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ABSTRACT 

During last few years, the interest in using natural fibers as reinforcement in polymers 

has increased dramatically. Natural fibers are not only strong and lightweight but also 

relatively very cheap. This study examined the potential utilization of jute in the crash 

energy absorption. A combination of hand layup and vacuum bladder technique was 

kused to search the influence of utilizing jute fibre on crashworthiness parameters of 

composite materials. To improve the mechanical properties, jute fiber was hybridized 

with glass fiber. In this work, there are two main parts of study.  Firstly, it is to 

investigate the effect of cross-sectional shapes, number of layers and temperature 

treatment on the progressive deformation of jute/epoxy composite tubes. Secondly, the 

suitable type of geometry was chosen to study the effect of hybrid (jute-glass/epoxy) 

onto the structural designs. All the tests were undergone quasi-static axial crushing of 

10 mm/min. Their peak load (Pmax), mean load (Pm), energy absorption (EA) and 

specific energy absorption (SEA) were discussed in detail. In the study of types of five 

geometrical shapes (corrugated, circular, hexagonal, octagonal and decagonal cross 

sectional) with different number of layers (two, three and four layers). It is found that 

the corrugated geometric shape with three layers (RHS) gives the best energy 

absorption (30.92 J/g) in specific energy absorption parameter compared to other 

geometries used in present study. For the temperature treatment, the results showed 

that the post-curing by gradual temperature treatment (TT) improved the peak load by 

decreased with 55% as compared to similar circular specimen without temperature 

treatment (No TT). From the test, it is found that the substitution of one layer of jute 

fibre with one layer of glass fibre resulted in an improvement in the crashworthiness 

parameters than layers jute. The best result was obtained when hybrid jute-glass was 

used, where the energy absorption and specific energy absorption was improved by 

about 43% and 31%, respectively. 
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ABSTRAK 

Sejak beberapa tahun kebelakangan ini, minat dalam menggunakan gentian semula 

jadi sebagai pengukuhan dalam polimer telah meningkat secara mendadak. Gentian 

semula jadi bukan sahaja kuat dan ringan tetapi juga murah secara relatif. Kajian ini 

mengkaji potensi penggunaan rami dalam penyerapan tenaga semasa kemalangan. 

Kombinasi teknik peletakan tangan dan pundi vakum digunakan untuk mencari 

pengaruh penggunaan gentian rami pada parameter potensi pelanggaran bahan-bahan 

komposit. Untuk meningkatkan sifat-sifat mekanik, gentian rami dihibridisasi dengan 

gentian kaca. Dalam kajian ini, terdapat dua bahagian utama. Pertama, ia mengkaji 

kesan bentuk keratan rentas, jumlah lapisan dan perlakuan suhu terhadap ubah bentuk 

progresif tiub komposit rami/epoksi. Kedua, jenis geometri yang sesuai dipilih untuk 

mengkaji kesan hibridasi (kaca-rami / epoksi) pada reka bentuk struktur. Semua ujian 

menjalani penghancuran paksi kuasi statik 10 mm / min. Beban puncak mereka (Pmax), 

beban purata (Pm), penyerapan tenaga (EA), dan penyerapan tenaga tertentu (SEA) 

dibincangkan secara terperinci. Dalam kajian ini, lima jenis bentuk geometri (keratan 

rentas bergelombang, bulat, heksagon, oktagon, dan dekagon) dengan bilangan lapisan 

yang berlainan (dua, tiga, dan empat lapisan) digunakan. Didapati bahawa parameter 

geometri bergelombang dengan tiga lapisan (RHS) memberikan penyerapan tenaga 

terbaik (30.92 J / g) dalam parameter penyerapan tenaga tertentu (SEA) berbanding 

dengan geometri lain yang digunakan dalam kajian ini. Untuk perlakuan suhu, dapatan 

kajian menunjukkan bahawa pasca pengawetan dengan perlakuan suhu bertahap (TT) 

meningkatkan beban puncak dengan penurunan sebanyak 55% berbanding spesimen 

bulat serupa tanpa perlakuan suhu (Tanpa TT). Dari ujian tersebut, didapati bahawa 

penggantian satu lapisan gentian rami dengan satu lapisan gentian kaca menghasilkan 

peningkatan parameter prestasi pelanggaran daripada lapisan rami. Hasil terbaik 

diperoleh ketika kaca rami hibrid digunakan, di mana penyerapan tenaga dan 

penyerapan tenaga spesifik masing-masing meningkat sekitar 43% dan 31%. 
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CHAPTER 1 
 
 
 
 

INTRODUCTION 

 Background 

Nowadays, synthetic fibre, such as glass and carbon fibre reinforced plastics (FRP) 

composites, have been widely used in industry as well as in transportation due to their 

low weight and good mechanical properties (Shibata et al., 2006; Elanchezhian et al., 

2018; Mahdi and Eltai, 2018;  Lau et al., 2020). However, the synthetic composite 

gives rise to environmental pollution due to its non-degradability (Mahdi et al., 2019). 

On the other hand, with an increasing environmental consciousness and awareness of 

the need for sustainable development, natural fiber-based bio-composite materials are 

now emerging as viable alternatives to glass fibers either alone or in a hybrid form in 

composite materials for various applications (Mache, Deb, and Gupta, 2020). Natural 

fibers' advantages over synthetic fibers such as carbon, boron, glass, etc., are low cost, 

low density, competitive-specific mechanical properties, sustainability, recyclability, 

and biodegradability (Dastan, Safian and Sheikhzadeh, 2020; Karthika, Deb and 

Venkatesh, 2020). Extensive researches have been carried out on the energy absorption 

attributes of synthetic fiber-based composite materials. However, relatively limited 

studies have been reported on the energy absorption capabilities of natural fiber-based 

bio-composite materials. 

 In the axial composite collapsing review, the carbon and glass FRP have been 

greatly investigated (Lau, Said, and Yaakob, 2012). Various shapes, structure 

geometries, and type of fracture modes, which contributed to better energy absorption, 

have been reviewed. (Abosbaia et al., 2003) reported that behaved axial collapsed on 

cotton fabrics. In the test, filament-winding manufacturing was utilized, adopting the 

stacking concept. From the study, cotton has deformed progressively. 
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Furthermore, the folding formation was observed after peak load at 5.43 kN. 

Apart from that, (Mahdi, Hamouda and Sen, 2004) examined solid cones fabricated of 

oil palm fibers and coir fibers reinforced polyester composite structures. In their work, 

it was found that cone vertex angles affected the peak loads. However, the types of 

fibers utilized in the tests affect the crashworthy parameters. Despite all the structures 

deformed progressively, specific absorbed energy (SEA) of NFRP composites were 

relatively low compared to glass and carbon fibers reinforced plastic, which for coir, 

cotton, and oil palm reinforced plastic composite at 2.501 kJ/kg, 0.633 kJ/kg, and 

0.577 kJ/kg, respectively.  

Therefore, a hybridization with natural fibers using a single reinforcement is a 

proposed solution to a potential method to solve this matter. Besides, the combination 

of natural and glass fibers contributes to the production of hybrid composite structures 

with desirable mechanical properties as well as being less expensive and facile to use 

(Ramesh, Palanikumar and Reddy, 2013a). The usage of two types of fibers in an 

appropriate composition leads to synergistic performance, thus producing a hybrid 

compound with better performance characteristics than the singular fiber performance. 

Many researchers have reported that hybridizing using high strain to failure fiber will 

be an efficient way to improve the impact strength of low strain to fiber composites 

(Kalaprasad et al., 1996;  Samal, Mohanty and Nayak, 2007; Tonoli et al., 2011). 

In work compiled by (Ramakrishna, 1997), fiber materials and their 

constituent, fiber architecture, and fiber content affect the SEA. Due to this, 

crashworthy composite materials can be customized by mixing the fiber lay-up effect. 

Moreover, (Hadavinia and Ghasemnejad, 2009) reported investigating the influence of 

various layers of fiber architecture. The study revealed that composites with layers 

[0/45]2 have greater SEA than composites with layers [0]4. However, deform load 

efficiency for composites with layers [0]4 is the greatest due to the composite's initial 

maximum crush load. In another investigation by (Solaimurugan and Velmurugan, 

2007), two types of tubes with four and six combinations of fiber lay-up have been 

studied. From the study, FRPc with a combination of the most unidirectional fibers 

(along the composite specimen) close to internal diameter led to the best energy 

absorbing characteristics because of the resistance of bending and smaller radius of 

curvatures. 

A few studies on using natural jute mat and hybrid compound reinforced glass 

fibers/polymer for quasi-static loading from the literature. Despite that, jute is the 
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second most natural and biodegradable fiber. Jute fiber is an excellent alternative when 

strength, thermal conductivity, and cost are major concerns (Wang et al., 2019). 

Besides, jute fibers are also eco-friendly. Nowadays, jute fiber-reinforced polymer 

composites have become an important research area (Ahmadi and Dastan, 2017; Sinha, 

Narang, and Bhattacharya, 2017; Selver, Ucar, and Gulmez, 2017; Ilman and 

Hestiawan, 2018). Typically, jute fiber is used for basic and low-end textile products. 

If the jute properties could be modified in favor of high-value and technical textiles, 

the cost and the environment would benefit a great deal (Wang et al., 2019).  

The advantages of these composites include: (a) being conducive to 

occupational health and safety during fabrication of parts as well as handling as 

compared to GFRCs, (b) low cost, especially when compared to carbon fibre 

reinforced composites, (c) renewability and biodegradability of fibers and (d) aesthetic 

appeal. Jute fibers are specifically relevant in this context as jute fabric has a consistent 

supply base, particularly in South Asian countries, and has reliable mechanical 

properties (Karthika, Deb, and Venkatesh, 2020). Furthermore, the addition of jute 

fibres in glass fibres shows an effective and value-added application of the composite 

application (Gopinath, Kumar and Elayaperumal, 2014). In addition, relatively limited 

studies have been reported on jute fiber-based bio-composite materials on energy 

absorption capabilities. Therefore, in the current study, a study on natural 

fiber/polymer and hybrid jute-glass/polymer under quasi-static loading was proposed 

to be carried out. This study assesses the (SEA) and the corresponding failure modes 

by implementing various tests based on several parameters. 

 Problem statement 

In recent decades, the trend has been made by researchers and manufacturers to 

produce lighter vehicles instead of metallic structures used nowadays. In the near 

future, vehicles must be lighter to meet the requirements for reducing fuel consumption 

and carbon dioxide emissions but provide higher occupant safety (Borazjani, 2017). 

One way to reduce fuel consumption is to use a lightweight structure, but this should 

not cause any change in occupant safety. Therefore, natural fibers have been proposed 

as an alternative to traditional materials due to their combined properties of high 

stiffness and strength to weight ratio, creep resistance, resilience, good damping 
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property, corrosion resistance, abundant, and low cost. Besides, they can be 

biodegradable, recyclable, do not cause carcinogen to human beings, and have not 

created a greenhouse effect, unlike synthetic composite fibers (Wambua et al., 2003; 

Chin and Yousif, 2009). Among natural fibre reinforcements, jute fibres have gained 

much attention during recent years. Generally, jute is a relatively inexpensive 

vegetable bast fibres, with some intrinsic advantages, such as low extensibility, high 

strength, silky luster, and high modulus. It also shows a more densified and compact 

structure than other natural fibres. Applications of jute fibre reinforced composites are 

found in such products as automotive parts (Gujjala et al., 2014; Ahmadi and Dastan, 

2017). Furthermore, the addition of jute fibres in glass fibres showed an increase in the 

composite's mechanical properties. Hence, jute fibre shows an effective and value-

added application (Gopinath et al., 2014; Torres et al., 2017). 

Apart from the preceding mentioned, the crashworthiness of transportation 

structure as a factor for the safety of structures has become a serious issue with the 

society's development and daily vehicle usage. Crashworthiness is defined as 

structures' ability to protect their passengers in a survivable collision (Sivagurunathan 

et al., 2018a).  However, natural composite structures' findings exhibited that specific 

energy absorbing  (SEA) value is somewhat low compared to synthetic composites 

such as carbon or glass fibers. Therefore, they may not be suitable for many structural 

components in which high energy absorption and excellent post-failure integrity are 

required. Hybridizing jute with glass fibres can be proposed as a suggested technique 

to address this problem (Ahmadi and Dastan, 2017). For that, it was proposed to add a 

small quantity of glass fibers to the jute fiber-reinforced polymer matrix to enhance 

the mechanical properties of the composite structure. Combining two or more fibres 

in the same composite is expected to provide performance improvement using 

individual fibres' merits. 

In most cases, one of the fibres in the hybrid composite is high modulus fibre, 

such as glass, while the other one is low modulus fibre, such as jute. The high modulus 

fibre contributes to stiffness and load-bearing capability. In contrast, the low modulus 

fibre makes the composite more damage tolerant, where the damage tolerancea 

property of a structure relating to its ability to safely sustain defects is a property of a 

structure relating to its ability to sustain defects safely during use. This approach 

provides a balance of strength, stiffness, toughness, and weight reduction (Reddy, 
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Reddy, and Madhu, 2016). Thus, it is predicted through the hybridization process to 

obtain a higher energy absorption capacity than non-hybrid jute tubes. 

 Objectives 

In the current study, there are three main objectives, which are: 

(i) To examine the influence of different number of layers and gradual thermal 

treatment on the energy absorption and progressive crushing behaviour. 

(ii) To investigate using different cross-section effects onto energy absorption 

using jute fibre reinforced epoxy composite. 

(iii) To study crushing performance for tubular using hybrid jute-glass fiber 

reinforced epoxy and compare with the existing products reports. 

 Scope of research 

The present study consists of three main parts, which are the type of manufacturing for 

the composite tubular specimens, an experimental study on the crushing characteristics 

for the fabricated tubes and interpretation of the results of the existing samples with 

support from other literature, as well as evaluate the results by comparison with the 

previous studies. 

Firstly, in manufacturing of the specimens, two groups of composite tube 

specimens were fabricated: 

1) Group 1: five different geometrical shapes (corrugated, circular, hexagonal, 

octagonal, and decagonal) with different numbers of layers (two, three, and 

four layers) were chosen using natural jute fibre reinforced epoxy. 

Furthermore, temperature treatment for post-curing was adopted. 

2) Group 2: based on the first stage's best results, hybrid tubes were made using jute-

glass fibre reinforced epoxy with the best geometry to improve the proposed 

design's crashworthiness performance. For both types of tubes, the principle of 

a combination of manual layup and vacuum compression bladder technique 

was used. All tube specimens were fabricated with the same length of 100 mm 

and an inner diameter of 50 mm. 
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Secondly, the fabricated composite tubes had undergone experimental testing. 

The testing included axial quasi-static crashworthiness, and analysis was done to 

understand failure mechanisms. 

For the final part, the test data have been interpreted with support from other 

literature. Moreover, the prior works benchmark has been used to reference these 

newly fibre reinforced epoxy composite tubes. 

1.5      Significant of the study 

This study seeks to find alternative composite materials to manufacture structures that 

will maintain the environment through their ability to decompose and biodegradability. 

It reduces carbon dioxide through the weight reduction of the vehicle without 

compromising its occupants' safety. 

1.6     Thesis layout 

This thesis is organized into five chapters. 

In chapter 1, the introduction covers three main objectives, which ultimately 

determine the direction of this research study and the activities undertaken towards its 

completion. 

Chapter 2 provided the literature regarding the studies related to the axial 

crushing of the composite structures, recent crashworthiness of natural and natural-

hybrid fiber reinforced plastics composites, and designs related to the current works. 

Chapter 3 described the steps taken on fiber preparation, composite 

preparation, and experimental procedures. 

Chapter 4 presented the results and discussions on the crashing characteristics 

and failure analysis of the scale structures and prototype structures. 

Last but not least, chapter 5 gave a highlight summary of the studies. Moreover, 

the recommendation of the future work was hinted at to improvise the current work. 
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LITERATURE REVIEW 

 Introduction 

This chapter displays a review of researches that has been achieved by employing 

fiber-reinforced polymer for crashworthiness, which comprises natural fibers and 

synthetic fibers such as glass and carbon fibers. This review concentrates on some of 

the essential matters related to composite elements testing for crashworthiness 

parameter estimation. First, the energy absorber concept was being presented. 

Secondly, failure modes and their relationship to the energy absorption amount will be 

discussed during the axial crushing test. Third, factors affecting crashworthiness 

during loading testing with an emphasis on experimental collapsing responses and the 

associated methods will be reviewed. The focus on using natural fibers as an essential 

component of the structure. Finally, it draws a close by remarking on the main results 

of these researches and their relevance to the topic of this study. 

 Background 

The usage of advanced materials with high ratio of strength/weight and 

stiffness/weight is highly required mechanical properties for the manufacturing of the 

structure that is used in the transportation and engineering fields in particular, where 

reduction of weight is a significant criterion as well as the ability of structural 

crashworthiness (Stapleton and Adams, 2008). As such, safety is being concerned 

when structures were made from fiber-reinforced composite materials when they failed 

especially in collapsible events. Therefore, it is critical to do research for the 

PTTA
PERPUS

TAKAAN
 TUNKU

 TUN A
MINAH



8 
 
crashworthiness of recently designed materials and structures. Moreover, the 

application of  fiber-reinforced polymer composites demonstrate to have preferable 

energy absorption per unit mass or specific energy absorbed (SEA) compared to 

metallic structures (Hosseini and Shariati, 2018). According to the literature                      

(Bambach, 2010;  Palanivelu et al., 2011), many researchers choose to use synthetic 

fibers, like kevlar, carbon, and  glass fiber reinforced polymer composite materials 

because their properties can be enhanced or changed the characteristics of resins such 

as polyesters and epoxy resins (Ochelski and Gotowicki, 2009). However, due to the 

increased awareness of greenhouses effects, the current trend of energy-absorbing 

structures have shifted to using natural fibers instead of synthetic fibers (Ataollahi et 

al., 2012; Alkbir et al., 2014; Eshkoor et al., 2014). The natural fiber materials are 

regarded as one of the modern engineering materials. The concern in this field is 

quickly mounting whether in fundamental research or industrial applications, due to 

its fully or partially recyclable, biodegradable, renewable, cheap, and abundantly 

available. Among all natural fiber-reinforced materials, jute seems to be an 

encouraging material to use as it is relatively cheap and available in the desired form, 

as well as its acceptable mechanical properties (Sanjay and Yogesha, 2016). 

 However, an important aspect that must be considered in the design is the 

crashworthiness and damage tolerance to provide the highest level of safety, which is 

through improving the ability of the structure to dissipate energy during the collision 

(Kalhor and Case, 2015). Crashworthiness is the structure's ability to dissipate the 

crash force in a controlled mechanism. Thus, it ensures that the designed structure is 

able to reduce the external force to which passengers are exposed and results in 

reduced injury to passengers during crash events. The assessment of crashworthy is 

decided by the execution of series crushing tests (Paul, Ramachandran, and Gupta, 

2019). 

The structure during a collision accident must dissipate impact energy through 

a sustainable crashing force and bring the occupant cell to rest with the least possible 

acceleration. Fast alteration in deceleration must be evaded. The structures that lessen 

the influence of the impact are called the energy-absorbing body. If the peak load 

acceleration drops slowly and in a controlled form during the collision, the injuries to 

the vehicle occupants can be reduced. Therefore, impact of energy absorption systems 

must be restricted by controllable deformation as much as possible (Reddy, Rao and 

Narayanamurthy, 2017). 
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 Characterization in energy-absorption 

In the axial deformation, the test is performed by quasi-static or dynamic compression. 

For static compression, the tube is placed between parallel steel platens, pressurized 

by a hydraulic press at usually usual speeds between 1-11 mm/min of the upper platen. 

For the dynamic test, it is performed by utilizing impactor or dropping a hammer. 

Accordingly, the dimensions of specimens were determined depending on the initial 

calculations to define the geometry of tubes to avoid buckling failure (Rabiee and 

Ghasemnejad, 2017). Tested tubular specimens have typical dimensions of (20-100) 

mm in width/outer diameter, (50-125) mm in length, and (1-3) mm tube thickness. 

However, varied geometrical shapes were used for the test like square, hexagon, 

circular (Palanivelu et al., 2010a), semi-hexagonal (Esnaola et al., 2018), corrugated 

(San and Lu, 2020), decagonal (Hussain, Regalla and Rao, 2017), and cone 

(Kathiresan, 2020).  

 Crashworthy is one of the crucial parameters that need to be deemed during 

evaluating the safety of structural components. Besides, it is apprehensive with the 

absorb energy by controlling the failure manner so that the impact energy is absorbed 

by progressive manner while maintaining a gradual decay in the load profile 

(Vinayagar et al., 2020). The crashworthiness parameters can be analyzed and 

computed mathematically based on a typical load-displacement history which is 

illustrated in Figure 2.1. 

The test is an actual indication of a response during the crushing process. The 

crushing force and energy-absorbing capability can be evaluated by the load-

displacement graph (Othman et al., 2014). Data acquired by the axial deformation test 

of a specimen is employed to plot the load-displacement graph, as depicted in Figure 

2.1. The initial stage of a load-displacement graph begins with a dramatic increment 

in force until it attains a peak load. And then an insignificant drop in loads and followed 

by a sustainable deformation region. A sustained collapse force will be noticed as the 

specimen is constantly pressed until it arrives at a point where the graph starts to 

increase. This zone is known as the condensation or compaction zone when sustained 

collapsing is finished (Magkiriadis et al., 2006). Thus, the graph consists of a pre-

crushing zone, a post-crushing zone, and a compaction zone, which indicated the main 

points on the curve to exhibit the initial deformation point, the maximum load, and the 

compaction area (Aziz, 2015). 
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Figure 2.1: Typical load – displacement zones history of a pattern tested under quasi-
static loading (Aziz, 2015) 

2.3.1 Peak load (Pmax)  

The peak load (Pmax) is the maximum impact force required to initiate plastic 

deformation in the EA structure. If it is low, the structure will deform at low-speed 

impacts with low TEA. If it is high, it induces high-intensity decelerations, which are 

unsafe for the occupants. The structure should exhibit an initial peak force whose 

accelerations are within the human tolerance limits (Reddy, Rao, and Narayanamurthy, 

2017). It is the highest load value except for the compaction region. It normally lies in 

the elastic or plastic region over a load-displacement graph (Sivagurunathan et al., 

2018a). 

2.3.2 Mean load (Pm) 

The mean load (Pm) can be evaluated by averaging the total crushing load over the 

post-crushing zone's total deformation length. Thus, the mean load can change over 

collapse length distance based on a crush fashion (Sivagurunathan et al., 2018b), 

computed by the  equation below 

Displacement, mm 
(mm) 
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 𝑃𝑚 =  
1

𝛿
 ∫ 𝑃 𝑑𝛿

𝛿

0
,                                                                                                         (2.1) 

Where P and δ are total load applied (kN) and displacement (mm), 

respectively. Moreover, the energy absorption amount is extensively based on the 

mean load value (Eshkoor et al., 2013a).  Mean load (Pm) depends on the rate of 

sustainable loads. Therefore, it mainly contributes to increasing the total energy 

absorption by raising the average loads that will be further explained in the following 

section. In this study, the compression test was conducted for full compaction. 

However, in the calculation, only 80% of the deformation was considered for easier 

verification. 

2.3.3 Energy absorption (EA) 

The energy absorption or work done represents the zone underneath the load (kN) 

versus displacement (mm) graph during the compression test. The EA was calculated 

in the computation until the area before the compaction point occurs, as given by 

equation 2.2 (Aziz, 2015). 

 𝐸𝐴 =  ∫ 𝑃 𝑑𝛿
𝛿

0
,                                                                                                            (2.2) 

Where P and δ are the applied load (kN) and the incremental displacement 

(mm) over the deformation process, respectively. However, the compaction region was 

not considered because it produces slight absorbing energy compared to the post-

deformation region. Otherwise, the effect of the failure manner effectively influences 

the behaviour of the load (kN) versus displacement (mm) graph. When a gradual 

failure of the material occurs, it will produce a larger area below the curve and become 

more stable. In contrast, when a catastrophic failure results in a steep drop in the load,  

thus the space below the curve is as little as possible with the load curve's instability 

(Lau et al., 2012). 
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2.3.4 Specific energy absorption (SEA) 

Due to the difference in materials and geometry of each specimen used in studies, the 

evaluation through total energy absorption to determine the structure's capability to 

dissipate energy may be misleading (Mahdi and Sebaey, 2014a). To make a more 

realistic comparison among the geometric specimens, it should be based on SEA. It 

represents the efficiency and capability of energy absorbed during the deformation of 

structural, which is defined as the total energy absorption resulting from the sum of 

the areas under the curve until the densification area divided by the crushed mass of a 

specimen, which is calculated by following equation (Xu et al., 2016b). 

  𝑆𝐸𝐴 =  
𝐸𝐴

𝑚
.                                                                                                      (2.3)                                                            

Here, SEA is the energy absorbed per unit mass (J/g) and m is the mass of the 

specimen's crushed portion (g). Likewise, the SEA parameter in the J/g unit is utilized 

to compare the findings among the various researches when the lightweight structure 

is the priority. The larger SEA value reveals the higher energy dissipation efficiency 

concerning weight (Mahdi and Sebaey, 2014a). 

2.3.5 Crush force efficiency (ɳc) 

Specific Energy absorbers (SEA), peak load (Pmax), and crushing efficiency(ɳc) are the 

most important criteria that should be taken into account in assessing the 

crashworthiness of designed structures (Alkbir et al., 2016b). Here, ɳc is defined as the 

ratio between the mean load (Pm) to peak load (Pmax), as illustrated in the equation 

below: 

 ɳ𝑐 =  
𝑃𝑚

𝑃𝑚𝑎𝑥
,                                                                                                                    (2.4) 

Where ɳc, Pm, and Pmax are the crush load efficiency, mean crushing load (kN), 

and the maximum peak load, respectively. When ɳc has a high value, it is a clear 

indication of effective crush and stability near the value of unity. In contrast, when the 
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efficiency value is low, it indicates a sharp decrease in the average loads from the peak 

load, as illustrated in Figure 2.2 (Boria, Scattina, and Belingardi, 2018). Typically, 

when the mean load is close to the peak load, energy is absorbed in a controllable way. 

However, for the quasi-static test, the ɳc value from (0.6 - 0.8) has been considered a 

favourable value for effective structure, while in the impact test, this value is as 

minimum as 0.4. The larger the variance between Pmax and Pm, the greater the abrupt 

increment in acceleration, leading to increased injuries to passengers (Roslan et al.,  

2017). 

 

 
 

 

 

 

 

 

Figure 2.2: Crush load efficiency (Boria et al.,  2018) 

 Failure mechanisms of FRP structures 

Numerous parameters, including the maximum peak load, the sustained deformation 

load, and the stroke displacement, are considered in typical crashworthiness designs. 

The energy absorber capacity of a structure is characterized by the space underneath 

the load versus displacement graph, heavily dependent on the failure mechanisms 

(Aziz, 2015). The failure mechanism of composite includes fiber fracture, matrix 

cracking, fiber-matrix deboning, delamination, and interplay separation. Generally, 

composite failure modes are divided into two main categories of catastrophic and 

progressive modes (Jimenez et al., 2000). 

  

ɳ𝑐 ≈ 1 
 

ɳ𝑐 ≪ 1 
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2.4.1 Catastrophic failure 

The effective designs for energy-absorbing structures need to evade a catastrophic 

collapse manner. This is because of the sudden and rapid increase in the load value 

during catastrophic failure, followed by a sharp decrease in load with the beginning of 

the post-crushing stage. Thus, great harm is caused to passengers during the collision, 

as the structures of this type are unable to absorb the impact energy adequately to avoid 

the danger. After catastrophic failure, the specimen is no longer qualified to maintain 

a large compression load (Meidell, 2009). 

A thin specimen might buckle due to column instability, as depicted in Figure 

2.3a. Likewise, interpenetration might happen when the buckling stress is large as 

circumferential cracks form nearby the center of laminates and the wall split, as 

illustrated in Figure 2.3 (Hosseini and Shariati, 2018). However, upon interpenetration 

happens, the structure does not completely fail, and the two halves of the specimen 

continue to support each other. Lastly, laminate delamination can happen unstably. 

Specifically, the outer and inner layers may bend outward while the laminate layers 

remain in the center of a specimen layer without support to fail at low load. This failure 

is known as a barreling, as depicted in Figure 2.3c (Hosseini and Shariati, 2018). 

The mode-III occurred due to the broken in the specimen's mid-plane, as 

illustrated in Figure 2.4 (Bambach, 2010), or had longitudinal cracks (Palanivelu et 

al., 2010c). Likewise, the composite energy-absorbing device deform conduct is the 

most unstable, with energy-absorbing increasing and dropping erratically. The 

instability is one of the most critical problems in utilizing composite structures for 

crushing energy management (Abosbaia et al., 2003). 
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Figure 2.3: Unstable failure manner of, (a) global buckling, (b) interpenetration, and 
(c) barreling (Hosseini and Shariati, 2018) 

 

 

 

 

 

 

 
 
 
 
 

Figure 2.4: Mid-plane break in catastrophic failure (Bambach, 2010) 

2.4.2 Progressive failure 

Progressive failure in the composite specimen is characterized by a gradual increment 

in load until the onset of failure, which is continued by a systematic gradual 

deformation. This manner of failure greatly contributes to improving the energy 
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absorption capability of the composite specimens. Therefore, with a large energy 

dissipation capacity by a gradual decay of crushing, there is no need to increase the 

structures' weight (Chen et al., 2020). The failure manner influences the behaviour of 

the load (kN) vs. displacement (mm). It is represented by an increment in the energy 

absorption area beneath the curve and the load stability during the post-crash phase, as 

illustrated in Figure 2.5 (Lau et al., 2012). 

Four types of progressive failure have been reported through the previous 

studies in this area, namely a fragmentation or transverse shearing manner, lamina 

splaying or bending manner, a brittle fracture, and progressive folding or local 

buckling manner. These crushing modes are very useful in manufacturing the 

structures to decelerate an object, essentially during a crash or impact event. Both 

ductile and brittle fibers reinforced composite shown the local buckling modes. 

However, only brittle FRP can crush in the lamina bending and transverse shearing 

manners (Rabiee and Ghasemnejad, 2017). In this section, each mode is described and 

further discussed. 

 

 

 

 

 

 

 

 

 

 

Figure 2.5: Energy absorption in progressive failure (Lau et al., 2012) 

2.4.2.1 Lamina bending or splaying mode 

It is characterized by a long intralaminar, interlaminar, and parallel to the cracks of the 

fibers, as depicted in Figure 2.6. This mechanism results in the formation of continual 

laminate fronds, which propagate outwards and inwards. Frictional effect and 

inter/intralaminar fractures control the energy dissipation of laminate splaying mode. 
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These laminate bundles are split and bend down either outside or inside the specimen 

walls and compelled through the curvature radius by compression load. This radius 

depends on matrix, fibers, and lamina properties (Rabiee and Ghasemnejad, 2017). 

 

 

 

 

 

 

 

 

 

 

Figure 2.6: Laminates bending crushing modes (Rabiee and Ghasemnejad, 2017) 

2.4.2.2 Fragmentation (transverse shear) mode  

It is described as a wedge-shaped lamina cross-section with one or multi longitudinal 

and short interlaminar cracks, as illustrated in Figure 2.7. This mechanism, 

interlaminar cracks spread, and bundles fracture dominate the energy dissipation 

(Wang et al., 2016; Rabiee and Ghasemnejad, 2017). In this failure mechanism, lamina 

bundle fracture and interlaminar crack propagation dominate the energy absorption. 

The specimens that deform in a fragmented manner have a minimal failure strain and 

large stiffness. This failure manner is only shown by a structure that is made utilizing 

brittle fiber. The compression loads result in an irregular load transfer to the composite 

structure, which forms a scalloped surface when the specimen is deformed, as depicted 

in Figure 2.7.  

The number of cracks, location, and length depends on the structure's material 

properties and geometry in a composite structure. The process of transverse shearing 
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or fragmentation failure shows interlaminar cracks and longitudinal, which are lower 

than the laminate thickness (Hadavinia and Ghasemnejad, 2009). 

 

 

 

 

 

 

 

 

 

 

Figure 2.7: Fragmentation-crushing mode (Rabiee and Ghasemnejad, 2017) 

2.4.2.3 Brittle fracture mode 

It is described by a combination of fibers laminate bending and fragmentation 

(transverse shearing) collapsing modes. In this manner, the interlaminar crack length 

is between 1 to 10 laminate thicknesses. This mechanism mainly contributes to the 

energy-absorbing by fractures of the laminate bundles. It has been observed that the 

greatest absorption energy for composite structures is by lamina bending and brittle 

fracturing collapsing mode (Hadavinia and Ghasemnejad, 2009). Interlaminar cracks 

shown in brittle fractures manner are smaller than those in the laminate splaying modes 

but bigger than those in transverse shearing (fragmentation) manner. The length of 

broken laminate bundles majorly affects the crush failure efficiency, where the smaller 

broken laminates will lead to the greater efficiency of energy dissipation. Laminate 

bundle in brittle collapsing manner encounters some bending, where it usually 

collapses at the end of the specimen. The fracturing mode causes load redistribution 

within the tube (Borazjani, 2017). 
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Figure 2.8: Brittle fracturing crush (Rabiee and Ghasemnejad, 2017) 

2.4.2.4 Local buckling mode  

It is characterized as progressive folding, which is fundamentally shown by ductile 

fibers reinforced composite specimen. This deformation mode is similar to metallic 

structures' failure mechanism when compression occurs in axial load (refer to Figure 

2.9). Local buckling mode happens in brittle FRP composite specimen when (i) the 

fibers have less failure straining than the matrix, (ii) the interlaminar stress is low 

compared to the matrix strength, and (iii) the matrix shows plastic deformation failure 

under large stresses (Hadavinia and Ghasemnejad, 2009). Structures failing in a 

folding deformation mechanism may encounter many interlaminate and longitudinal 

cracks through hinges formation. Fibers fracturing also may occur, mostly on the hinge 

of the tension sidewalls. These composite specimens remain undamaged after being 

deformed, demonstrating the integrity of post-collapse. Progressive folding collapsing 

is also stated in slender-walled composite specimens. The folding process and crush 

load count on the specimens' shapes and dimensions (Ramakrishna and Hamada, 

1998). 
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Figure 2.9: Local buckling crush modes (Rabiee and Ghasemnejad, 2017) 

Briefly, during the occurrence of a progressive crushing, the fronds bending or 

splaying mode following the increase of the center interwall cracks because of 

delamination in the sidewall lead to the highest energy dissipation. The main central 

interlaminate (interwall) cracks propagation are mode-I. Whilst, mode II is a 

combination of bending medium length and transverse shearing, which often occurs 

as a result of the bending stress within the lamina bundles (Hu, Luo and Yang, 2010). 

In other words, in modes (I and II), splay (bending) mode and laminate bundles that 

sliding within each other in the mode, respectively, lead to bigger energy dissipation 

(Ghasemnejad, Hadavinia and Aboutorabi, 2010) as depicted in Figure 2.10 on account 

of the frictional effect between lamina fibres and curvature (Mamalis et al., 2005b; 

Lau et al., 2012).  

Furthermore, fibres orientation played a key role in mode I interlaminar 

fracturing toughness, matching with prior study (Hadavinia and Ghasemnejad, 2009). 

Moreover, Mode III exhibits an abrupt decline in load capacity directly after the initial 

maximum peak. The drop in the load is noticed to be higher than crushing by Modes I 

and II. This case is due to the cracking of the matrix that results in fragmentation fibers. 

Transverse shear (fragmentation) leads to a significant decrease in the carrying 

PTTA
PERPUS

TAKAAN
 TUNKU

 TUN A
MINAH



21 
 
capacity. The fragmentation mechanism is described as a shear into smaller pieces in 

the circumferential direction.  In this mode, the load (kN) vs. displacement (mm) curve 

grows progressively after the minimal value of the load, indicating load resistance 

(Rabiee and Ghasemnejad, 2017).  Finally, mode IV is similar to the deformation 

failure mode by metallic structures when compressed in the axial load. This failure is 

large enough for local buckling to occur due to stress in the specimen wall, creating a 

hinge. Upon the stress increment to a certain boundary, one more hinge is created 

under the prior, and so on till the entire specimen wall length is deformed (Rabiee and 

Ghasemnejad, 2017). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Figure 2.10:  Splaying mode I and sliding mode II in axial collapsing                    
(Lau et al., 2012) 

 Factors affecting the improvement of energy absorption capability 
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passenger cells intact, and (c) ensuring acceptable deceleration levels for the occupants 

during a collision accident (Xu et al., 2016a; Huang, Zhang and Zhang, 2018). To meet 

the above functions, several factors related to energy absorption of the composite 

structures are discussed, as follows: 

2.5.1 Geometric shape effect 

Maximum energy-absorption has been achieved by the progressive deformation 

process, which depends on fibre and resin materials' mechanical properties, laminate 

stacking, fibre orientation, and the geometrical shape of the specimen  (Luo et al., 

2016). However, various measurements of specific energy dissipation can be yielded 

by altering the geometry while maintaining the same other variable parameters for the 

structures made from a composite material (Rabiee and Ghasemnejad, 2017). Several 

engineering shapes and their collapsing behaviour have been investigated to determine 

composite structures' energy absorption capacity. 

(Palanivelu et al., 2010c) investigated the effect of cross-section shape on axial 

crushing behaviour. It was deduced that the hexagonal and square shapes with a t/w or 

t/D ratio of 0.045 were catastrophically crushed, while the circular specimen exhibited 

a gradual and uniform mode of crushing. However, when the t/ D or t/W ratio rises to 

0.083, the hexagonal and square shapes gradually crushes. From this, it has appeared 

that circular specimens with a 0.083 aspect ratio recorded the greatest SEA value of 

30.4 J/g compared to the hexagon and square sections, which recorded SEA of 16.4 

J/g and 12.3 J/g, respectively.  

Apart from that, (Estrada et al., 2019) studied the effect of geometrical 

configurations such as cross-section, where configurations of these specimens include 

circular and square structures by numerical and experimental methods. The results 

indicated that circular shapes' crashworthiness performance is better than that of square 

and hexagon shapes. Moreover, (Zhang et al., 2018) investigated the impacts of 

geometrical parameters, including circular, square, and tapered, on composite tubes' 

specific energy absorption (SEA) by experiments and simulations. In the comparison 

part, the SEA of circular, square, and tapered tubes was compared. For the hollow 

composite tubes of glass fiber reinforced polymer (GFRP), the SEA values of circular 

tubes are higher than tapered and square tubes. Also, (Rabiee and Ghasemnejad 2017) 
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stated that circular cross-sectional composite tubes perform better than square and 

rectangular cross-sectional composite tubes.  

Briefly, circular shape geometry has outstanding performance compared to 

other geometry shapes tested. Moreover, compared to other shapes apart from radial 

corrugated circular, circular shapes geometry absorbs most axial crushing energy. A 

similar conclusion was also reported by (Lau et al., 2012) that circular shape gives a 

valuable comparison amongst all the shapes tested. Furthermore, it can absorb most of 

the axial crushing energy compared to the other shapes except for radial corrugated 

circular ones. A study by (Abdewi et al., 2006) conducted an experimental study on 

the geometric shape effect on the crush behaviour of radial corrugated (RCCT) and 

circular cross-section (CCT) composite structures, as depicted in Figure 2.11. It was 

found that the radial corrugated structure shows a higher specific energy dissipation 

(SEA), as well as the peak load (Pmax), compared to the composite tubes with circular 

shapes.  

Likewise, another study investigated the combined radial corrugated and 

circular shapes (RCSCT) by surrounding the corrugated tube with the round tube 

shape, which failed to enhance the load-carrying ability, as seen in Figure 2.12. In the 

Figure, the radial corrugated shape showed a larger (Pmax) at a bigger stroke length 

than the circular specimen and an (RCSCT). Moreover, the area underneath the graph, 

which refers to the EA of (RCCT), is bigger than both (Abdewi et al., 2008). 

Furthermore, many publications have revealed that corrugated structures can collapse 

in a relatively controlled manner with a uniform force-displacement response. It has 

remarkable energy absorption efficiency compared with traditional structures without 

corrugations or tubes without corrugation (Eyvazian et al., 2019; San and Lu, 2020). 
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Figure 2.11: (a) Radial corrugated tube (RCCT), (b) Circular tube (CCT), and (c) 
Combination of radial corrugated and circular cross section (RCSCT) (Abdewi et al., 

2006; 2008) 

 

 

 

 

 

 

 

 

 

Figure 2.12: Load/deformation graph for (RCCT) cross section, (CCT) cross section, 
and (RCSCT) cross section (Abdewi et al., 2008) 

On the other hand, (Mahdi et al., 2003) studied the influence of conical shell 

angle on the collapsing ability. It is stated that higher conical vertex angles reduce the 

initial peak load, SEA, in addition to the decrease in structural volume space, as 

depicted in Figure 2.13. However,  the cylindrical tube's SEA absorbed a higher energy 

value than the conical shell, with a SEA of 24 J/g. Moreover, (Alkateb et al., 2004) 

stated that the vertex angles in elliptical-cone designs were sensitive to specimen 

collapsing manner. Figure 2.14 shows the curve behaviour and its relationship between 

changing the cone vertex angle with the initial peak load (Pi) and the ratio of the 
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