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ABSTRACT 
 

 

 

Systematic research regarding SSC-SDC carbonate (SSC-SDCC) as composite 

cathode is limited despite great chemical compatibility and cell performance achieved 

with other low temperature solid oxide fuel cell (LTSOFC) components. LTSOFC 

based on SDCC electrolyte display lower of area specific resistance (ASR) with high 

value of stability and porosity. This study focuses to investigate the correlation of 

powder composition and calcination temperature on the chemical compatibility, 

microstructures, physical, mechanical, thermal and electrochemical performance of 

SSC-SDCC composite cathode. SSC-SDCC composite powders with the weight ratios 

of SSC toward SDCC of 50:50 (SSCB55), 60:40 (SSCB64), and 70:30 (SSCB73) were 

achieved using high energy ball milling (HEBM). All powders were calcined at 

600,650, 700 and 750 °C, pelletized and sintered at 600 °C. Characterization include 

the chemical and structural, thermogravimetric, thermal expansion coefficient (TEC), 

morphologies and porosity were carried out. Electrochemical impedance spectroscopy 

(EIS) was conducted in air. The chemical compatibility and morphologies of powder 

and pellet, thermal expansion and porosity were mostly affected by the calcination 

temperature as compared to powder composition. SSCB55 was selected for EIS 

evaluation due for the optimum chemical compatibility with lesser appearance of 

secondary phase. From EIS results, the area specific resistance (ASR) value at 

operating temperatures 600 ℃ were ten times smaller than the ASR value offered at 

operating temperatures 450 ℃. The smallest ASR value was 5.06 Ωcm2 with the 

activation energy (Ea) of 3.99 eV from composite cathode calcined at temperatures 

750 ℃. In conclusion, this study significantly contributes to the investigation of SSC-

SDCC composite as potential cathode material for economical, high stability and 

promising energy converter devices in low temperature solid oxide fuel cell 

(LTSOFC). 
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ABSTRAK 
 

 

 

Penyelidikan yang sistematik berkenaan dengan SSC-SDC karbonat (SSC-SDCC) 

komposit katod masih terbatas walaupun keserasian kimia dan prestasi sel yang unggul 

telah dicapai dengan komponen sel fuel oksida pepejal bersuhu rendah (LTSOFC) 

yang lain. LTSOFC berdasarkan SDCC elektrolit mempamerkan rintangan luas 

spesifik (ASR) terendah dengan nilai tinggi kestabilan dan keliangan. Kajian ini 

tertumpu kepada penyiasatan terhadap hubungan di antara komposisi serbuk dan suhu 

kalsin dengan mengkaji keserasian kimia, morfologi, fizikal, mekanikal, terma dan 

prestasi elektrokimia bagi SSC-SDCC komposit katod. Serbuk SSS-SDCC komposit 

katod pada nisbah peratus berat SSC terhadap SDCC, 50:50 (SSCB55), 60:40 

(SSCB64), dan 70:30 (SSCB73) telah diperoleh dengan mengunakan teknik 

pengisaran bebola bertenaga tinggi (HEBM). Kesemua serbuk telah dikalsin pada suhu 

600, 650, 700 dan 750 °C, dipelet dan disinter pada suhu 600 °C. Pencirian melibatkan 

struktur kimia, termogravimetri, fizikal pekali pengembangan terma (TEC), morfologi 

dan keliangan telah dilakukan. Spektroskopi impedans elektrokimia (EIS) telah 

dijalankan dalam udara terbuka. Faktor kalsin lebih banyak menpengaruhi struktur 

kimia dan morfologi serbuk dan pelet, sifat pengembangan terma dan keliangan 

berbanding komposisi serbuk. SSCB55 dipilih untuk kajian penilaian prestasi 

spektroskopi impedans elektrokimia berikutan memiliki tahap optimum keserasian 

kimia dengan kehadiran jumlah fasa sekunder yang paling sedikit. Dari keputusan 

spektroskopi impedans elektrokimia, rintangan luas spesifik (ASR) pada suhu operasi 

600 ℃ adalah sepuluh kali ganda lebih kecil berbanding pada suhu operasi 450 ℃. 

Nilai rintangan luas spesifik yang paling rendah iaitu 5.06 Ωcm2 dengan tenaga 

pengaktifan (Ea) 3.99 Ev telah berjaya dicapai bagi sampel yang dikalsin pada suhu 

750 ℃. Kesimpulannya, kajian ini memberikan sumbangan yang penting dalam 

perkembangan SSC-SDCC sebagai komposit katod yang berpotensi untuk ekonomi, 

berkestabilan tinggi, serta menjanjikan fungsi sebagai alat tukaran tenaga dalam sel 

fuel oksida bersuhu rendah (LTSOFC). 
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CHAPTER 1 

 

 

 

INTRODUCTION 

 

 

 

1.1 Background of research 

 

The world average temperature is rising due to the greenhouse effect triggering global 

warming and affecting climate change in many countries as in Asia, Africa and 

Europe. Levels of greenhouse gases rise promptly, especially undesirable carbon 

dioxide formed from combustion process of fossil fuels. Production and distribution 

of energy disrupt all sectors of the global world economy. The growing 

industrialization of the world currently demands on sustainable and highly efficient 

energy productivity. Without foremost technological developments, energy demand is 

not satisfied (Abdalla et al., 2018). Fuel cells have been identified as a promising 

energy conversion processes, alternatively to conventional fossil fuel power 

generation. Fuel cells have the distinct interest over these traditional generative 

techniques in that they can directly convert fuel into electricity without the requirement 

for combustion (Sartori et al., 2017). They are environmentally friendly and clean yet 

they can greatly diminish the generation of nasty carbon dioxide. 

 The utilization of nanoscience in energy sector, specifically in various kinds of 

fuel cells which can be used ultimately and potentially application at different scales, 

solid oxide fuel cells (SOFCs) have arose as energy conversion devices in succeeding 

high efficiency of over 70% with regeneration. SOFC is constructed from a dense of 

electrolyte layer that is sandwiched between two porous an electrodes which are 

cathode and anode (Singh et al., 2017). Huge of valuable electricity yields from SOFC 

by the reaction occurred between a fuel and an oxidant reactant through an ion 
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conducting in solid electrolyte layer, with an additional amount of respected heat 

energy. (Kan et al., 2016). Scientifically, the electrons generated through the oxidation 

of fuel at anode had been used for oxygen reduction at the cathode, made the 

circulation external circuit complete. Hence, the electricity energy is gained by the 

stream of electrons in the external circuit. There are numerous researches in cultivating 

the components toward SOFC such as cathode, electrolyte, anode and the 

manufacturing technology. However, for versatile materials to be apply in SOFC 

devices, each component in the cell need more progresses and investigations with 

superior enhanced properties (Rahman et al., 2012; Agun et al., 2014; Afzal et al., 

2015; Gao et al., 2017; Ng, Rahman, & Somalu, 2018).   

 Recently, cobaltite perovskite oxide with A1-xBxCoO3-δ structure, has been 

used as intermediate temperature SOFC cathode material as it required on high 

conductivity and promising catalytic activity. These factors have made several 

cobaltite perovskite oxide such as samarium strontium cobalt oxide, Sm0.5Sr0.5CoO3−δ 

(SSC), lanthanum strontium cobalt oxide, La0.5Sr0.5CoO3-δ (LSC), lanthanum 

strontium cobalt ferrite oxide La0.5Sr0.5Co0.2Fe0.8O3−δ (LSCF), and barium strontium 

cobalt ferrite oxide, Ba0.5Sr0.5Co0.8Fe0.2O3−δ (BSCF) (Lee et al., 2011; Li et al., 2014; 

Ritzmann, 2016) are good candidates to be used as cathode material. For better cathode 

material, it must achieve several requirements such as high electronic and ionic 

conductivity, a matched thermal expansion coefficient (TEC), chemical compatibility 

with the electrolyte and interconnect materials, moderate porosity and stability under 

an oxidizing atmosphere.  (Mahato et al., 2015). Today, the convention is to use an 

electronically conductive perovskite material mixed with the electrolyte of choice, thus 

extending the triple phase boundary (TPB)  area where the electrocatalytic activity 

occurs throughout the electrode and drastically improving the performance of SOFC 

(Duong & Mumm, 2013).  

 Among these, samarium and strontium cobalt oxide, Sm0.5Sr0.5CoO3-δ (SSC) is 

regarded as one of the most promising cathode materials (Lv et al., 2007; Gao et al., 

2009; Bansal & Wise, 2012; Lee et al., 2015; Deng et al., 2017). It is because it shows 

a higher ionic conductivity than that of lanthanum strontium manganate, 

La0.8Sr0.2MnO3-δ (LSM), exhibits extraordinary electronic conductivity than pure 

barium strontium cobalt ferrite Ba0.5Sr0.5Co0.8Fe0.2O3−δ (BSCF) , higher of surface 

oxygen exchange rate compared to lanthanum strontium cobalt ferrite, 

La0.5Sr0.5Co0.2Fe0.8O3−δ  (LSCF) and reveals a good catalysis for oxygen reduction and 
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is particularly compatible with the ceria based electrolytes (Chang et al., 2011;  Chen 

et al.,  2011; Dong et al., 2012; Gao et al., 2017). However, SSC itself is having a 

large thermal expansion coefficient (TEC) which can be improved by incorporation 

SSC with samarium doped cerium carbonate (SDCC) electrolyte (Wang, Chen, & 

Shao, 2012; Ahmadrezaei et al., 2014). Up to now, seldom research has been carried 

out on the study of SSC-SDCC composite cathode as a new cathode material for 

LTSOFC (K. Gao, Liu, Wang, Liang, & Xiong, 2016; Deng et al., 2017; S. Lee et al., 

2018). The use of SDCC may also help in the performances of this SSC-SDCC 

composite cathode LTSOFC since carbonate universally exhibits good compatibility 

with many cathodes composite powders (Muhammed et al., 2013; Mohammad et al., 

2017). 

 Nonetheless, a coupled of scientists Baur and Preis has been successfully 

developed the first model of SOFC in 1937, which can be operated at 1000 °C. Ever 

since most commonly used SOFC models operating with high  temperatures between 

800 oC and 1000 oC or known as HTSOFC. This fact leads to material degradation 

issues at great speed and incurs high maintenance costs, thus hindering their economic 

feasibility (Sartori et al., 2017). Research interests have been directed also to develop 

SOFC operating from the intermediate temperatures (ITSOFC) between 600 oC and 

800 oC and low temperatures (LTSOFC) from 400 to 600 oC (Jing et al., 2013; Chen 

Xia et al., 2016). By lowering the temperature of operation, a wider range of materials 

can be used, offers more rapid start-up and shut-down and reduced corrosion rate of 

metallic components in SOFC, as well as the advantage of greatly simplified system 

operating requirements.  

 This research is conducted for the purpose of improving the cathode which can 

be operate at low temperature SOFC (LTSOFC). LTSOFC significantly designed to 

enhance the compatibility, manufacturing cost and stability with many materials 

(Baharuddin et al., 2017). However, electrochemical performance of SOFC system 

substantially decreased with a reduced operating temperature, due to the increased on 

polarization resistance. The polarization resistance are closely related with the 

interfacial resistance namely cathode-electrolyte or anode-electrolyte (Ali et al., 

2018). The cathode has been the centre of the focus in the electrode development 

largely because oxygen reduction is more difficult to activate in SOFCs operating at 

commercially relevant temperatures (Mahato et al., 2015). It is critically important to 

investigate new potential cathode materials or novel cathode microstructures with low 
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polarization loss to maintain sufficient high electrochemical activity to enable SOFC 

operating at lower temperatures (Ding et al., 2014).  

 

1.2 Problem statement  

 

 Lowering the operation temperature has caused a substantial performance 

decline resulting from cathode polarization resistance. To minimalize the issues, the 

study on composite cathodes incorporate with perovskite material systems, which 

optimizable operated at a lower temperature should be done. These systems also 

display lower of polarization resistances, lower activation energies, increase the triple 

phase boundary (TPB) area, hence improves the performance of cell  (Newby et al., 

2015; Afzal et al., 2015). Undeniably, processing method of starting composite 

cathode powder also provides a significant impact on the cell performance. It includes 

the parameters of milling method, calcinations and sintering. Microstructures 

properties of SSC-SDCC starting composite cathode powders prepared by HEBM 

method need to be clarify since the limitation information up to this date. HEBM is 

still rare and it is a feasible  method to acquire a fine, homogeneous and well distributed 

powder which is indispensable for the better triple phase boundary (TPB) (Torknik et 

al., 2014).  

 Samarium strontium cobalt oxide (SSC) is regarded as one of the utmost 

auspicious perovskite composite cathode materials. It is because SSC exhibits 

astonishing electronic conductivity, a higher ionic conductivity and is predominantly 

compatible with the ceria based electrolytes (Chang et al., 2011; Chang et al., 2015). 

Unfortunately, SSC is having a large thermal expansion coefficient (TEC) which 

approximately 20.0 x 10-6K-1 which leads to the rapid degradation and high reactivity 

with some electrolytes, during the performance operating at high temperature (Lv et 

al., 2007; Dong et al., 2012; Ni et al., 2017). Previous authors had proven those 

drawbacks can be minimized by adding SSC with a small amount of samarium doped 

ceria (SDC) electrolyte and leads to increase composite cathode performance by 

improving the TPB value (Chang et al., 2011; Lee et al., 2015). No previous study has 

given sufficient information regarding incorporation of SSC with samarium doped 

cerium carbonate (SDCC) composite electrolyte. 

 Understanding the nature of SSC itself, particularly the influence of secondary 

phase on the stability issues during milling processes and how it is can be affected by 
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the atmosphere during calcination, sintering and performance is inquisitive. Besides 

that,  previous work revealed the presence of impurities or secondary phases from SSC 

based composite cathode has to be clearly investigated (Bansal & Wise, 2012; Li et 

al., 2014), because one of the crucial requirements of the composite cathode is the 

chemical compatibility needs to be maintained up to cell operation. Researcher 

believes that SDCC may ascend the performances of SSC-SDCC composite cathode, 

since accomplished authors of Huang et al., (2010) & Wu et al., (2016), reported the 

carbonate element universally reveals  good compatibility with numerous cathodes 

composite powders. Reported from other authors that SOFC based on SDCC 

composite electrolyte display better of ionic conductivity value (10-2 to 1.0 Scm-1), 

high value on stability and porosity, lower of area specific resistance (ASR) and 

adequate power densities (117.9 to 120.4 mWcm-2), at the intermediate temperature of 

SOFC (Rahman et al., 2012; Rahman et al., 2014; Ali et al., 2015; Hoa, 2017) . 

Likewise, the influences of composition and microstructures properties itself moreover 

crucial.  Microstructural composite powder includes of particle size and porosity 

portrays vital impact toward TPB. Comprehension of TPB might be attained from the 

smaller (nanosized) of particle of the composite powder (Shimada et al., 2016).  

 Finally, the researchers have been widely and continuously developed SOFCs 

for more than 40 years. Evolution of SOFCs has brought great success on reducing the 

operating temperature to enlarge the choice of cathode material such as SSC perovskite 

composite cathode. This material has shown high performance and potential as the 

cathode material for SOFCs especially between the intermediate and low temperature 

(Chang et al., 2015; Gao et al., 2017). SSC has been revealed as a potential cathode 

material and is particularly compatible with the ceria carbonate based electrolytes, 

SDCC (Deng et al., 2017). This research is conducted for the purpose of improving 

the SSC based composite cathode which can be operate at low temperature solid oxide 

fuel cell (450 – 600 ℃) by optimization the pristine properties with incorporation with 

the SDCC composite electrolyte. In conclusion, the properties of new cathode 

materials SSC-SDCC will be discussed in this present work. The structure stability, 

TPB aspect, thermal expansion coefficient, cathode conductivity and cathodic 

polarization resistance will be studied from the perspective of potential composite 

cathodes for LTSOFC applications. 
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1.3 Objective 

 

This research work is focused in developing new potential composite cathode material 

showing stable and good performance in LTSOFCs. Correspondingly, the objectives 

to be achieved by this research are specified as follows: 

 

1. To investigate SSC-SDCC composite cathode from different composite 

compositions and calcination temperatures, via high energy ball milling 

(HEBM) method. 

 

2. To examine the influence of secondary phase of SSC on the SSC-SDCC 

powder by the clarification from the phase formation identification (XRD) of 

the milled and calcined powders. 

 

3. To elucidate the correlation between carbonate, composite cathode 

compositions and calcination temperatures on the chemical, microstructural, 

physical, mechanical and thermal properties on the SSC-SDCC composite 

cathode powders and pellets. 

 

4. To evaluate the EIS performance on the symmetrical cell of SSC-

SDCC/SDCC/SSC-SDCC composite cathode in low temperature solid oxide 

fuel cell (400 -600 ℃). 
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1.4 Scope of Study 

 

With the perspective of objectives as mention earlier, this dissertation scope study has 

been divided into five major parts. Starting from an early preparation of composite 

powder until the performance of composite cathode powder at low temperature of solid 

oxide fuel cell. Details are clarified in the next section below. 

 

1. SSC (cathode), SDC (electrolyte), lithium carbonate (Li2CO3), sodium 

carbonate (Na2CO3) has been used to produce all the composite cathodes. The 

binary ratio of (Li/Na) carbonate (67 mol.% Li2CO3 and 33 mol.% Na2CO3) 

and SDC powder has been mixed thoroughly by low energy (wet) ball milling 

for 24 hours, to produce SDCC composite electrolyte. 

2. Three groups of SSC-SDCC composite cathode powder with different 

composition of SDCC composite electrolyte were produced using high energy 

ball milling (HEBM). The composite cathodes were ball milled for 2 hours and 

followed by calcination process at 600, 650, 700 and 750 °C for 1 hour. 

3. The SSC-SDCC composite cathode pellets and rods prepared by using uniaxial 

pressing at 11 MPa and both has been sintered at 600 °C for 1 hour with heating 

rate of 5°C/min 

4. Characterization of the powder and pellet/rod samples: 

a) After milling (before calcination) 

i) Particle morphology and distribution of particle by using FESEM 

and SEM/EDS 

ii) Phase analysis and crystallite size by using XRD  

iii) Presence of amorphous carbonate phase by using FTIR 

iv) Thermal analysis (weight loss) by using TGA/DTA 

b) After calcinations 

i) Particle morphology and element distribution of particle by using 

FESEM and SEM/EDS 

ii) Phase analysis and crystallite size by using XRD  

iii) Presence of amorphous carbonate phase by using FTIR 

iv) Thermal analysis (weight loss) by using TGA/DTA 

c) After sintering (composite cathode pellet/rod) 

i) Particle morphology and distribution of particle by using SEM/EDS 
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ii) Density and porosity by using Archimedes principle 

iii) Hardness testing analysis by using Vickers indentation hardness 

measurements 

iv) Thermal expansion coefficient by using dilatometer 

5. SSC-SDCC/SDCC/SSC-SDCC composite cathode performance using 

electrochemical impedance (EIS) at operating temperatures from 450-600 ℃ 

for LTSOFC application. 

 

1.5 Novelty of study 

 

Regarding the information from the literature review presented in Chapter 2, SSC-

SDCC composite cathode has never been explored as a cathode component of a single 

cell for low temperature solid oxide fuel cell (LTSOFC) application. Despite decent 

power of SSC based composite cell performance achieved at high to intermediate 

temperature of SOFC, detailed and systematically phase stability, microstructural, 

physical, mechanical, thermal and electrochemical performance at low temperature 

SOFC are rarely reported. This study is discussing a novel finding and explains a clear 

understanding of SCC-SDCC as new composite cathode, based on the preparation and 

characterization and were intensively reported in this study.  

 Nonetheless, the influence of secondary phases from SSC which is strontium 

carbonate (strontionite) toward the phase stability and electrochemical performance at 

low temperature SOFC need to be clearly investigated. A comprehensive investigation 

regarding the influence of the secondary phase of SSC towards the phase formation 

analysis how it can be affect the electrochemical impedance analysis (EIS) results. As 

mentioned earlier, diversification on the properties of SDC composite electrolyte can 

be comprehended by adding with binary carbonate. The use of SDC with carbonate 

evidently assist in the performances of SSC-SDCC composite cathode when the 

operating temperatures of SOFC achieved the range between 500 to 600 ℃. This new 

finding was deliberated transparently in this research study, beside carbonate 

universally exhibits a good compatibility with many composite cathodes  
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1.6 Summary 

 

This chapter in brief deliberates the background of the research, problem statements, 

objectives and scope of study. Scope of study has been divided into four scopes 

includes the preparation and characterization of the sample studied. End of this chapter 

discussed on the significant and limitations of research work. 
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CHAPTER 2 

 

 

 

LITERATURE REVIEW 

 

 

 

2.1 Introduction 

 

This chapter reviews the works reported from relevant and significant scientific 

journals that are correlated to the present research. General criteria, properties and 

behaviour of solid oxide fuel cell (SOFC) are delineated. Reviews on SSC as the 

composite cathode material in this present work, and SDCC as the composite 

electrolyte are presented concisely in this chapter. 

 

2.2 Fuel cell 

 

In the prior time of 1960, the International Fuel Cells (IFC) in Windsor, Connecticut, 

has successfully developed a fuel cell power plant for the Apollo spacecraft in the 

United States of America (USA). Historically, fuel cells have been discovered since 

scientists began searching for an alternative energy resources of fossil fuels and the 

first fuel cell in the world was made by Sir William Robert Grove in the early 1839 

(Abdalla et al., 2018). He named it ‘‘wet cell battery’’ or ‘‘Grove cell’’, which operates 

by reversing the electrolysis phenomenon of water as shown in Figure 2.1 (Cassir et 

al., 2013). “Grove cell” is defined as an electrochemical device that converts the 

chemical energy of fuels directly into electricity and heat by electrochemically 

combining the H2, CO/H2 or reformed hydrocarbons in fuel and an oxidant gas 

transported via ion conducting electrolyte. This revolutionary energy holds an 

enormous potential to provide a means of scalable, efficient, and environmentally 
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friendly power generation. An efficiency of 60% is ordinary and fuel cell is expected 

to be an essential and promising energy resources until the next of 21st century 

(Chandran & Arjunan, 2015; Jiang, 2019). 

 

 
Figure 2.1: The first illustration of fuel cell developed by Sir William Robert Grove 

in the early 1839 (Cassir et al.,2013) 

 

 Fuel cell is defined as an electrochemical device that can convert chemical 

energy of a fuel and an oxidant into heat and electric power. Fundamentally, it is 

composed of cathode, where the reduction of the oxidant occurs, anode that 

experiences the oxidation of fuel and electrolyte, which carries ion species between 

the electrodes (Kilius, 2009; Ritzmann, 2016). As compared to batteries that have to 

be occasionally recharged, fuel and oxidants can be consistently supplied to a fuel cell. 

This reaction is needed in order to generate power continuously. In the middle of the 

22nd century, its development and evaluation accelerated. Several types of fuel cells 

are developed in the global race for conquering space and successfully approaching 

the consumer market in the world. However, the primary challenges to be concerned 

are cost and durability which can be solved by materials selection and design 

engineering technology (Mahato et al., 2015).  

 In practice, fuel cells can operate in a wide range of temperatures between 50 

and 1000 °C depending on the nature of the electrolyte, and are usually distinguished 

based on the component and construction criteria. There are many kind of fuel cells, 

all named after their electrolyte materials. They are categorized depending on the 
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nature of electrolyte. Different types of fuel cells require specific materials and fuels 

for different applications. Fuel cell types include; Proton Exchange Membrane Fuel 

Cells (PEMFCs), Direct Methanol Fuel Cells (DMFCs), Phosphoric Acid Fuel Cells 

(PAFCs), Alkaline Fuel Cells (AFCs), Molten Carbonate Fuel Cells (MCFCs), and 

Solid Oxide Fuel Cells (SOFCs). The comparisons of these major fuel cells in terms 

of components, fuels, capacities, costs, applications, advantages, and drawbacks are 

listed in Table 2.1 (Fachbereich & Geowissenschaften, 2012; Abdalla et al., 2018). All 

kinds of fuel cells mentioned share the potential of high electrical efficiency, and 

reduce emissions, having unique characteristics linked to their different constituting 

materials and operating temperatures.  

 Among them, SOFCs have attracted in this research work subsequently 

worldwide interest due to their high energy conversion efficiency, structural integrity, 

easy operation, low environmental impact and high tolerance to fuels. Generally, 

SOFCs are cells that convert the chemical energy of hydrogen or other fuels directly 

into electrical energy through an electrochemical reaction with oxygen (Li, 2016). 

Fundamentally, this type of fuel cell is called an SOFC because of the solid electrolyte 

used, which is usually made of ceramics (Baharuddin et al., 2013). The cleanliness 

and compact size of SOFCs make them especially attractive for urban settings. 

Compared with the other types of fuel cells, as described in Table 2.1, SOFCs present 

the unique characteristics of having all solid-state cell components along with 

reasonable operating temperature (600–1000 °C). Implementation of solid electrolyte 

in the SOFC has overcomes several limitations which associated with liquid 

electrolytes fuel cells. Such as, corrosion, electrolyte distribution, and the maintenance 

of stable triple phase boundary (TPB) within the electrode-electrolyte regions (Shin et 

al., 2020). Nonetheless, because of their mainly ceramic structures, SOFCs can be 

configured into lightweight and compact structures unachievable with fuel cell using 

a liquid electrolyte (Mahato et al., 2015). SOFCs can also be manufactured in 

relatively small, modular units. The heat released from the cell can be efficiently 

transferred and utilized for coal gasification or hydrocarbon reforming and also 

provide promising quality waste heat suitable for use in cogeneration.  
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Table 2.1: List of fuel cells (Morandi, 2013 &  Abdalla et al., 2018) 

 

 

Type PEMFC AFC PAFC MCFC SOFC DMFC 
Electrolytes Solid 

polymer 
membrane  

Potassium 
hydroxide 

Phosphoru
s 

Alkaline 
carbonate 

Ceramic 
Oxide 

Solid 
polymer 

membrane 
Anode Hydrogen Hydrogen Hydrogen Hydrogen/

methane 
Hydrogen/
methane 

Methanol 

Cathode Pure or 
atm 

oxygen 

Pure 
oxygen 

Atm 
oxygen 

Atm 
oxygen 

Atm 
oxygen 

Atm oxygen 

Operating 
temperature 

(°C) 

50-100 50-200 ~200 600-700 600-1000 50-110 

Charge 
carrier 

H+ OH- H+ CO3
2- O2- H+ 

Fuel Pure H2 Pure H2 Pure H2 H2,CO, 
hydro-
carbon 

H2,CO, 
hydro-
carbon 

MeOH,CO2 

Efficiency 
(%) 

35-60 ~50 40 45-50 >50 35-40 

Power 
Density 
(W/cm2) 

1.1 1.0 1.1 0.7-1.0 0.8-1.0  

Typical 
system size 

(kW) 

<50 10-100 10000 100000 Up 100000 100-1000 

Applications Portable 
power,tras-
portation 

distributed 
generation 

Military, 
space, 

portable 
power 

Transporta
tion, 

commercia
l 

cogenerati
on, 

portable 
power 

Transporta
tion, utility 

power 
plants, 

distributed 
generation 

Residential
, utility 
power 
plants, 

portable 
power 

Transportati
on, military, 

energy 
storage 
system 

Advantages High 
power 

density, 
quick start-

up, solid 
non-

corrosive 
electrolyte 

High 
power 

density, 
quick start-

up, low-
cost 

component 

Heat 
waste, 
stable 

electrolyte 

High 
efficiency, 

fuel and 
catalyst 

flexibility, 
heat waste 

Solid 
electrolyte, 

high 
efficiency, 

fuel and 
catalyst 

flexibility, 
generate 

high grade 
waste heat 

Low 
temperatures
, suitable for 

portable 
devices 

Drawbacks Expensive 
platinum 
catalyst, 

sensitive to 
fuel 

impurities 

Expensive 
platinum 
catalyst, 

sensitive to 
CO2 in fuel 

and air, 
electrolyte 
manage-

ment 

Expensive 
platinum 
catalyst, 

Corrosive 
liquid 

electrolyte, 
sensitive to 

fuel 
impurities, 
long start-

up time 

High cost, 
Corrosive 

liquid 
electrolyte, 

high 
temperatu-

re 
corrosion, 
slow start-

up, 
intolerance 
to sulphur 

High cost, 
high 

temperatu-
re 

corrosion, 
slow start-

up, 
intolerance 
to Sulphur 

Fuel 
crossing 

from anode 
to cathode 

without 
producing 
electricity 
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2.2.1 Introduction to solid oxide fuel cell  

 

Solid oxide fuel cells, SOFCs, can be considered as the “most efficient” devices 

invented for conversion of chemical fuels directly into electrical power. SOFCs have 

emerged as energy conversion devices in achieving high efficiency of over 70 % with 

regeneration. They are promising alternative energy conversion devices that have the 

potential for implementing hydrocarbon fuels that are compatible with the current 

infrastructure, thereby allowing small steps to be taken towards a completely “green” 

fuel. The former SOFC was developed in 1937 by Baur and Preis (Buergler, 2006). 

Since then a lot of progress has been made in terms of materials and processing of 

SOFCs. The advantages of SOFC are well descripted in Table 2.2.  

 

Table 2.2: Advantages of SOFC (Sunarso et al., 2017; Abdalla et al., 2018; Raza et 

al., 2020) 

 
Advantage Description 

Higher electricity density and modularity Delivers an electrical efficiency between the range 
up to 50 – 60 % 

Virtuous fuel flexibility Attributed with clear path to renewable and CO2- 
neutral energy systems 

Low emissions  Low rate of noise sign  due to no combustion 
process and moving parts 

Higher efficiencies  Theoretical efficiency of an SOFCs device can 
exceed 60 % 

Economical maintenance  Operating periods between overhauls are markedly 
longer than conventional technologies 

Promising power generation  Produce power with minimal pollution 
 

2.2.2 Fundamental principle operation of solid oxide fuel cell  

 

As a whole, solid oxide fuel cell (SOFC) is characterized by the use of solid oxide 

material as an electrolyte, which acts as a conductor of oxygen ions. There are three 

basic components of SOFC, a porous anode, an electrolyte, and a porous cathode. The 

anode and cathode are located in compartments that are physically separated. The 

electrolyte usually conducts O2- ions. The schematic cross section of the operation of 

the solid oxide fuel cell is shown in Figure 2.2 (Mahato et al., 2015; Yu et al., 2016). 

Typically, oxygen atoms are reduced on the porous cathode surface by electrons. The 

oxygen ions diffuse through the electrolyte to the fuel rich and porous anode, where 

they react with the fuel (hydrogen), and give off electrons to an external circuit. Thus, 
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the final products of SOFC are electricity, heat and water (Fan et al., 2018). The 

electrolyte is also an electron insulator, forcing the electrons to be generated at the 

anode to flow through an external circuit, which can be used to satisfy a load. 

Basically, all three layers in SOFC contain ceramic materials, except for the anode, 

which is a composite material consisting of ceramic and metal (cermet) (Fachbereich 

& Geowissenschaften, 2012). Nevertheless, the oxidation reaction also known as fuel 

electrode, occurs at the anode as in Equation 2.1. Meanwhile, the reduction reaction 

occurs at the cathode as mentioned in Equation 2.2, also known as air electrode. The 

overall reaction of reduction and oxidation is presented in Equation 2.3 (Mahato et al., 

2015). 

 

Anode: H2 + O2‐ → H2O + 2e‐                                                                                 (2.1) 

Cathode: 1/2 O2 + 2e‐ → O2‐                                                                                   (2.2) 

Overall: H2 + 1/2 O2 → H2O                                                                                   (2.3) 

 

 

 

 

 

 

 

 

 

 

Figure 2.2: Schematic cross section diagram of the operation in SOFC using oxide-

ion conducting electrolyte (Yu et al., 2016)  
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2.2.3 Solid oxide fuel cell (SOFC) geometrical classification  

 

Due to the solid type of electrolyte in solid oxide fuel cell (SOFC), various shapes are 

available and thus many designs have been devised since the 1960s. According to 

Morandi, (2013) clarified SOFC can be classified according to the cell designed 

geometry. The two most common cell designs developed for SOFCs correspond to 

planar and tubular cell geometries. Both designs with their advantages and 

disadvantages have been widely explored. A planar SOFC enables simple series of 

electrical connections of cell components configured as flat plates as shown in Figure 

2.3. The planar reveals numerous advantages as the total of power density higher 

compared to the tubular. The cells are stacked between bipolar plates, diminish ohmic 

losses, and elevate the power densities of the cells. Also, configuration of planar cell 

allows the use of cost-effective, easiest fabrication, and favors the processing of the 

thinnest electrolyte layers (Timurkutluk et al., 2016). As the huge advantages from the 

planar cell SOFC and promising power density, this configuration has chosen to be 

use in this research work. 

 

 
 Figure 2.3: Geometrical design of planar SOFC (Timurkutluk et al., 2016) 

 

 Another cell geometry regarded as a tubular is depicted in Figure 2.4. This 

tubular design is the acquainted type of SOFC, and it is challenging and very difficult 

to yield (Almar et al., 2017). It has some drawbacks as presented with a low output 

power density in comparison with the previous uneconomical design. However, there 

are some compensations of tubular cells displayed with higher mechanical, good 
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thermal stability and it is easy to accomplish both gas seal and interconnection 

applications of single cells during stack manufacturing process (Egger, 2013). 

 

 
Figure 2.4: Geometrical design of tubular SOFC (Egger, 2013) 

 

2.2.4 Low temperature solid oxide fuel cell  

 

Initial design researches are frequently engrossed on high temperature of solid oxide 

fuel cell (SOFC) that operates between 800 oC and 1000 oC. However, dependability 

issues with typically high temperature SOFC (HTSOFC) have initiated a transferal in 

research pattern to emphasise on lowering the operational temperature, from 400 oC to 

600 oC (Khan et al, 2018). Low temperature solid oxide fuel cell (LTSOFC) operation 

reflects a huge range of resources particularly regarding the chosen electrolyte material 

that can be used while maintaining economical cost of manufacturing (Fan et al., 

2018).  

 However, there is a several unfavourable drawbacks formed from LTSOFC 

operation. By gradually reducing temperatures until 400 °C, the ionic conductivity of 

the electrolyte drops exponentially nearly three orders of magnitude, and the ohmic 

loss of electrolyte becomes substantial (Anwar et al., 2016). Decline in temperature 

will also be accompanied by an increase in the losses of reaction and transport kinetics 

in all layers of the cell. This phenomenon also leads to an increase of in the total 

polarization resistance of the SOFC cathode  (Ali et al., 2017). There is thus a need to 

investigate new classes for both electrolyte and cathode materials that can maintain 
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high rates of oxygen transport even at reduced temperatures, and it is also significant 

to design a cathode with lower polarization resistance at low operating temperature of 

SOFC.  

 In order to be pragmatic in SOFC, the vital idea of LTSOFC research is to 

develop suitable electrolyte materials with such as based on gadolinium and ceria 

electrolyte which having a minimum requirement of ionic conductivity of 10-2 S/cm  

(Wang, 2012). Consequently, lower temperature operation offers much desirable 

advantages compares with HTSOFCs including rapid start-up and shut-down, reduces 

the enormous differences among the thermal expansion coefficients (TECs) of cell 

components, and reduction in thermal stresses in active ceramic structure cells which 

leads to a longer expected life time of the SOFCs system (Shimada et al., 2016). 

Overall, LTSOFC offers a superior overall system efficiency with effective 

maintenance and economical cost (Sartori et al., 2017). According to Shin et al., 

(2020) revealed the potential used of 3D architectures LTOSFC with large area and 

powerful tools operates at low temperatures subsequently opens up opportunities to 

yield practical LTSOFC systems satisfying both power and durability (Shin et al., 

2020). 

 

2.3 Solid oxide fuel cell systems 

 

A solid oxide fuel cell (SOFC) cell consists of a three or multilayer ceramic composite 

structure as displayed in Figure 2.5 (Xia et al., 2016). The gas tight solid electrolyte 

separates the two porous electrodes and conducts only oxygen ions from cathode to 

anode. At the cathode side oxygen ions are created after oxygen molecules receive 

electrons and migrate through the electrolyte. At the anode side, oxygen ions give off 

the electrons and react with fuel, which is extremely demanding (Ng et al., 2018). The 

materials should fulfil various properties, such as electric and electro-catalytic 

properties, as well as chemical and thermomechanical properties. 
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Figure 2.5: Solid oxide fuel cell schematic diagram with three layers of anode, 

electrolyte, and cathode ( Xia et al., 2016) 

 

2.3.1 Cathode 

 

Materials for solid oxide fuel cell (SOFC) cathodes have been well established over 

the past 50 years (Xia, 2018) with extensive work done to optimize conductivity, 

thermal stability, and to facilitate the oxygen reduction reaction. In an SOFC, the 

cathode functions as the site for electrochemical reduction of oxygen to occur. For this 

effect, the cathode must fulfil the following requirements (Mahato et al., 2015): 

 

• High electronic conductivity (~1000 S/cm) 

• Adequate ionic conductivity (~0.1 S/cm) 

• A matched thermal expansion coefficient (TEC) comparable to other SOFC-

components (< 20 x 10-6 K-1) 

•  Chemical compatibility with the electrolyte and interconnected materials 

• Adequate porosity to allow gaseous oxygen to readily diffuse through the 

cathode to the cathode/electrolyte interface (20 – 40 %) 

• Stability under an oxidizing atmosphere 

• High thermal stability 

• High catalytic activity for oxygen reduction reaction 
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As mentioned above, the mixture of ionic and electronic conductivity is required to 

improve the size of triple phase boundary (TPB), which is the reactive site at the 

cathode, where oxygen is reduced and transferred to the electrolyte (Penwell, 2014 ; 

Ahn, Cho, & Lee, 2019). 

 

2.3.2 Selection of cathode materials 

 

The main function of the cathode is to provide a reaction site for the electrochemical 

reduction of the oxidant. Thus, the cathode material must be stable in oxidizing 

environments, and have sufficient electronic conductivity (around 100 Scm-1) and 

catalytic activity for the oxidant gas reaction at operating conditions (Chandran & 

Arjunan, 2015). The choice of cathode material depends on the target application, the 

specific ceramic electrolyte material, the desired operating temperature, and the 

electrochemical cell design and fabrication methods used. Furthermore, cathodes are 

manufactured as a porous structure to allow rapid mass transport of reactant and 

product gases (Xu et al., 2014). SOFC cathodes should also have sufficient porosity to 

facilitate transportation of molecular oxygen from the gas phase to the air 

electrode/electrolyte interface. Cathode materials should possess high electrical 

conductivity and high electrocatalytic activity for oxygen reduction reaction (Chang 

et al., 2015). Furthermore, compatibility with adjacent cell components and the 

chemical and dimensional stability during cell operation are very important factors. 

The cathode material should also be sufficiently porous to facilitate transport of 

oxidant to the cathode/electrolyte interface. The crucial feature for a cathode material 

is a high catalytic activity with respect to the dissociation of oxygen molecules that 

leads to low electrochemical polarization resistance. In summary, a cathode material 

in an SOFC has to exhibit several general properties (Yu  et al., 2016): 

 

• High electronic conductivity (>100 Scm-1)  

• Non-negligible anionic (oxygen) conductivity (~10–1 S/cm)  

•  Match thermal expansion coefficient (TEC)  

•  Suitable porosity 

•  Extended triple phase boundary (TPB) 
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 In order potential cathode materials to be used in SOFC application, the 

incorporation of perovskite based oxides is particularly prominent. Perovskite is the 

originalname given to calcium titanium oxide (CaTiO3) mineral discovered in the early 

1900s by the Russian scientist Gustav Rose, in honour of mineralogist Lev Perovski. 

It has since become a general name to describe the family of materials comprising of 

this structure (Abdalla et al., 2018) . In 1966, lanthanum strontium cobalt oxide (LSC) 

was the first perovskite material reported by Button and Archer to be used as cathode 

for SOFC. This was followed by synthesis of several perovskite materials which were 

subsequently tested for their usability exclusively for cathode application, and it 

remains the most investigated cathode material for SOFC (Yeh et al., 2013; Singh et 

al., 2017; Amar & Ahwidi, 2018). Perovskites are oxides with general formula ABO3 

in which A and B cations together possess similar net charge as depicted in Figure 2.6. 

The A sites are occupied with lower valence cations, mainly of rare and alkaline earth 

metals such as La, Sr, Ca, and Ba. Meanwhile, the B - sites are occupied with higher 

valence reducible transition metal cations such as Ti, Cr, Ni, Co, and Fe (Mahato et 

al., 2015). Perovskite-type materials have been widely used as cathode materials in 

SOFC.  

 

 
Figure 2.6: Perovskite illustration with general formula ABO3 

(Mahato et al., 2015) 

 

 One of the important characteristics of the perovskite structure is its ability to 

conduct both electrons and ionic species, thus leading to them being labeled as Mixed 
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Electronic and Ionic Conductors (MIECs) (Richter et al., 2009). MIEC materials have 

recently been investigated due to their unique ability to improve SOFC performance 

(Koep, 2006). Since the performance of the SOFC ultimately depends on the oxygen 

incorporation reaction, the reaction can proceed only where ionic and electronic 

species are present. MIEC materials allow simultaneous transport of both electronic 

and ionic species, thereby increasing the size of possible reaction sites. According to 

Yeh et al., (2013), the entire interface from MIEC electrode (cathode) with the 

electrolyte demonstrates transferal of ionic oxygen species from the MIEC to the 

electrolyte while surface of cathode facing the air side is involved in the oxygen uptake 

as shown in Figure 2.7 (a-b). The uniqueness of mixed conductivity displayed from 

the perovskites materials permits for their use in diverse applications from catalysis to 

fuel cells to gas sensors (Kan et al., 2016; Natile et al., 2016). Therefore the 

understanding and optimization of perovskite conductivity as a cathode material is 

currently an area of high interest. MIEC perovskite represents various kind of 

structure, depending on the relative sizes of both A and B site cations. The distinctions 

of perovskite structural forms include cubic, orthorhombic, rhombohedral, and 

hexagonal (Sunarso et al., 2008). Consequently, MIEC such as lanthanum strontium 

cobalt oxide, La0.5Sr0.5CoO3-δ (LSC), lanthanum strontium cobalt ferrite oxide 

La0.5Sr0.5Co0.2Fe0.8O3−δ (LSCF), and barium strontium cobalt ferrite oxide, 

Ba0.5Sr0.5Co0.8Fe0.2O3−δ (BSCF) which are exhibited as a cathode material, typically 

displays lower polarization and has improved performance compared to other classes 

of cathodes, which have already been explored (Ritzmann, 2016).  

 

 
Figure 2.7: Schematic diagram transferal of ionic oxygen species to the electrolyte 

which from the (a) cathode material and (b) MIEC material  
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2.3.3 Selection of electrolytes materials  

 

The electrolyte of solid oxide fuel cell (SOFC) is a dense layer of ceramic that should 

possess high ionic conductivity, that determines the power output of SOFC. As 

mentioned earlier, SOFC is based on the concept of oxygen ion-conducting electrolyte 

through which the oxide ions (O2-) migrate from the cathode side to anode side where 

they react with the fuel to generate an electrical voltage. Enabling fast oxide ion 

transport in electrolyte materials is essential to facilitate the intermediate to low 

temperature operation of SOFCs to enhance stability and economical applications. The 

internal ohmic resistance (ohmic loss) of a SOFC mainly attributed by the electrolyte. 

These are some characteristics that the electrolyte should possess (Chroneos, et al., 

2011; Li, 2016). 

 

 • High ionic conductivity (> than 0.1 S/cm) 

 • Chemically inert and structurally stable with contacting electrode, and 

sealing materials under ambient temperature and also under operation 

in highly oxidizing and reducing environment 

 • Negligible electronic conductivity (approximately zero) 

 • Must be dense with no existence of open porosity for better mechanical 

properties and stability 

 • Suitable mechanical properties  

 • Thermal expansion coefficient (TEC) compatible with adjacent 

electrode components (cathode and anode) 

 • Efficient cost of starting material and fabrication 

  

 It has been noted for optimal performance of SOFC that the electrolyte should 

be uniformly thin to minimize loss produced from ohmic (electrolyte), and it should 

have high oxygen ionic conductivity. Current noteworthy electrolytes for SOFCs 

include fluorite structured rare earth (RE) doped ceria and RE doped zirconia with high 

oxygen ionic conductivities which have been frequently reported (Zuo et al., 2011; 

Park et al., 2017; Khan et al., 2018) , making them subjects of interest to researchers 

as most commonly used electrolytes in SOFCs. Yttria stabilized zirconia, YSZ has 

been most successfully employed as the electrolyte material for SOFCs operating at 

high temperatures (around 1000 ºC) with ionic conductivity of 0.13 Scm-1 at 1000 ℃ 
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(Xia, 2018). Up to now, there has been no reliable usage of YSZ as an electrolyte on 

SSC based composite cathode. However, several authors have presented studies of 

MIEC cathode by employing YSZ electrolyte, such as LSCN with YSZ (Xu et al., 

2014) and LSM-YSZ (Li, 2014). To obtain low temperature SOFC, it is found that 

YSZ electrolyte cannot fit this request. As the operating temperature decreases, the 

ionic conductivity of YSZ will decrease exponentially near three orders of magnitude. 

In order to be applied in SOFCs, the minimum requirement of ionic conductivity is 10-

2 S/cm and this material has been specifically appropriate for a solid electrolyte for 

oxygen sensors and other types of fuel cells applications. 

 Numerous researchers have extensively deliberated that, utmost optimal 

performance of SSC based composite cathode is required through combination of SSC 

with rare earth doped ceria based electrolytes (Guo et al., 2011; Wang, 2012; Deng et 

al., 2017). The use of an SOFC offers the choice of innumerable ceria based electrolyte 

from intermediate to lower temperature operations and illustrious among two types of 

well-known ceria based materials, which are gadolinium, Gd doped ceria (GDC) with 

samarium doped ceria (SDC). Xia et al., (2002) investigated the properties of SSC-

SDC composite cathode material and established the cathode in a composition of 70 

wt.% SSC / 30 wt.% SDC30, which exhibited the highest catalytic activity. The 

microstructurally optimized SSC/GDC cathode composites found by Kim et al., 

(2014) have attributed the least electrode polarization resistance in a composition of 

86 wt% SSC / 14% GDC, compared to the pure conducting SSC cathode materials. 

  A research from Georgia Institute of Technology (Harris, 2013) reported that  

composite cathode of 70 wt% SSC / 30 wt% SDC equipped from chemical vapour 

deposition was produced with lower value of polarization resistance. Sintered cell of 

NiO-SDC/SDC/SSC-SDC has attributed 0.18 Ωcm-2 of interfacial resistance, 

measured between the cathode and electrolyte at 600 °C of operating temperature. 

Introduction of SDC materials into SSC has lower value of resistance contributed from 

SSC pure. Thus, ceria based electrolytes are regarded as a conceivable electrolyte 

applicant for the operating temperature of SOFC at 400 - 600 ºC. 
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