbourhood point that has the lowest possible value from the direction of 

the negative gradient of the current point. The formula for the steepest descent method 

is shown as follows: 

     1
n

n n nx x f x
   (2.1) 

where n  is the current iteration, 1nx   is the neighbourhood point, nx  is the current 

point,  n
 is the step size with a single real-value in current iteration and  nf x  is 

the gradient of the current point on a continuous function  f x . When the current 

point nx , which is either the initial point or is moved from the previous point through 

Equation (2.3), is identified, the gradient of the current point  nf x  can be 

determined. The neighbourhood point 1nx   with a single unknown variable  n
  is then 

substituted into the continuous function and becomes     1
n

nf x f   . The step size 

 n
  is searched such that   nf   is at the minimum. Since it has become a new 

optimisation problem with a single unknown variable  n
 , techniques such as 

Newton’s method can be used to identify  n
 . Thus, step size  n

  and gradient 
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 nf x  are calculated at every iteration. A good guess on the initial point, which is 

near to the optimal solution, is useful for accelerating the optimisation process. 

2.3.2. Newton’s Method 

Newton’s method is a numerical method used to find the roots of continuous function 

 g x [39]. However, such a method can be modified to become an optimization 

method since optimization in calculus means identifying the root of the first derivative 

 f x . 

 The formula for Newton’s method is shown as follows: 

  

 1
n

n n
n

g x
x x

g x  


 (2.2) 

where  g x  is a continuous function,  g x  is the first derivative of the function and 

nx  is a real variable x on n iteration. The roots of the continuous function can be 

iteratively obtained using Equation (2.2). To transform Newton’s method into an 

optimisation method, let    g x f x  and    g x f x  ; thus, Newton’s method in 

solving the optimisation problem by substituting everything together is presented as 

follows: 

   

 1
n

n n
n

f x
x x

f x


 


 (2.3) 

2.3.3. Nelder-Mead Method 

In most real-world problems, the objective function is non-differentiable. Thus, the 

gradient-based algorithm is impracticable to optimise such problems. The Nelder-

Mead method, which was developed by John Nelder and Rofer Mead in 1965 [40], 

was invented to overcome this shortcoming. This technique uses the flexibility of a 

geometrical shape, also known as a simplex, to search for the optimal solution. The  
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Figure 2.3. The transformation of the constructed simplex: (a) reflection, (b) 
expansion or contraction along the line of reflection and (c) shrink contraction 

constructed simplex is reshaped at each iteration through the process of reflection, 

expansion, contraction and shrink contraction, as illustrated in Figure 2.3. 

The Nelder-Mead method begins with the initialisation of n+1 solutions on the 

search domain. The fitness values of the solutions are evaluated and sorted in  

ascending order (for minimisation), as in Equation (2.4). 

       1 2 1... nf x f x f x     (2.4) 

 The n+1 points are rearranged corresponding to their fitness value. Then, the 

centroid x  of all solutions, excluding 1nx   (the worst solution), is calculated using 

Equation (2.5). 

  
1

1 n

i
i

x x
n 

   (2.5) 

The reflection of the worst solution 1nx   is identified through Equation (2.6). 

   1 ,         0r nx x x x      (2.6) 

where rx  is a reflected solution and 1   is usually used. Figure 2.3(a) shows how the 

reflection looks like in a two-dimensional problem. 

 To update the worst solution, there are three possibilities when it is being 

compared with the reflected solution. 

1. If      1 1r nf x f x f x   , the worst solution 1nx   is replaced by the reflected 

solution rx . 
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2. If    1rf x f x , it means the best solution has been improved. Thus, a bold 

move is taken by expanding the simplex, as shown in Figure 2.3(b), to 

determine whether the best solution has further improvement. The expansion 

formula is shown as follows: 

    e r rx x x x    (2.7) 

where ex  is an expanded solution and 2   is frequently used. If 

   e rf x f x , the worst solution 1nx   is replaced by the expanded solution 

ex . Otherwise, the worst solution 1nx   is replaced by the reflected solution rx . 

3. If    1rf x f x , it means there is no improvement. Thus, the size of the 

simplex is reduced through contraction, as illustrated in Figure 2.3(b). The 

contraction formula is represented as follows:  

  1 1c n nx x x x     (2.8) 

where cx  is a contracted solution and 0 5  .  is often used [5]. If 

   1c nf x f x  , the worst solution 1nx   is replaced by the contracted solution 

cx . Else, the size of the simplex is shrunk towards the best solution, as 

demonstrated in Figure 2.3(c). The shrink contraction formula is expressed as 

follows: 

  1 1 ,         2,3,..., 1i ix x x x i n      (2.9) 

where ix  is a shrunk solution of whole solutions except the best solution and 

0 5  .  is regularly used.  

 After that, the fitness values of the solutions are rearranged again in ascending 

order, and the process starts over until the termination condition is fulfilled.  
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2.3.4. Linear Programming: Graphical Method 

In Section 2.3.1 to Section 2.3.3, the discussed techniques are only able to deal with 

the unconstrained optimisation problem. To handle the constrained optimisation 

problem, linear programming is developed to optimise a linear objective function, 

which is subjected to linear equality constraints and linear inequality constraints [5]. 

In this section, a linear programming using the graphical method for solving a linear 

problem is discussed. 

 Consider a linear problem, where the search for the best solution  1 2,  x x  is 

attempted to maximise its fitness value. The mathematical model of the linear problem 

is presented as: 

 

 1 2 1 2

1 2

1 1

2 2

Maximize:  P ,  
Subject to :  ,
                   0 ,
                   0 .

x x x x
x x n

x n
x n

  

 

 

 

 (2.10) 

where the first, second and third inequality constraints are demonstrated with line BC, 

line CD and line AB, respectively, as shown in Figure 2.4. With these constraints, the 

feasible solutions lie within the polygon 0ABCD. Since the objective of this problem 

is to maximise function  1 2P ,  x x , the optimal solution is located at point B, as it is 

the maximum region at which the objective line (dashed line) can reach.  

 

Figure 2.4. Linear Programming by Graphical Method [5] 
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2.3.5. Nonlinear Programming – Karush-Kuhn-Tucker Conditions 

There are a lot of nonlinear programming problems in real-world applications. Most 

of them involve nonlinear objective function subjected to nonlinear equality and 

nonlinear inequality constraints. Thus, Karush-Kuhn-Tucker (KKT) conditions are 

invented as a solution for nonlinear programming optimization problems [41].    

 Consider Equation (1.1) as a nonlinear optimization problem. The formulas 

that involve KKT conditions are as follows: 

         
1 1

0
K J

i i j j
i j

L x f x h x g x 
 

         (2.11) 

and 

       0,              0,   1, 2,...,j j jg x g x j J    (2.12) 

where 

   0,   1, 2,...,j j J    (2.13) 

The constants  and    must satisfy the following condition of 

  
1 1

0
K J

i j
i j

 
 

    (2.14) 

 The optimal solution can be found by solving Equation (2.11) and Equation 

(2.12) through algebra.  

2.3.6. Limitations of Deterministic Optimization  

Although classical optimisation methods can find the true optimum, obtaining the first 

derivative for the complex functions is a hard and tedious process [42]. Furthermore, 

these methods are infeasible when the objective function is non-differentiable [43]. 

Even though there are gradient-free algorithms, such as the Nelder-Mead method, the 

algorithms might be getting trapped in the local optima due to no randomisation 

(exploration) in the searching mechanism [7, 44]. Thus, solving a complex real-world 
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problem with many local optima is hard for classical optimisation methods. In addition, 

these methods are problem-specific because different methods target different types of 

optimisation problems [44]. Moreover, classical optimisation methods do not 

guarantee finding the global optimum, as it depends on the initial point [45]. Therefore, 

the development of metaheuristic optimisation algorithms is to overcome the 

drawbacks of classical optimisation methods.  

Metaheuristic optimisation algorithms have gained popularity over the past 

decade due to the simplicity, gradient-free mechanism, local optima avoidance and 

flexibility of these algorithms [46]. A metaheuristic optimiser is simple to implement. 

It benefits from the simple natural behaviour concept, which can be incorporated easily 

as different operators in the searching mechanism [47]. In addition, metaheuristic 

optimisers optimise the problems stochastically without knowing the derivative 

information of the problems. Thus, such optimisers are good options for solving real-

world problems with unknown derivative information [35]. In contrast to classical 

approaches, the stochastic procedure in metaheuristic optimisers helps the algorithms 

to escape from the local optima by exploring the search space [7]. Hence, they can 

effectively deal with the real-world problems with many local optima. Lastly, 

metaheuristic optimisers can solve a variety of problems without changing their 

structure [47]. Therefore, they are flexible in dealing with most problems by assuming 

the problems as black boxes.  

2.4. Metaheuristic Optimisation Algorithms 

GA, known as the classical metaheuristic algorithm, was proposed in 1960 to 

overcome the drawbacks of deterministic algorithms. The simplicity and robustness of 

GA have shown that nature can always serve as a source of inspiration to solve 

complex optimisation problems. Since then, more and more nature-inspired 

metaheuristic algorithms have been proposed, as shown in Table 2.1. The 

metaheuristic algorithms used as the competing algorithms in this study will be 

discussed further in Section 2.4.1 to Section 2.4.7.   

 Metaheuristic algorithms can be classified into two groups, namely, single-

based algorithms and population-based algorithms. In single-based algorithms, only 

one single solution is generated during initialisation. The solution is then being  
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Table 2.1. Timeline of metaheuristic algorithm 

Metaheuristic Algorithm Inspiration Year 
Genetic Algorithm (GA) [10] Process of natural selection 1960 
Simulated Annealing (SA) [48]  Annealing process in metallurgy 1983 
Ant Colony Optimisation (ACO) [49] Ant colony 1992 
Particle Swarm Optimisation (PSO) [14] Intelligent social behaviour of bird flock 1995 
Differential Evolution (DE) [12] Natural evolution 1997 
Harmony Search (HS) [20] Improvisation of music players 2001 
Bacterial Foraging Optimisation [50] Social foraging of E. coli bacterial 2002 
Honey Bee Algorithm (HBA) [51] Social foraging of honey bee colonies 2004 
Virtual Bee Algorithm (VBA) [52] Swarm interactions of social honey bee 2005 
Artificial Bee Colony (ABC) [13] Intelligent behaviour of honey bee swarms 2006 
Big Bang–Big Crunch (BBBC) [26] Evolution of the universe 2006 
Invasive Weed Optimisation (IWO) [18] Colonising weeds 2006 
Imperialist Competitive Algorithm (ICA) 
[23] Imperialistic competition 2007 

Biogeography-Based Optimisation (BBO) 
[53] 

Geographical distribution of biological 
organisms 2008 

Firefly Algorithm (FA) [54] Social behaviour of fireflies 2009 
Gravitational Search Algorithm (GSA) 
[24] Law of gravity and mass interactions 2009 

Cuckoo Search Algorithm (CSA) [15] Obligate brood parasitism of some cuckoo 
species 2009 

Bat Algorithm (BAT) [16] Echolocation behaviour of bats  2010 
Teaching-Learning-Based Optimisation 
(TLBO) [21] Philosophy of the teaching–learning process 2011 

Water Cycle Algorithm (WCA) [25] Water cycle process 2012 
Mine Blast Algorithm (MBA) [55] Mine bomb explosion 2012 
Flower Pollination Algorithm (FPA) [19] Pollination process of flowering species 2013 
Dolphin Echolocation Algorithm (DEA) 
[56] Echolocation ability of dolphins 2013 

Grey Wolf Optimiser (GWO) [47] Social hierarchy and hunting behaviour of 
grey wolves 2014 

Moth-flame Optimisation Algorithm 
(MOA) [4] Navigation method of moths 2015 

Multi-Verse Optimiser [27] Multi-verse theory 2015 
Whale Optimisation Algorithm (WOA) 
[46] Social behaviour of humpback whales 2016 

Sine Cosine Algorithm (SCA) [57] Mathematical model based on sine and 
cosine functions 2016 

Grasshopper Optimisation Algorithm 
(GOA) [7] Swarming behaviour of grasshoppers 2017 

Salp Swarm Algorithm (SSA) [35] Swarming behaviour of salps during 
navigating and foraging in oceans 2017 

Atom Search Optimisation (ASO) [58] Interaction and constraint forces of atom 2018 
Mouth Brooding Fish Algorithm (MBFA) 
[59] Life cycle of mouth brooding fish 2018 

Neural Network Algorithm (NNA) [60] Structure of artificial neural networks and 
biological nervous systems 2018 

Squirrel Search Algorithm (SS) [17] Dynamic foraging behaviour of southern 
flying squirrels 2018 

Tree Growth Algorithm (TGA) [11] Tree’s growing behaviour 2018 

Harris Hawks Optimisation (HHO) [61] 
Cooperative behaviours and 

chasing styles of predatory birds, Harris’ 
hawks 

2019 

Sailfish Optimiser (SFO) [9] Group of hunting sailfish 2019 
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Table 2.1. (continued) 

Metaheuristic Algorithm Inspiration Year 
Multivariable Grey Prediction Evolution 
Algorithm (MGPEA) [62] Grey prediction theory 2020 

Group Teaching Optimisation Algorithm 
(GTOA) [43] Group teaching mechanism 2020 

Tunicate Swarm Algorithm (TSA) [42] Jet propulsion and swarm behaviours of 
tunicate 2020 

Marine Predators Algorithm (MPA) [44] Foraging strategy of ocean predators 2020 
Water Strider Algorithm (WSA) [63] Life cycle of water strider bugs 2020 
Dynastic Optimisation Algorithm (DOA) 
[64] Social behaviour in human dynasties 2020 

improved after every iteration. Meanwhile, in population-based algorithms, more than 

one solution are initialised and iteratively enhanced. The simulations of these two 

types of algorithms are shown in Figure 2.5 and Figure 2.6. The advantage of single-

based algorithms is that the required NOFE is low in solving a specific problem. 

Examples of popular algorithms in this group are Tabu Search (TS) [65, 66], Iterated 

Local Search (ILS) [67] and Simulated Annealing (SA) [48]. However, this type of 

algorithm may experience premature convergence, where the single solution gets  

 

Figure 2.5. Solving Ackley function using single-based algorithm. It cannot 
converge to the global optima due to getting trapped in different local optima. 
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trapped in the local optima, as shown in Figure 2.5. 

 In contrast, population-based algorithms can escape from the local optima due 

to information sharing with each other. With information exchange, population-based 

algorithms can explore the search space better than a single-based algorithm and move 

towards the promising regions of the search space. In Figure 2.6, the green-coloured 

solution represents the best solution in that iteration, while the red diamond-shaped 

icon indicates the global optimum. As shown in Figure 2.6, 15 solutions are generated 

initially, and they converge towards the global optimum without getting trapped in the 

local optima. Therefore, this has shown that population-based algorithms are better in 

exploring and exploiting the search space but it requires a large NOFE.  

 A metaheuristic algorithm always begins with population initialisation. A set 

of initial solutions then experiences reproduction through the updating mechanism of 

 

Figure 2.6. Solving Ackley function using population-based algorithm: (a) 2 
iterations, (b) 4 iterations, (c) 6 iterations, (d) 8 iterations, (e) 12 iterations and (f) 16 

iterations 
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the algorithm. The updating mechanism is usually composed of the local and global 

search. The local search is to exploit the solutions near the promising solutions. 

Meanwhile, the global search is to randomly explore for solutions far away so that to 

escape from the local minima. The new set of solutions is then compared with their 

corresponding previous set of solutions. The solution with better fitness value is 

preserved for the next cycle of evolution. The cycle is repeated until the termination 

condition is fulfilled, which is either the cycle number has reached its maximum value 

or the fitness of the global best solution has reached the tolerance value. In general, a 

metaheuristic algorithm has the components of population initialisation, reproduction 

and selection. 

2.4.1. Genetic Algorithm  

GA, which was proposed by John Holland, is the most popular metaheuristic algorithm 

[10]. The mechanism of GA, which is based on biological evolution from Charles 

Darwin’s theory, has opened a new way of thinking for researchers to combine 

mathematical computational skills with nature in tackling difficult optimisation 

problems. Selection, crossover, mutation and reproduction are the main mechanisms 

in GA, which imitate the evolution of gene in nature. In the optimisation process, GA 

initialises a set of solutions randomly, which corresponds to chromosomes. Then, the 

fitness value of each chromosome is evaluated on a specific objective function. Similar 

to gene evolution, two chromosomes are randomly selected and undergo a crossover 

process to produce two new chromosomes. After that, these new chromosomes 

experience a mutation process when the probability is less than a predefined threshold, 

which is usually a very low value. The production of new chromosomes is then 

compared with their parents based on their fitness. Lastly, the chromosomes with better 

fitness value are inherited for the next generation. This process is iterated until the 

values converge towards global optimum [8].  

 Since crossover and mutation are two important mechanisms used to improve 

the solutions in the population, the mechanisms of crossover and mutation are 

demonstrated in Figure 2.7. For a single-point crossover operation, a crossover point 

is selected randomly on the parent gene pair. Then, the crossover is achieved by 

exchanging the data beyond that crossover point in the parent gene pair, as shown in 
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Figure 2.7(a). Meanwhile, the mutation operator flips the randomly selected bits, as 

illustrated in Figure 2.7(b). The pseudocode of GA is shown in Figure 2.8.  

 

Figure 2.7. Updating mechanism: (a) crossover – the crossover point is randomly 
generated and (b) mutation – the bit is randomly selected [5] 

Genetic Algorithm 
Determine min or max    1 2,    , ,.., df x x x x x  
Define population size, n, number of mutation sites, crossover probability, pc, mutation probability, 
pm and string length 
Define optimal solution, tol 
Encode the solution into chromosomes 
Generate the initial population 
Evaluate the fitness 
Identify and record the best solution  
while (fmin>tol) 
     for i=1:n ( all n solutions in the population) 
          if pc>rand, 
               Select two solutions randomly 

           Generate two new solutions by crossover 
           Accept the new solutions if their fitness are better 

          end 
          if pm>rand, 
               Select one solution randomly 

           Generate the new solution by mutation 
           Accept the new solution if its fitness is better 

          end  
     end for 
Identify current best solution 
Record the current best solution 
end while 

Figure 2.8. The pseudocode of GA [10] 

2.4.2. Particle Swarm Optimisation  

PSO, another famous metaheuristic algorithm, was developed by Kennedy and 

Eberhart a few years after the creation of GA [14]. Different from GA, it mimics the 
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