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ABSTRACT  

Solar-powered aircraft is propelled by a photovoltaic cell that converts solar energy 

into electrical energy. The extra energy is stored in a rechargeable battery for later use 

when solar energy is not available. The performance of solar-powered aircraft is 

limited to solar radiation availability, low efficiency of the photovoltaic cell, and low 

energy density of the rechargeable battery. The research aims to improve the power 

device sizing, reduce the aircraft's mass, and improve the flight duration for sustainable 

flight operations for solar-powered aircraft (CLOUD 1). This was achieved using a 

multidisciplinary optimisation tool, a commercial package ModeFrontier software. 

Photovoltaic Geographic information system (PVGIS) software was used to obtain a 

solar radiation model for Malaysia. The model was used to develop both the energy 

balance and mission path for Malaysia to facilitate the availability and utilisation of 

solar energy for successful flight operations. Airfoil analysis was conducted. 

WE.3.55.9.3 airfoil was the best-chosen airfoil used for the wing design, while the 

empennage design, NACA 0008, was the most suitable. Hence, the latter was used for 

horizontal and vertical tail design with XFLR5 v6 software's aid.  A novel 

methodology for the power device sizing was developed on MS Excel with 435.48Wh, 

540.96Wh, 32, and 70 as the total required electrical energy, available solar energy, 

number of solar cells required, and the number of batteries required, respectively. The 

optimisation strategy embraced ModeFrontier software with the goal set to; minimise 

total electrical energy required, minimise the total mass, and maximise the available 

solar energy. The optimisation results show that available solar energy was 283.56Wh, 

the total electrical power required was 228.32Wh, the number of solar cells was 16, 

and the number of batteries was 36. The total mass of the aircraft was 2.05 Kg, 

respectively. The optimisation results achieved 53%, 51%, and 26% reductions in the 

number of solar cells, the number of batteries, and the aircraft's mass. Also, the flight 

duration was improved by 33%. The optimal configuration was used to design the 

solar-powered aircraft (CLOUD I). 
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ABSTRAK  

Pesawat bertenaga suria didorong oleh sel fotovoltaik yang mengubah tenaga suria 

menjadi tenaga elektrik dan tenaga tambahan disimpan dalam bateri yang boleh dicas 

semula untuk digunakan kemudian apabila tenaga suria tidak tersedia. Prestasi tenaga 

solar terhad kepada ketersediaan sinaran suria, kecekapan rendah sel fotovoltaik, dan 

ketumpatan tenaga rendah bateri yang boleh dicas semula. Penyelidikan ini bertujuan 

untuk meningkatkan ukuran peranti kuasa, mengurangkan jisim pesawat, dan 

meningkatkan jangka masa penerbangan untuk operasi penerbangan pesawat 

bertenaga suria yang lestari (CLOUD 1) dengan penggunaan alat pengoptimuman 

multidisiplin, perisian modFrontier pakej komersial. Perisian sistem maklumat 

Geografi Fotovoltaik (PVGIS) digunakan untuk mendapatkan model sinaran suria 

untuk Malaysia yang digunakan untuk mengembangkan keseimbangan tenaga dan 

spesifikasi misi Malaysia untuk memudahkan ketersediaan dan penggunaan tenaga 

suria untuk operasi penerbangan yang berjaya. Analisis airfoil telah dilakukan, 

WE.3.55.9.3 pesawat udara adalah pilihan udara terbaik yang digunakan untuk reka 

bentuk sayap, dan reka bentuk empennage, NACA 0008 adalah yang paling sesuai, 

dan ia digunakan untuk reka bentuk ekor mendatar dan menegak. Metodologi ukuran 

peranti kuasa pesawat bertenaga suria dikembangkan dengan jumlah tenaga elektrik 

yang diperlukan sebanyak 435.48Wh, tenaga suria yang tersedia sebanyak 540.96Wh, 

jumlah sel suria yang diperlukan ditentukan sebanyak 34 dan bilangan bateri yang 

diperlukan juga ditentukan sebagai 70. Strategi pengoptimuman digunakan dengan 

objektif; untuk meminimumkan jumlah tenaga elektrik yang diperlukan, untuk 

meminimumkan jumlah jisim, dan memaksimumkan tenaga suria yang ada. Hasil 

pengoptimuman menunjukkan bahawa tenaga suria yang ada adalah 283.56Wh, 

jumlah tenaga elektrik yang diperlukan adalah 228.32Wh, jumlah sel suria adalah 16, 

dan jumlah bateri adalah 36 dan jumlah jisim pesawat masing-masing adalah 2.05. 

Hasil pengoptimuman menunjukkan bahawa jumlah sel suria dikurangkan sebanyak 

53%, jumlah bateri dikurangkan sebanyak 51%, dan jisim pesawat dikurangkan 
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sebanyak 26%. Juga, tempoh penerbangan ditingkatkan sebanyak 33%. Konfigurasi 

yang optimum digunakan untuk merancang pesawat bertenaga suria (CLOUD I). 
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INTRODUCTION 

1.1 Research background 

Solar-powered aircraft is an amazing, forward-looking technology for the future [1]. 

The unlimited and countless amount of solar radiation makes this green technology 

affordable, safe, sustainable, and free of pollution for transportation. Moreover, the 

aircraft exhibits a huge capability for uninterrupted flight [2]. The power device of 

solar-powered aircraft comprises; Photovoltaic (PV) cells, a rechargeable battery, and 

a maximum power point tracker (MPPT), respectively [3], [4]. The PV cell is mounted 

on the wing, which changes solar energy to electrical energy that propels the aircraft. 

The battery can be placed on the fuselage or any suitable part; it stores the extra energy 

when the solar radiation is available in the daytime and provides energy to the systems 

at night-time [5], [4].  

Multidisciplinary optimisation (MDO) is a branch of engineering that deals 

with engineering problems by applying the optimisation strategy with multiple 

frameworks [6]. The economic success of any organisation is the capability to produce 

a successful product [7]. This logic holds in the engineering industries and fields. With 

the complexity involved in aircraft designs, which evolves more than ever before in 

the aerospace industry, MDO has emerged as a critical tool to solve complex design 

challenges. Subsequently, MDO has provided an avenue for future growth and 

strategic edge for competitors in the industries [8]. Also, statistical studies had shown 

that MDO is a suitable application for proffering solutions to solar aircraft design 

issues. This was evidenced by tremendous successes in problem-solving of 

disciplinary modelling, analysis capabilities, tool implementation, and general 

application [7]. Regarding the concept of product enhancement in solar aircraft, the 

application of MDO has traditionally benefited the system. Earlier studies of aircraft 
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design have shown remarkable results in both the conceptual (initial) and detailed 

(later) designs [7].  

The disciplines that applied the MDO are flying performances (e.g. 

aerodynamics, weight, and propulsion) and the energy management approach related 

to energy components. The goals are often targeted at reducing aircraft’s total weight, 

the power required, and maximising the available power [7], [9]. Similarly, the cruise 

speed’s optimal performance and the lift coefficient of a UAV were considered while 

the objectives were to maximise the payload for a fixed total mass. The mass of the 

wing was minimised with the use of composite materials [10]. In an independent study, 

MDO was deployed in balancing available energy and the aircraft’s operational 

requirement. In the study, the objectives were to maximise the payload mass, minimise 

both night altitude and the total weight [11]. Aerodynamics, structure, stability, weight, 

and systems were integrated into the MDO tool. The objectives were weight 

minimisation and power maximisation [12]. In addition to the objectives mentioned 

above, other areas where MDO was deployed include drag minimisation and lift 

maximisation [13].  

The constraint of energy and the balance between buoyancy and weight were 

also studied using MDO, with the primary goal to minimise the total mass of the 

aircraft [14]. Many objective techniques were compared with different optimisation 

strategies [11]. In furtherance to the strength of the MDO as a tool, variables like flight 

mission profile, the size of the energy components, and the energy component systems 

for a medium altitude long endurance UAV were analysed. The goals were to 

maximise the electric durability and minimise the hybrid electrical solution, the overall 

fuel consumption, and the take-off field length. Optimisation of energy storage, 

standoff tracking of the solar aircraft using the adjustable Lyapunov guidance vector 

field (ALGVF), and the interfered fluid dynamic system (IFDS) were used to 

maximise the solar energy storage and minimise the tracking error [15]. 

The unpredictable solar radiation and mode of application of solar aircraft 

made it imperative to develop a robust energy component and flight operation to 

accomplish a nonstop flight duration for 48 hours by analysing the power device [16]. 

Energy Control System (ECS) is required [17]. To get maximum energy from the PV 

cell, an MPPT is essential. The MPPT traces and maximise the current and the voltage 

of the PV cells and rechargeable batteries [18]. Optimal energy is extracted from the 
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photovoltaic cells when the gain is varied [19]. The MPPT is incorporated into the 

ECS in aircraft powered by solar. 

The electrical energy component is managed by energy control equipment, 

determining when the batteries will be charged or propel the aircraft. The thrust force 

overcomes the aerodynamic drag. The DC/DC converter mostly converts electric 

energy with different voltages to provide energy to the avionics, payloads, autopilot 

systems, and communication systems [20]. 

As mentioned earlier, the energy may lose some energy; even the electric line 

may lose energy because of inevitable internal energy resistance. Only 11% of solar 

energy was used by solar-powered aircraft. In contrast, nearly 89% of the remaining 

energy is lost. Compared with the solar panel’s internal combustion engines-to-mass 

ratio, the resulting efficiency is significantly less than that of the gasoline engine. Thus, 

solar-powered aircraft are less competitive than traditional internal combustion-

powered plane [21]. Figure 1.1 it is obvious that the solar cell and the propeller 

contribute most of the losses reported in energy. These underscore the issues the 

research findings are aimed at addressing. For clarification, the study focused on the 

design, optimisation, and development of power device sizing. The intent was to 

improve the efficiency of solar-powered aircraft.   

 

 

 Figure 1.1: The efficiency of energy transformation devices of a solar-powered 
Aircraft. [22] 

sun PV Cell BatteryMPPT Motor PropellerMotor 
controller

Gear box

100%

15.7% 13.6% 12.9% 11%

17%

17%

97% 95% 87% 95% 85%

16.5%
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1.2 Research problem statement  

The solar energy balance diagram provides the available solar energy collected in a 

particular country and region and its utilisations to conserved energy. Lack of a good 

solar energy balance diagram developed from Malaysia’s solar radiation limits the 

achievement of solar-powered aircraft design and long or perpetual duration flight in 

Malaysia. The solar-powered aircraft efficiency is limited to the availability of solar 

radiation. The solar radiation distribution depends on the earth’s position and the 

location or region of a particular country. Those countries located at the equator have 

high solar radiation compare to ones towards the poles. Also, the rate of solar radiation 

is a function of the latitude, time of the year, time of the day, altitude, cell temperature, 

and cell orientation. To effectively harness solar radiation, a particular country or 

region’s solar radiation model is inevitable. The solar radiation model will give 

detailed daily, monthly, and yearly solar radiation for a specific area per square meter 

[23].   

Previous designs power device sizing of solar aircraft has a deficit in offering a 

unique methodology that could stand the test of optimal power delivery to the solar-

powered aircraft. Solar-powered aircraft has been developed and widely applied in 

practice. Some techniques need improvement and further research to achieve reliable, 

safe, and low-cost flights [24], [23]. Solar-powered aircrafts today are faced with the 

problem of energy supply from photovoltaic solar cells to power the propulsion and 

avionics system. It is the key to ensuring the aircraft stay aloft for a long time and 

sustain a very high altitude 24 hours [25]. The power supply system is the most 

important component to be improved because it affects the working period and mission 

path or solar-powered aircraft profile [26], [27]. It limits the use of solar aircraft and 

makes it less competitive when compared to fossil fuel aircraft. It calls for an 

improvement in the methodology for power device sizing.  

The energy density of energy storage is too low to sustain a high altitude and 

long endurance flight. In contrast, conventional aircraft that uses fossil fuel have a far 

higher energy density that can support long flight hours [28], [4]. It necessitated 

carrying out the conceptual design of power device sizing for solar-powered aircraft.  

To address the problems of lack of adequate power device sizing, it becomes 

pertinent to use the MDO tool to improve the conceptual design and power device 

sizing of solar-powered aircraft [15].  
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1.3 Research objective 

The research aim is to improve the power device sizing and conceptual design of solar-

powered aircraft by improving the flight duration and reducing the mass for a 

sustainable flight operation using Malaysia as a case study, through the use of 

multidisciplinary design optimisation (MDO) tool, with the following objectives: 

i. To analyse Malaysia’s solar radiation model obtained from the photovoltaic 

geography information system (PVGIS) interactive tool software package 

(R.SUN IET, 2015) and develop an energy balance and mission path diagram 

for Malaysia. 

ii. To analyse various airfoils using XFLR5 v6 software and select the most 

suitable among them. Using the suitable airfoil to design the wings, the 

empennage, design the fuselage, and assembled the parts. 

iii. To develop a power device sizing of solar-powered aircraft to ascertain the 

quantity of PV cell and rechargeable battery required to power the aircraft. 

iv. To optimise the conceptual design and power device sizing of solar-powered 

aircraft using a ModeFRONTIER package, a multidisciplinary design, and 

optimisation (MDO) tool software. 

1.4 Scope of the Research 

The scopes of the research are itemised as follow; 

i. Malaysia’s solar radiation model and energy balance were developed using a 

software package (R.SUN IET, 2015). The package provides Photovoltaic 

Geography Information System (PVGIS) online interactive maps of potentials 

in Europe, Asia, and Africa. The software has high efficiency and reliability of 

the data certified by the European Union. 

ii. The study focuses on analysing different solar-powered aircraft designs to 

develop a methodology of power device sizing and the conceptual design of 

solar-powered aircraft. The XFLR5 v6 software was used for airfoil analysis 

and conceptual design of the solar-powered aircraft. The software is suitable 

for aerodynamic analysis of small aircraft designs similar to the present studies. 
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iii. MS Excel code was used for the calculation of developed power device sizing. 

iv. Both the power device sizing and the solar-powered aircraft’s conceptual 

design were optimised using the ModeFrontier (a commercial package and a 

registered ESTECO SpA). The software is used integration and automation of 

CAE process, optimization and robust in the field of aerospace and other fields 

of engineering. 

1.5 Significance of the research 

The significance of the research are as follows; 

i. Solar-powered aircraft exhibit vast potential for high altitude and long-

endurance (HALE) flights because of the unlimited supply of solar power in 

Malaysia. The energy balance diagram and the mission path provide optimum 

utilisation of solar energy for solar-powered aircraft.  

ii. Solar-powered aircraft can be designed to fly near space and below the 

spacecraft region (approximately 20–100 km). It can fly near-space 

continuously for months or even years, depending on the reliability of the 

power device sizing, aircraft system, and sunlight conditions [29]. The 

conceptual design herein presented could be considered for the preliminary and 

detailed design of solar-powered aircraft suitable for the Malaysia energy 

balance diagram and mission path.  

iii. The advantage of high altitude makes it possible for the expected applications; 

Intelligent Reconnaissance and Survey (ISR) and transmit communication 

(hazard warning, rescue, and assessment), agricultural surveillance and 

decision support systems, and planetary atmospheric exploration [30] 

1.6 Research structure outline 

The research outline consists of five chapters that covered the entire thesis. The outline 

summarised the contents of each of the main chapters that addressed the research 

findings. The research outline is presented below; 
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i. Chapter 1: Introduction: This chapter states the background of the study related 

to the research content. The problem statement that the research sought to solve 

is specified in a concise and detailed fashion. The research aims and objectives 

are enumerated. The scope of research is mentioned as a boundary of the research. 

Also, the significance of the research is specified to bolster the importance of the 

research. 

ii. Chapter 2: Literature Review: The chapter review previous studies related to 

the content of the research. This research is determining to improve the design for 

the prospect of the aviation industry. The development of solar-powered aircraft, 

the basic concept of solar-powered aircraft, the aerodynamics of a wing, solar 

radiation, the powered device of a solar-powered aircraft, and the 

multidisciplinary optimisation process are all reviewed and discussed in this 

chapter. 

iii. Chapter 3: Research methodology: The research methodology is divided into 

design strategy and optimisation strategy. Design strategy presents the design 

concept methodology that leads to the design of power device sizing for solar-

powered aircraft. The design concept methodology provides a procedure for the 

design methodology of power device sizing for solar-powered aircraft and the 

methods, designs, models, and software employed to solve the research 

objectives. The optimisation strategy is the second part of the research 

methodology, the multidisciplinary design optimisation framework. It provides a 

guide on the conduct of the optimisation process using the MDO tool. A 

multidisciplinary design framework is employed using ModeFrontier (ESTECO, 

2018) commercial optimisation package to optimise the power device sizing and 

conceptual design of solar-powered aircraft by improving the flight duration and 

reducing the weight of the solar-powered aircraft.  

iv. Chapter 4: Results and Discussion: The results are being presented, and also, 

the discussions of the results are analysed in this chapter. The solar radiation 

model employed the R.SUN (IET, 2015) software PVGIS to obtain a solar 

radiation model of Malaysia. The model was used to develop an energy balance 

diagram and mission path. Various airfoils are analysed, and the results were 
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presented. The optimal was chosen to design the wing and empennage of the 

aircraft and the fuselage designs. Subsequently, all the parts are assembled with 

the aid of XFLR5 v6. The multidisciplinary optimisation framework is employed 

using the MDO tool, a ModeFrontier software. The optimisation approach is 

conducted with three objectives; to minimise the total electrical energy required 

by the aircraft, to minimise the total mass of the aircraft, and to maximise the solar 

energy available from the solar radiation that can be utilised. The output of the 

optimisation is presented in the graphs and tables. The optimal configurations are 

used to design improved solar-powered aircraft named CLOUD I. 

i. Chapter 5: Conclusion and Recommendation: This chapter summarises the 

significant findings in the research study. The research main contributions are 

presented. The recommendation for further works and improvement that needs to 

be carried out to enhance solar-powered aircraft development to sustain long 

endurance and high altitude flight are enumerated.
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LITERATURE REVIEW  

2.1 Introduction  

The design of solar-powered aircraft recently has achieved a lot of attention, in a view 

to replacing fossil fuel with solar energy powered aircraft, due to global warming and 

providing affordable, reliable, and safe means of transportation in the world. This 

research is determining to improve the design for the prospect of the aviation industry. 

The development of solar-powered aircraft, the basic concept of solar-powered 

aircraft, the aerodynamics of a wing, solar radiation, the powered device of a solar-

powered aircraft, and multidisciplinary optimisation are reviewed in the chapter. 

2.2 The trend of solar-powered aircraft  

The trend of solar-powered aircraft designs shows solar aircraft technology from the 

1970s to dates in chronological order. 

2.2.1 Sunrise project 

The first solar-powered aircraft in the world was Sunrise I. The aircraft had its first test 

flight on the 4th of November, 1974, which proves that solar aircraft could fly. The 

aircraft's wingspan is 9.8m, a length of 4.4m, a wing area of 8.4m2, and a gross weight 

of 12.3kg. And it was powered by silicon monocrystalline photovoltaic with 4098 

cells, 11% efficiency. In 1975, the Sunrise I was damaged in a wind storm during a 

test flight. Figure. 2.1 shows the maiden flight of the Sunrise I [31], [32]. Sunrise II 
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was designed and constructed, upgraded design with similar specifications but was 

13% lighter to 10.3kg, and had 33% more power than the Sunrise I. Initially, it was 

designed for 15.2 km, but it could only attain 5.2 km, due to breaking down in the 

command and control system. The entire project was terminated, and later the solar 

panel of the Sunrise II was used on Gossamer Penguin, a manned solar-powered 

aircraft.   

 

Figure 2.1:  Sunrise I solar-powered aircraft [31] 

The Sunrise I is limited to adequate power device sizing resulted in a lack of 

sufficient power from the PV cells during the day. No extra energy can be stored in 

the rechargeable battery to power the aircraft at night. 

2.2.2 Environment research aircraft and sensor technology (ERAST) project 

United States Government-sponsored research and funded by NASA, initiated by 

AeroVironment Incorporated. The company was saddle with designing and 

constructing solar-powered aircraft, the Gossamer Penguin and the Solar Challenger, 

in the late 1970s and the early 1980s. The Gossamer Penguin, designed by Paul 

MacCready, Jr., flew on the 18th of May, 1980, and was considered the first manned, 

solar-powered flight in the world. The Solar Challenger (the Gossamer Penguin’s 

successor) flew from Pontoise-Cormeilles near Paris to the Manston Royal Air Force 

Base near London on the 7th of July, 1981. The flight lasted for 5 hrs and 23 min and 

covered a distance of 262.3 km.  
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The Pathfinder was the first ERAST project under Dryden’s Flight Research 

Centre (DFRC) supervision adopted in 1993. The prototype design of a high-altitude 

long-endurance solar-powered aircraft was produced, with a wingspan of 30.0 m. The 

Pathfinder created a flight altitude record of 15.4 km at DFRC on the 11th of 

September, 1995. Some modifications were made on the Pathfinder in the spring of 

1997 and lifted the world record of flight solar-powered altitude of 21.5 km when it 

was moved to the Pacific Missile Range Facility (PMRF) the US Navy on the 

Hawaiian island of Kauai.  

The second generation of the ERAST project is the pathfinder plus. The 

pathfinder plus wingspan was extended to 36.9 m by using four sections of the 

Pathfinder wing. The Pathfinder Plus attained a new flight altitude record of 24.4 km 

in 1998 (PMRF) [20].  

The Centurion with a wingspan of 63.1 m was designed to reach a flight 

altitude of 30.5 km. It is the third-generation flight project of the ERAST, and it flew 

three test flights with the aid of battery power at low altitude at (DFRC) in 1998.  

The fourth generation of the ERAST project is the improvement of the Centurion 

design called the Helios.  The aircraft was designed specifically to attain a flight 

duration 0f 20 hours and a flight altitude of 30.5 km. The Helios (HP01), with a 

wingspan of 75.3 m, reached a world record flight altitude of 29.5 km for the horizontal 

winged aircraft on the 13th of August, 2001 PMRF. At the PMRF on the 26th of June, 

2003, the long-endurance prototype Helios HP03 attempted a demonstration flight that 

was not successful because of a strong storm that causes turbulence and structural 

failure [33]. Figure 2.2 shows the evolution of solar aircraft in the ERAST project. 
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Figure 2.2:  Evolution of solar aircraft in the ERAST project [33] 

All the ERAST projects have limited flight duration and altitude, and these are 

caused due to the low energy density of the rechargeable battery used and improper 

power device sizing 

2.2.3 Zephyr project 

The Zephyr project had a transition from Zephyr 1,2,3,4,5-1,5-2,6, and 7.  

The Zephyr1 was a film balloon designed to reach a world record of high altitude.  

In 2001, the Zephyr1 project was changed to the Zephyr2, designed with less than 7 

kg weight and test flight in both free and tethered modes (of the Clifton suspension 

bridge in Bristol, United Kingdom).  

In 2002, the Zephyr 3 was designed and constructed with 15 kg weight and 12 

m long. Zephyr3 was set to attain an altitude of the world record of 40.2 km attached 

to a manned balloon. But unfortunately, the balloon had a technical fault, render the 

Zephyr3 and balloon not to fly.  

The Zephyr4 was developed with a wingspan of 12 m and a weight of 17 kg. 

Zephyr4 conducted a test flight in Woomera, South Australia, in 2005. It reached an 

altitude of 9.1 km within the flight duration of an hour.  

In December 2005, Zephyr5 was developed with the primary aim to display a 

manual launch instead of a helium balloon. Zephyr5 was divided into Zephyr5-1and 

Zephyr5-2 with the aid of energy systems. Zephyr5-1 was designed with a solar cell, 
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battery, and a total weight of 31 kg, while the Zephyr 5-2 was designed with a non-

rechargeable battery and a total weight of 25 kg. Zephyr5-1 flew for 4 hrs, and the 

Zephyr5-2 flew for 6 hrs in New Mexico, US. In July 2006, the two aircraft flew again 

in the US. The Zephyr5-1 flew for 18 hrs (including 7 hrs into the night) and reached 

an altitude of 11.0 km.  

The Zephyr 6 has a wingspan of 18 m and a total weight of 30 kg made of ultra-

light carbon fibre. Zephyr 6 flew for 54 hrs in New Mexico around July of 2007, 

attaining the maximum altitude of 17.7 km. It also flew for 82 hrs in Yuma, Arizona, 

in August 2008 to reach a maximum altitude18.3 km. This flight time was triple the 

official world record for the longest unmanned flight, 30h (set by the Global Hawkin 

2001).  

The Zephyr 7 set a new record for flight time length by flying for 14 days (336 

hrs) and 21min [34]. In 2013, the Zephyr program was acquired by Airbus’s high-

altitude pseudo-satellite (HAPS) program, which Airbus initiated in 2008. Meanwhile, 

all the key Zephyr staff was integrated into the HAPS organisation. On the 23rd of 

April 2014, Airbus announced that it had launched the Zephyr 8 program to develop 

the next generation Zephyr unmanned aerial system (UAS) [34]. Figure 2.3 shows the 

evolution of solar aircraft in the Zephyr project. 

 

 

Figure 2.3: The evolution of solar aircraft in the Zephyr project [34] 

Although Zephyr 7 design is the most successful in the Zephyr family, this is 

solely attributed to using a Lithium-sulfur battery, with higher energy density than 
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others. But the aircraft has more weights because of the number of batteries used in 

the aircraft design. The proper sizing of the power device can reduce the weight of the 

aircraft. 

2.2.4 Solar impulse I 

Bertrand Piccard joined Swiss Ecole Polytechnique Federale First State metropolis 

(EPFL), aiming to circle the world in an exceedingly solar-powered aircraft. This 

corporation created solar Impulse in 2004. The example aircraft of the solar Impulse, 

the HB-SIA, was factory-made from 2007 to 2008. The HB-SIA had a distance of 63.4 

m and weighed below 1600 kg. Four 10-hp motors high-powered the HB-SIA by the 

energy collected from 11,628 solar panels. Surplus alternative energy collected 

throughout the daytime was kept in 400 kg rechargeable batteries. In June 2012, the 

HB-SIA flew from Suisse (Europe) to Morocco (Africa), which was the primary aim 

of solar-powered worldwide flights.  In the summer of 2013, Piccard and Andre 

Borschberg completed the “Across America” project by cruising across San Francisco 

to York. The star Impulse project’s final word objective is to fly worldwide, and this 

endeavour occurred in 2015 [20], [35]. Figure 2.4 shows the two prestigious, best 

flights of the HB-SIA.  

 

 

Figure 2.4: The two notable demonstration flights of the HB-SIA of the Solar 
Impulse project [20]. 
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2.2.5 SoLong 

AC Propulsion funded the Solong project to manufacture long-endurance multiple 

days and night’s solar-powered aircraft. Construction was done by Alan Cocconi, the 

founder, chairman, and chief engineer of AC Propulsion. The aircraft was developed 

with a wingspan of 4.75 m and an area of 1.5 m2, a rechargeable battery that weighs 

5.6 kg [Sanyo 18650 lithium-ion (Li-ion) batteries 220 Wh/kg], 76 Sun Power A300 

solar cells, and a total mass of 12.6 kg. The aircraft was remotely controlled by six old 

pilots that centred on using updrafts and avoiding downdrafts. It set a record of 48 h 

of flight. The aircraft was still capable of flying on the third, fourth, and fifth nights. 

However, the flight was terminated as a result of the pilots were exhausted [20]. Figure 

2.5 shows the SoLong and Alan Cocconi take a look at flight. 

 

Figure 2.5: Alan Cocconi and the SoLong [20] 

 

The major drawbacks of the SoLong project are the manual control and the use 

of a Lithium-ion battery which has a low energy density. These contribute to the 

problems of SoLong. Project. 
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2.2.6 Helios platform (Heliplat) 

Heliplat may be an important project in Europe for a UAV designed to fly at layer 

altitude 17 km to 25 km to navigate the sea space. This plane had eight brushless 

motors at the twin-boom tail and 2 rudders [24]. The Heliplat project was initiated as 

an effect of the HELINET project, a network of stratospheric platforms for traffic 

observation, environmental police work, and broadband services co-ordinated by the 

Politecnico di Turin. From January 2000, the EU Commission supported the project at 

intervals the Fifth Framework Program and conducted it at the metropolis technical 

school University. The reason for this project was to introduce a high-altitude very-

long endurance UAV with a solar-powered and fuel-cell energy system that will stay 

aloft for a long period (approximately 9 months). Solely a tiny part of the analysis was 

completed due to the fund’s restricted backing, and a scale-sized solar-powered 

paradigm was factory-made [24], [36]. Figure 2.6 shows an artist’s conception of 

Heliplat flying higher than the sea. 

 

 

Figure 2.6: An artist’s conception of the Heliplat flying above a Sea [35] 

  

The Heliplat project was terminated halfway into the project because of a lack 

of funds, which posed a serious setback. The performance is limited because of 

inadequate power device sizing and lack of compatibility of the fuel cells and the PV 

cells. 
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2.2.7 Sky-Sailor project 

The sky-sailor project was fully funded by Space Technology Advancements, 

Resourceful, Targeted, and Innovative Groups of Experts and Researchers of the 

European Space Agency (ESA). The project was initiated at the end of 2003 in the 

Autonomous Systems Lab of the EPFL, with the objectives to design and construct; 

lightweight and long-endurance aircraft and conduct a test flight of Mar’s atmospheric. 

The aircraft was designed and built-in 2005, with a wingspan of 3.2 m, a total weight 

of 2.444 kg, and a rechargeable battery of Li-ion of 1.056 kg. The Sky-sailor design 

was similar to a motorised glider, and its basic layout was similar to the Avance glider, 

with two world records for distance and duration. In June 2008, a test flight occurred 

at Niederwil, Switzerland, with a  long endurance flight record of 27 hrs was set [37], 

[38]. Figure 2.7 shows the demonstration flight of the Sky-sailor. 

 

 

Figure 2.7: The test flight of the sky-sailor [37] 

 

The Sky-sailor design lacks adequate proper power device sizing that could 

provide more solar energy. The rechargeable battery used has a low energy density 

that can store more energy during the day and use at night when solar energy was not 

available. 
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2.2.8 Vulture project  

In 2007 the United States initiated the vulture project, a cheaper and less expensive 

substitute to the conventional satellite. The alternative should adequately serve the 

Intelligence, Surveillance, and Reconnaissance (ISR) function or communication 

platforms to apply the Defence Advanced Research Project Agency (DARPA).  The 

Vulture is a solar-powered aircraft with high altitude long endurance that can navigate 

aloft for five years, a total weight of 450 kg, and that can carry a payload of 5 kW.  

In 2009, the Vulture II project was initiated to design and construct an 

unmanned aerial vehicle with high altitude long endurance to navigate for three 

months. Three companies bid for the project. Figure 2.8 shows three company design;  

QinetiQ collaborated with Boeing Integrated Defense Systems and presented the 

Solar-Eagle, a scaled-up version of the Zephyr.  

 Lockheed Martin Inc. presented a unique configuration with ten electric 

propulsion units and three tilting tailplanes. Aurora Flight Sciences Inc. brought in the 

Odysseus, which had a Z-wing configuration. The Solar-Eagle of QinetiQ won the bid 

and performed its maiden flight in 2014 [39]. 

 

 

Figure 2.8: The three candidates of the vulture II project [39] 

Solar aircraft, in a quest to provide more energy to power the aircraft for high 

altitude and long endurance, more PV cells need to be added. As such, a long wingspan 

and weight are added, which can cause structural instability. Careful design and 

aerodynamic analysis can provide stability [40], [41]. 
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The most significant problem of the vulture’s project is the wingspan’s structural 

defect because of the long wingspan to accommodate sufficient solar cells to provide 

much-needed energy to power the aircraft. Proper power device sizing would have 

solved the problem of structural defects. 

2.2.9 Other notable solar-powered aircraft 

Aside from all the projects above, other notable solar-powered aircraft have been 

produced. The Solair I and sunseeker are shown in Figure 2.9. 

The Solair I, produced by Günter Rochelt, flew for 5 hrs and 41 min on the 21st 

of August, 1983. [42]. The Sunseeker, developed by Eric Raymond, crossed the US in 

August 1990 and made 21 solar-powered flights within 121 hrs. [43]. 

 

 

Figure 2.9: Solair I and Sunseeker [43] 

 

The Icare 2, designed by Rudolf Voit-Nitschmann of Stuttgart University [44], 

is shown in Figure 2.10. The Solitaire was created by the Institute of Flight Systems 

of the German Aerospace Center, a proof-of-concept air for year-round operations in 

northern Europe. Figure 2.10 shows Solitaire. 

 

Figure 2.10: Icare 2 and Solitaire [44] 
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The Sun Sailor was designed and constructed in the Technion – Israel Institute 

of Technology in Haifa, intending to set a new World Air Sports Federation world-

distance record for solar-powered UAVs. However, the Sun Sailor crashed before 

setting a record in 2006 [45],  [26].  

All the notable designs mention here have similar problems of proper power 

device sizing, and the rechargeable batteries used in the designs have limited energy 

densities. 

2.2.10 Solar Impulse II 

Bertrand Piccard and Andre Borschberg designed and constructed solar impulse II 

after the success of solar impulse I. The aircraft flew worldwide from the 24th of July, 

2016, covering approximately 40,000km in 17 months.  The solar impulse is designed 

for long-duration flights with a cruising speed of 70 km per hour. The aircraft's total 

mass was 2,300 kg, installed with 17,248 solar cells and 633 kg of rechargeable 

batteries of 65.5 kWh of energy. The flights were delayed to fix the damaged batteries. 

The flight takes off in May after the flying season; the trip was concluded in 17 legs, 

starting and ending in Abu Dhabi, United Arab Emirates, but with no set flying 

schedule. The ultra-lightweight aircraft fly’s in conducive weather and changes the 

route when necessary [46]—the image of solar impulse II is shown in Figure 2.11. 

 

Figure 2.11: Solar impulse 2 [47]  
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The solar impulse projects both I and II have structural stability problems due to 

long wingspan to accommodate more solar cells. Also, the rechargeable batteries used 

have low energy densities. Lack of proper power device sizing is obvious. 

2.2.11 EAV-3 

The Korea Aerospace Research Institute (KARI), on the 12th of August, 2020, 

successfully conducted a test flight of 90 minutes in the stratosphere (18.5-22 Km) of 

its latest Unmanned Aerial Vehicle solar-powered aircraft, EAV-3. The UAV is 9 m 

long with a wingspan of 20 m, and it used the LG Chem prototype Li-Sulfur 

rechargeable to store the excess energy during the day and powered the aircraft during 

the night period. The aircraft launch’s success was attributed to the rechargeable 

battery produced by LG Chem [48]. 

 

 

Figure 2.12: EAV-3 solar-powered aircraft [48] 

2.3 The basic concept of solar-powered aircraft 

The basic concept and technologies that are responsible for solar aircraft to fly are 

explained. The concept is similar to conventional aircraft. During a level flight, the 

propeller produces a thrust force greater than the drag force, making the aircraft move 

forward. As the speed increases, the aircraft produces a lift force if the force created is 
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higher than the total weight or gravitation force the aircraft takes off [49]. Figure 2.12 

below shows forces acting on aircraft on a level flight. 

 

 

Figure 2.13: Forces acting on an aircraft on level flight [49]  

Solar aircraft have a photovoltaic cell mounted on the wing, tail, or body. The 

PV cell converts solar radiation to electrical energy during the daytime. The MPPT 

ensures the PV cell gets the maximum power from solar radiation. The rechargeable 

battery is installed in the fuselage. It is used to store additional energy from the PV 

cell throughout the daytime and provide energy to systems at nighttime. Figure 2.14 

shows the essential construct of solar aircraft. 

 

 

Figure 2.14: Solar-powered aircraft basic concept. [38] 

2.4 Aerodynamic Analysis of a Wing and Empennage Profile 

As the airflow across the wing section a laminar flow at constant speed 𝜐, pressure 

distribution on the upper and lower part are created. The pressure translates into lift 

force and drag force [50]. Figure 2.15 depicts the cross-section of a wing. 
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Figure 2.15: Section of an airfoil [50] 

 

The lift and drag forces can be calculated using Equations 2.1 and 2.2 [51]; 

                                       𝐹𝐿 = 𝐶𝐿
𝜌

2
𝑆𝜐2                                                               (2.1) 

                                       𝐹𝐷 = 𝐶𝐷
𝜌

2
𝑆𝜐2                                                              (2.2) 

Where 𝐹𝐿 and 𝐹𝐷 are the lift and drag forces, 𝐶𝐿 and 𝐶𝐷 - lift and drag 

coefficients, ρ  is the air density, S  is wing area, and  𝜐 is the aircraft’s relative speed; 

this is comparable to the ground speed when the wind is assumed negligible. 𝐶𝐿 and 

𝐶𝐷 - are determined by the airfoil, the angle of attack α, and the Reynolds number Re, 

which is the function of airflow viscosity shown in Equation (2.3) [51]. 

                                        𝑅𝑒 =  
𝜌𝜐𝑐

𝜇
 =  𝜈𝑐

𝜐
                                                          (2.3) 

Where 𝜇 is the dynamic viscosity, 𝜐 is the kinematic viscosity, and c is the 

chord. 

Figure 2.16 depicts the phenomena as the angle of attack is increased, 𝐶𝐿 

increases, at point 1, a steady flow at the leading edge and the laminar flow at the 

trailing edge occurred. At point 2, the stall, the 𝐶𝐿 is maximum at the leading edge and 

also 𝐶𝐷 increases, and experienced separation point at the trailing edge. 𝐶𝐷 increases 

progressively after the stall and 𝐶𝐿 decreases sharply at point 3, separated flow at the 

leading edge, and turbulent flow at the trailing edge would be experienced [50]. 

PTTA
PERPUS

TAKAAN
 TUNKU

 TUN A
MINAH



24 
 

 

 

 

Figure 2.16: Lift and drag Coefficients on the angle of attack [50] 

The above scenario is for an infinite wing situation. But in reality, vortices are 

produced in the wingtips, which attracts additional drag called the induced drag. The 

induced drag has to be considered mostly for small aspect ratios aircraft. And also, 

parasitic drag is experienced from non-lifting parts, like the tail and fuselage. The final 

drag is the sum of all the drags, i.e 𝐶𝐷 as presented in Equation 2.5 [51]. 

                                   𝐶𝐷 𝑖𝑛𝑑 =  
𝐶𝐿

2

𝑒𝜋𝐴𝑅
                                                                     (2.4) 

𝑒 is the Oswald efficiency factor, a variable with a number between 0 to 1. In reality, 

the values range from 0.75 to 0.85 and in an ideal situation is 1, as when the load 

distribution is elliptical. 

𝐴𝑅 is the aspect ratio, a relationship between the wingspan and the chord length i.e. 

AR = b/c = b2/(bc) = b2/S 

                                      𝐶𝐷 = 𝐶𝐷 𝑎𝑓𝑙 + 𝐶𝐷 𝑖𝑛𝑑 + 𝐶𝐷 𝑝𝑎𝑟                                      (2.5) 

 where 𝐶𝐷 𝑎𝑓𝑙  is airfoil drag, 𝐶𝐷 𝑖𝑛𝑑 is induced and 𝐶𝐷 𝑝𝑎𝑟 -  parasitic drag. 

2.4.1 Aerodynamic estimation method and Analysis Airfoils and Wings 

XFLR5 is software used for aerodynamic analysis of airfoils, wings, and planes with 

low Reynolds numbers. The software is also used to design wings, elevators, fin, and 
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