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ABSTRACT 

 

Accurate and simple prediction system has become an urgent need in most 

disciplines. Having the accurate prediction system for gas turbine components will 

allow the user to produce reliable creep life prediction. Focusing on the turbine 

blades and its life, the current method to calculate its creep life is complex and 

consumes a lot of time. For this reason, the aim of this research is to use an 

alternative performance–based creep life estimation that is able to provide a quick 

solution and obtain accurate creep life prediction. By the use of an artificial neural 

network to predict creep life, a neural network architecture called Sensor Life Based 

(SLB) architecture that produces a direct mapping from gas path sensor to predict the 

blade creep life was created by using the gas turbine simulation performance 

software. The performance of gas turbine and the effects of multiple operations on 

the blade are studied. The result of the study is used to establish the input and output 

to train the Sensor Life Based network. The result shows that the Sensor Life-Based 

architecture is able to produce accurate creep life predictions yet performing rapid 

calculations. The result also shows that the accuracy of prediction depends on the 

way, how the gas path sensor is grouped together. 
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  Chapter 1 

  

 

 

Introduction 

 

 

 

1.1 Introduction to Gas Turbines 

 

In the history of energy conversion, however, the gas turbine is relatively new. The 

first practical gas turbine used to generate electricity ran at Neuchatel, Switzerland in 

1939, and was developed by the Brown Boveri Company. The first gas turbine 

powered airplane flight also took place in 1939 in Germany, using the gas turbine 

developed by Hans P. von Ohain. In England, the 1930s‟ invention and development 

of the aircraft gas turbine by Frank Whittle resulted in a similar British flight in 

1941[1]. 

 

The name "gas turbine" is somewhat misleading, because to many it implies a 

turbine engine that uses gas as its fuel. Actually a gas turbine (as shown 

schematically in Figure1.1) has a compressor to draw in and compress gas (most 

usually air); a combustor (or burner) to add fuel to heat the compressed air; and a 

turbine to extract power from the hot air flow. The gas turbine is an internal 

combustion (IC) engine employing a continuous combustion process. This differs 

from the intermittent combustion occurring in Diesel and automotive IC engines. 
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Figure 1.1: Schematic for a) an Aircraft Jet Engine; and b) a Land-Based Gas 

Turbine.[1] 

 

 

Because the 1939 origin of the gas turbine lies simultaneously in the electric 

power field and in aviation, there have been a profusion of "other names" for the gas 

turbine. For electrical power generation and marine applications it is generally called 

a gas turbine, also a combustion turbine (CT), a turbo shaft engine, and sometimes a 

gas turbine engine. For aviation applications it is usually called a jet engine, and 

various other names depending on the particular engine configuration or application, 

such as: jet turbine engine; turbojet; turbofan; fanjet; and turboprop or prop jet (if it 

is used to drive a propeller). The compressor combustor- turbine part of the gas 

turbine is commonly termed the gas generator [1]. 

 

The advance of gas turbine engines and the increase in fuel efficiency over 

the past 50 years relies on the development of high temperature materials with the 

performance for the intended services. The cutaway view of an aero engine is shown 

in Figure1.2. During the service of an aero engine, a multitude of material damage 

such as foreign object damage, erosion, high cycle fatigue, low cycle fatigue, 
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fretting, hot corrosion/oxidation, creep, and thermo mechanical fatigue will be 

induced to the components ranging from fan/compressor sections up front to high 

pressure (HP) and low pressure (LP) turbine sections at the rear. 

 

 

 

 

Figure1.2:  Cutaway view of the Rolls-Royce Trent 900 Turbofan Engine. [2] 

 

 

 The endurance of the gas turbine engine to high temperature is particularly 

marked by the creep resistance of HP turbine blade alloy. Figure 3 shows the trend of 

firing temperature and turbine blade alloy capability[2]. Since 1950, turbine bucket 

material temperature capability has advanced approximately 850°F/472°C, 

approximately 20°F/10°C per year. The importance of this increase can be 

appreciated by noting that an increase of 100°F/56°C in turbine firing temperature 

can provide a corresponding increase of 8% to 13% in output and 2% to 4% 

improvement in simple-cycle efficiency. Advances in alloys and processing, while 

expensive and time-consuming, provide significant incentives through increased 

power density and improved efficiency.  
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The increases in bucket alloy temperature capability accounted for the 

majority of the firing temperature increase until the 1970s, when air cooling was 

introduced, which decoupled firing temperature from bucket metal temperature. 

Also, as the metal temperatures approached the 1600°F/870°C range, hot corrosion 

of buckets became more life-limiting than strength until the introduction of 

protective coatings. During the 1980s, emphasis turned toward two major areas: 

improved processing to achieve greater bucket alloy capability without sacrificing 

alloy corrosion resistance; and advanced highly sophisticated air-cooling technology 

to achieve the firing temperature capability required for the new F generation of gas 

turbine. The use of steam cooling to further increase combined-cycle efficiencies will 

be realized in the 1990s [3]. 

 

The state-of-the-art turbine blade alloys are single crystal Ni-base super 

alloys, which are composed of intermetallic γ‟ (Ni3Al) precipitates in a solution-

strengthened γ matrix, solidified in the [100] crystallographic direction. Turbine disc 

alloys are also mostly polycrystalline Ni-base super alloys, produced by wrought or 

powder metallurgy processes. Compressor materials can range from steels to 

titanium alloys, depending on the cost or weight-saving concerns in land and aero 

applications. Coatings are often applied to offer additional protection from thermal, 

erosive and corrosive attacks. In general, the advances in gas turbine materials are 

often made through thermo mechanical treatments and/or compositional changes to 

suppress the failure modes found in previous services, since these materials 

inevitably incur service-induced degradation, given the hostile (hot and corrosive) 

operating environment. 
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Figure1.3: Increase of Firing Temperature with Respect to Turbine Blade Alloys  

Development. [3] 

 

 

  Therefore, the potential failure mechanisms and lifetimes of gas turbine 

materials are of great concern to the designers, and the hot-section components are 

mostly considered to be critical components from either safety or maintenance points 

of view. Because of its importance, the methodology of life prediction has been 

under development for many decades. [3]   

 

As the firing temperatures are increased and the operating cycles become 

more complicated, the traditional approaches are too costly and time-consuming to 

keep up with the fast pace of product turn-around for commercial competition. The 

challenges in life prediction for gas turbine components indeed arise due to their 

severe operating conditions: 

 High mechanical loads and temperatures in a high-speed corrosive 

 Erosive gaseous environment.  

 The combination of thermo mechanical loads and a hostile environment may 

induce a multitude of material damages including low-cycle fatigue, creep, 

fretting and oxidation.  
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 Gas turbine designers need analytical methods to extrapolate the limited 

material.[2]. 

 

The attempt to signified the traditional  process have been done by Abdul 

Ghafir[4] via soft computing technique to develop an alternative performance-based 

creep life estimation method that is able to provide a quick solution to creep life 

prediction while at the same time maintaining the achieved accuracy and reliability 

as that of the model-based method. Using an artificial neural network, the existing 

creep life prediction sub processes and secondary inputs are „absorbed‟ into simple 

parallel computing units that are able to create direct mapping between various gas 

turbine operating and health conditions or gas path sensors and creep life. As his 

work has shown promising outcomes, it is the intention of this project to complete 

his work and look for any opportunity to improvement.  

 

 

 

1.2 Problem Statement 

 

In depth blade life estimation takes place in the design stage, current model-based 

creep life estimation methods have become more and more complicated and 

therefore demand huge amounts of work and significant amount of computational 

time [10, 11, 12,13]. For this reason, there are used to find an alternative solution that 

can reduce complexity of the estimation creep life, to be able to perform rapid 

computation and more accurate, also reduce the cost of design. 

 

 

  

1.3 Project Objectives 

 

 Its measurable objectives are as follows: 

a) To study the effects of different operating conditions on component creep life 

consumption for a selected turbine engine. 
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b) To construct an alternative neural-based creep life estimation model that 

enables a direct link between the gas turbine operating conditions and the 

components‟ corresponding life. 

 

 

 

1.4 Project Scope 

 

This project is primarily concerned with the creep life estimation, the scopes of this 

project are: 

a) Creep deformation is only considered in the research component of the life 

assessment. 

b) The component that‟s they studied is high pressure turbine blade. 

c) ANN is used to construct the alternative creep life estimation model where 

the reduction of the complexity will be done at a macro level. 

d)   A turbo shaft engine performance model is used to show the application of 

the alternative creep life estimation method. 
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Chapter 2 

 

 

 

 

LITERATURE REVIEW 

 

 

 

2.1 Common Failure in the Gas Turbine Hot Section 

 

The failure of metal parts is a complex phenomenon that depends on material, 

temperature, deformation, and the rate at which strain is applied. When a metal 

component breaks, two major questions need to be answered; what are the modes of 

the failure and what is the origin of the damage; hence examination of the „how‟ is 

essential to understand the deterioration phenomena [4]. 

 

When gas turbine hot section components are being operated at extreme 

operating conditions, several damage mechanisms such as fatigue, high temperature 

corrosion/oxidation, and creep deformation will inevitably emerge. The presence of 

such mechanisms will cause the component to lose its ability to sustain its intended 

function, increase its life consumption rate, and to some extent, will cause the 

component to fail prematurely [4]. 
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2.1.1 Fatigue 

 

Fatigue, broadly speaking, is caused by repetitive loads that produce fluctuations in 

the components‟ stress, hence if large enough, will cause the component to fail even 

though the . Is much lower than that required for failure on single load application. 

Consequently, it will lead to crack initiation and propagation which ends with a 

fracture. 

 

Fatigue, in this context, can be either mechanical or thermal-mechanical 

fatigue (TMF). Mechanical fatigue is a failure occurring under cyclic loading which 

is, for example, caused by vibration. on turbine blades during gas turbine start-stop 

cycle and power change. Mechanical fatigue can be further divided into two: high 

cycle fatigue (HCF), and low cycle fatigue (LCF). The distinction between them is 

where the repetitive application of load is taking place. HCF is categorised by high 

frequency and low amplitude elastic strain. An example of HCF will be when the 

turbine or the compressor blade is subjected to repeated bending, such as when the 

blade passes behind a stator vane, hence emerges into the gas path which will bend 

the blade due to high velocity gas pressure. This will force the blades to vibrate and 

the excitation at some point will match the blade‟s resonant frequency causing the 

amplitude of vibration to increase significantly LCF on the other hand is categorized 

by low frequency and high amplitude plastic strain. When dealing with LCF, the 

yield limit of the material is often exceeded and the material becomes plastic; 

therefore, repetitive plastic deformation is the main cause of LCF. Although there is 

no distinct border between the two types of failure, the traditional approach is to 

classify failures as HCF and those occurring below that value as LCF , TMF on the 

other hand occurs when the component is not only exposed to cyclic loads but is also 

experiencing variations in temperature gradient, resulting in significant thermal 

expansion and contraction. According to Jacobsson, turbine blade cooling which is 

used to lower the turbine blade‟s temperature will induce high temperature gradients 

between the blades high and cold regions thus generating σ, and during service, the 

effect of variation results in TMF [4]  
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2.1.2 High Temperature Corrosion/Oxidation 

 

Both turbine and compressor are exposed to aggressive corrosive and oxidizing 

conditions that may be caused by several factors [14]: 

a. Ingested air which contains sodium and chloride in the form of salt from the sea or 

from runaway de-icing treatment or marine environments. 

b. Atmospheric contaminants resulting from pollutions from industry or forest fires 

which usually contain sulphur and sodium. 

c. Volcanic activity which can generate significant levels of pollutants particularly 

sulphur.Gaseous combustion products which contain elements such as sulphur, 

vanadium or even lead and bromine from fuel at higher temperatures. 

 

Although the blades have a protective coating, corrosive and oxidation 

attacks are unavoidable, especially when the blades are exposed to sufficiently 

contaminated surroundings or too much harmful fuel element [4]. 

 

 

 

2.1.3 Creep Deformation 

 

Creep is a time dependent, thermally assisted deformation caused by prolonged high 

operating temperatures coupled with constant mechanical loading (below the yield 

stress of the material). Creep will cause the gas turbine hot section components to 

„stretch‟ or elongate. Taking turbine blades for example, in the event of severe creep 

deformation, the physical shape of the blades will change and hence can no longer 

function properly. In addition, the elongation will cause the blades to be in contact 

with the casing, causing the blades to fracture and finally lead to engine failure. 

Figure 2.1 depicts several deformed turbine blades under creep attack. Note that the 

blades have already lost their original features at the tip, indicating a severe creep 

attack. 
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Figure 2.1: Deformed Turbine Blades Under Creep Attack. [4] 

 

 

Although different materials have different strengths to resist creep 

deformation, it can generally be said that creep becomes significant when the 

homologous temperature (ratio between the material temperature and its melting 

temperature) is more than 0.5 but it can be in the range of 0.4 to 0.6. 

 

 

 

2.2 CREEP LIFE ESTIMATION APPROACHES 

 

When a hot section component is put into service and operates at a creep regime, its 

life will be consumed progressively as shown in Figure 2.2. This is due to the fact 

that both the deformation and fracture are becoming time-dependent. The rate of 

useful life consumption will depend on the ability of the material to resist creep 

deformation and also the gas turbine operating condition. The more volatile the 

operating condition, the faster the material will be degraded thus the quicker the 

useful life will be consumed. 
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As the material degrades progressively, micro-cracks will start to initiate on 

the surface and will propagate. According to Betten et al., the influence of micro-

cracks on creep behavior begins even at the primary stage and the cracks become 

visible at the tertiary creep stage when the linkage of blunted micro-cracks into 

macro-crack occurs. The macro-cracks will propagate before the final creep fracture 

takes place [4]. 

 

 

 

Figure 2.2: Life span of hot section component due to creep deformation. [4] 

 

 

There are several methods for estimating creep life. In general, these methods 

can be classified into four broad approaches [4]: 

a. Model-Based approach 

b. Service-Based approach, 

c. Statistical/Probabilistic-Based approach. 

d. Soft Computing approach 

It is important to note that in later sections of this thesis, some of the works related to 

the life estimation of turbine blades will be given for each approach. Nevertheless 

some works relating to the life estimation of other components are given as well. 
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