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ABSTRAK 

 

 

 

Kajian terdahulu memberi penekanan terhadap pencarian bahan alternatif dalam 

sistem bangunan komposit untuk menghasilkan bangunana yang mesra alam, 

mengunakan kos bahan yang rendah dan kuat untuk diaplikasikan dalam industri 

pembinaan. Dalam kajian ini, batu baur kitar semula,(RA) telah digunakan untuk 

menggantikan batu baur semula jadi. Kajian ini membentangkan daya ketahanan RA 

dengan nisbah yang berbeza daripada 25, 50, 75 dan 100 peratus Panel Struktur Apit 

dari konkrit kitar semula, (RACSP). Kelakuan panel RACSP itu diuji kaji dan 

dianalisis dalam konteks kapasiti beban melintang, profil beban-pesongan, 

pengedaran penegangan, corak keretakan dan bentuk kegagalan. LVDT digunakan 

untuk mengukur pesongan ditengah panel dan slip antara kedua-dua konkrit 

apit(wythes) daripada RACSP. Tolok tekanan digunakan untuk mengukur tekanan 

pada permukaan apit konkrit. Didapati bahawa kekuatan panel RA menurun secara 

tidak bekadar terus dengan peningkatan peratusan RA dalam konkrit. Panel kawalan 

dengan NA menunjukkan nilai beban maksimum deperolehi lebih tinggi berbanding 

panel dengan konkrit kitar semula. Peratusan pengurangan beban maksimum panel 

dengan RA adalah dalam 15 peratus bagi peningkatan peratusan RA manakala 

pengurangan 31 peratus berbanding dengan panel kawalan. Didapati bahawa semua 

panel akhirnya gagal disebabkan oleh ketegangan keluli. Ia menunjukkan bahawa 

retak pertama berlaku pada kira-kira 48-67 peratus daripada kegagalan beban. 

Pengaruh RA dan kesan beban melintang pada kekuatan maksimum RACSP telah 

dibincangkan. Keretakan pada permukaan konkrit diperhatikan pada kedua-dua apit 

konkrit. 
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ABSTRACT 

 

 

 

Previous studies have been focusing on finding alternative materials  in a composite 

building system in order to provide a strong, environmental friendly, low cost 

material to be used in the construction industry. In this research, recycle aggregate, 

RA, has been used instead of natural aggregate. This study presents the viability of 

RA with different ratios of 25, 50, 75 and 100% in Recycled Aggregate Concrete 

Sandwich Panel, RACSP. The structural behavior of the RACSP was investigated 

experimentally and analysed in the context of transverse load capacity, load-

deflection profile, load strain curves, cracking patterns and mode of failure.  LVDT 

was used to measure the mid-span deflection and the slip between both wythes of 

RACSP. Strain gauges were used to measure the strain on the surface of concrete 

wythes. It was found that the strength of the panels with RA decreased nonlinearly 

with the increase of percentage replacement of RA in concrete. Control Panel with 

NA showed the highest value of ultimate load in comparison with others. The 

percentage of reduction in the ultimate load of panels with RA was about 15% for an 

increase the replacement percentage of RA whereas the maximization in the ultimate 

load was about 31% in comparison with Control Panel. It was observed that all the 

slab ultimately failed by tension steel failure. It was noticed that the first crack 

occurred at about 48-67% of the failure load. Influence of the RA and the impact of 

transverse load on the ultimate strength of RACSP specimens have been discussed. 

Cracks were observed in both wythes. 
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CHAPTER 1 

 

 

 

INTRODUCTION 

 

 

 

1.1 Background 

 

Precast concrete components are widely used throughout the world, primarily in the 

building sector. The rapid growth of the building industry in the last several years 

and the increasing demand for high quality structures necessitates a building industry 

that can continuously seek improvement, leading to a more sophisticated 

industrialization. The advent of new industrial methods has shown that mass 

production of precast concrete components has increased the quality as well as 

reduced the cost of production.  

Cost is reduced due to lesser construction time and amount of needed labor. 

Precast concrete is defined as concrete which is cast in some location other than its 

position in the finished structure. One of the building elements in a precast building 

system is precast concrete sandwich wall panel (PCSP). The difference between 

precast concrete wall panels and precast concrete sandwich wall panels is the 

presence of an intervening layer of insulation. 

 

1.2 Precast Concrete Sandwich Panel 

 

Interest in precast concrete sandwich panel has grown in the past few years because 

manufacturers are looking for new and more efficient products. Architects and 

engineers are pleased with the energy performance and general aesthetics of the 

PTTA
PERPUS

TAKAAN
 TUNKU

 TUN A
MINAH



2 
 

panels and contractors have found that the use of sandwich panels allow their project 

sites to be cleaner and easier to manage (J. M. Davies, 1997). 

PCSP’s consist of a single layer of insulation sandwiched between two 

precast concrete layers. The two layers of precast concrete are interconnected by a 

series of shear connectors, concrete webs or a combination of the two. The thickness 

of each layer depends on the function of the panel. Based on the application of the 

panels, they can be categorized as non-composite, partial composite or full 

composite. The non-composite panel refers to the panels with two concrete layers 

acting independently when load is applied. The connectors have no capacity for 

longitudinal shear transfer. Normally, the two concrete layers have different 

thicknesses. The thicker layer resists the applied load and acts as the structural layer. 

In the PCI Committee Report, it was mentioned that experience showed that 

early bond between certain insulation types and the concrete layers provide shear 

transfer for composite action during handling, but the bond is considered unreliable 

for the long term. The shear connectors can transfer between 0 to 100 percent of the 

longitudinal shear required for a composite panel (PCI Committee, 1997). The 

composite or fully composited panels refer to panels with two concrete layers acting 

as one unit when load is applied. This is accomplished by providing full shear 

transfer between the two layers. This type of panel may be used as load bearing 

structural panels. 

 

1.3 Recycled Aggregate Concrete 

 

Demolition of old and deteriorated buildings and traffic infrastructure, and their 

substitution with new ones, is a frequent phenomenon today in a large part of the 

developing world. The primary reasons for this situation are: a change of purpose for 

buildings, structural deterioration, rearrangement of a city, expansion of traffic 

directions and increasing traffic load, and natural disasters (earthquake, fire and 

flood), . For example, about 850 million tons of construction and demolition waste 

are generated in the European Union per year, which represent 31% of the total waste 

generation (Fisher & Werge, 2009). In the USA, the construction waste produced 

from building demolition alone is estimated to be 123 million tons per year (Federal 

Highway Administration, 2004). The most common method of managing this material 

has been through its disposal in landfills. In this way, huge deposits of construction 
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waste are created, consequently becoming a special problem of human environment 

pollution. For this reason, in developed countries, laws have been established to 

restrict this waste in the form of prohibitions or special taxes for creating waste areas. 

As production and utilization of concrete rapidly increases, there is a 

concurrent increased consumption of natural aggregate as the largest concrete 

component. For example, two billion tons of aggregate are produced each year in the 

United States. Production is expected to increase to more than 2.5 billion tons per 

year by the year 2020. This situation leads to a question about the preservation of 

natural aggregates sources; many European countries have placed taxes on the use of 

virgin aggregates. A possible solution to these problems is to recycle demolished 

concrete to produce alternative aggregates for new structural concrete. Recycled 

concrete aggregate (RAC) is generally produced by a two-stage crushing of 

demolished concrete, and screening and removal of contaminants such as 

reinforcement, paper, wood, plastics and gypsum. Concrete made with such recycled 

concrete aggregate is called recycled aggregate concrete (Transportation 

Applications of Recycled Concrete Aggregate, 2004). 

 

1.4 Problem Statement 

 

The pace of development in Malaysia has spurred the demand for fast, cost-effective 

and comfort residential building, the current construction method is to use 

conventional concrete. 

 However, the use of conventional concrete has several disadvantages in terms 

of its large self weight, usage of natural resource aggregate and a higher cost of steel 

reinforcement. Therefore, an alternative composite method is urgently needed to 

provide a strong, environmental friendly, low cost material to be used in the 

construction industry.    

 

1.5 Objective of Study 

 

This research focuses on the behaviour of the precast recycled aggregate concrete 

sandwich slab panel (RACSP). 

 The objective keys are: 
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i. To propose a suitable design for sandwich panels by using recycled aggregate 

concrete (RAC). 

ii. To determine the load bearing capacity of the RACSP under flexural. 

iii. To determine the load deflection profile and strain distribution of the RACSP 

under flexural. 

iv. To compare the load bearing capacity of precast concrete sandwich panels 

using natural concrete NC with RACSP using recycled aggregate. 

 

1.6 Scope of Study 

 

This study is focused on an experiment in the lab. RACSP consist of two outer layers 

made of concrete with added recycled material as its aggregate. These two outer 

layers enclose an inner layer made of polystyrene. The panels are strengthened using 

BRC steel embedded in the outer layers and steel shear connectors tied to the 

reinforcement and embedded through the polystyrene layer. 

During the experimental program, five sandwich panels have been prepared 

and designated by a name, i.e. PA-l to PA-5. The size of all the panels is kept 

constant at a height of 2000 mm, the thickness of outer layers at 40 mm, and a 

thickness of the polystyrene inner layer at 20 mm by a width of 750 mm. 

Specimen PA-1 has been cast using natural concrete NC as the outer layers 

and it is used as the control panel. Specimens PA-2, PA-3, PA-4 and PA-5 were cast 

using RAC with a replacement percentage of RA (25%, 50%, 75% and 100%), 

respectively. The concrete wythe for all specimens used steel reinforcement with 6 

mm BRC with 200 mm x 200 mm openings which were tied to 6 mm diameter mild 

steel trusses as single shear connectors. All panels were tested under flexural till 

failure. 
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CHAPTER 2 

 

 

 

LITERATURE REVIEW 

 

 

 

2.1 Introduction 

 

Precast concrete sandwich panels have been in use for more than 40 years in North 

America. Prior to 1960, sandwich technology had been confined almost entirely in 

aerospace applications. The World War II Mosquito aircraft is often quoted as being 

the first major application of sandwich panels but there were numerous earlier, 

though less spectacular, uses of the sandwich principle. By 1960 increasing numbers 

of alternative uses were discovered: in building, refrigerated storage, automobile and 

shipbuilding industries. This period was also the beginning of a worldwide boom in 

prefabricated building elements for diverse applications (J. M. Davies, 1997). 

It is generally believed that aggregate RA was first used in 1945 to rebuild 

concrete structures damaged in WWII.  The high demand for concrete required new 

applications to meet that demand (Kheder & Al-Windawi, 2005). Factors like the 

depletion of natural aggregates, tightened environmental laws and waste disposal 

influenced the application of RAC. 

 

2.2 Properties of Material 

 

Precast concrete sandwich panels are made from numerous materials and many 

experiments have been carried out using different materials to identify precast 

concrete sandwich panels and their structural behaviour. These include: foam 

concrete, steel, timber, insulation materials, and others. 
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2.2.1 Mixture Concrete with RAC 

 

Recycled aggregate can be generated from demolished construction structures which 

are comprised of broken members or components such as the slab, beam or brick 

wall. One method of recycling is to crush these components using a steel hammer. It 

is then put into a jaw crusher where the construction debris is further broken down 

into required sizes. In order to provide crushed aggregate with acceptable quality, the 

demolished construction concrete can be crushed using primary and secondary 

crushers (Ismail A R., 2009). 

The characteristics of recycled aggregates are suitable in the production of the 

structural concrete. Particularly worthy of mention is their lower density and higher 

water absorption level in comparison with natural aggregate because it contains the 

attached cement paste. The density of these recycled materials is about 3-10% lower 

and water absorption is about 3-5 times higher than the corresponding natural 

aggregates. The compressive strength of recycled concrete can be increased by the 

addition of silica fume. The elasticity of the concrete with recycled aggregate is low 

when compared to the concrete with natural aggregate (Belén & Fernando., 2001). 

Recycled aggregate concrete can acquire sufficient quality as structural 

concrete through material design and by using material that conforms to all related 

quality expectations. Recycled aggregate concrete can also be designed by applying 

the value of a relative quality method. Therefore, it is considered applicable as 

aggregate for use in precast concrete products. Up to 30% of natural crushed coarse 

aggregate can be replaced with coarse recycled aggregate without significantly 

affecting any of the mechanical properties of the concrete. As replacement amounts 

increase, drying, shrinkage and creep will increase and tensile strength and modulus 

of elasticity will decrease. However, compressive strength is not significantly 

affected.  It is recommended that recycled aggregate concrete be batched - pre-wetted 

and close to a saturated surface dry condition, like lightweight aggregates. To 

achieve the same workability, slump, and water-cement ratio, as in conventional 

concrete, the paste content or amount of water reducer generally has to be increased. 

Concrete with RCA can be transported, placed, and compacted in the same manner 

as conventional concrete (Farmington Hills & Michigan,. 2001). 

Recycling concrete provides sustainability in several different ways. The simple act 

of recycling the concrete reduces the amount of material that must be land filled. The 
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concrete itself becomes aggregate and any embedded metals can be removed and 

recycled as well. As space for landfills becomes premium, this not only helps reduce 

the need for landfills, but also reduces the economic impact of the project. Moreover, 

using recycled concrete aggregates reduces the need for virgin aggregates. This in 

turn reduces the environmental impact of the aggregate extraction process. By 

removing both the waste disposal and new material production needs, transportation 

requirements for the project are significantly reduced.  In addition, recycled concrete 

aggregates absorb a large amount of carbon dioxide from the surrounding 

environment (Federal Highway Administration., 2004). 

 

2.2.2 Polystyrene 

 

Polystyrene foam begins with solid polystyrene crystals. The crystals, along with 

special additives and a blowing agent, are fed into an extruder. Within the extruder 

the mixture is combined and melted, under controlled conditions of high temperature 

and pressure, into a viscous plastic fluid. The hot, thick liquid is then forced in a 

continuous process through a die. As it emerges from the die it expands to foam, is 

shaped, cooled, and trimmed to dimension. Figure 2.1 shows the usage of 

polystyrene in a concrete sandwich panel (Karim S et al., 2012). 

The key advantages of extruded polystyrene insulation are: 

i. The consistent temperature on the inside will eliminate need for artificial 

cooling and heating. 

ii. Regulated temperature passively created through the superior thermal mass 

forms a more pleasant inner environment. 

iii. It saves costs on artificial temperature control devices such as air 

conditioning systems. 
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Figure 2.1: Usage polystyrene in sandwich panel 

(Karim S et al, 2012) 

 

2.2.3 Shear Connectors 

 

In a report by the PCI it clearly explained the shear connector’s properties and its 

function in precast sandwich wall panels. Shear connectors are used to transfer in-

plane shear forces between the two wythes. Sandwich panels are usually designed as 

one-way structural elements; shear forces are generated due to longitudinal bending 

in the panels. In addition, the shear connectors may be used to transfer the weight of 

a nonstructural wythe to the structural wythe. Shear connectors that are designed to 

be stiff in one direction and flexible in another are called one-way shear connectors 

(PCI Committee, 2011). 

Examples of these are longitudinal steel-wire trusses, solid ribs of concrete, 

flat sleeve anchors, fiber composite rectangles, and small-diameter bent bars as 

shown in Figure 2.2. Care must be taken in the manufacturing process to maintain 

the intended orientation of one-way connectors. Other shear connectors are stiff in at 

least two perpendicular directions and will consequently transfer both longitudinal 

and transverse horizontal shear. Examples of these are solid zones of concrete (often 

located at each end of the panel and at lifting points), connection plates, cylindrical 

sleeve anchors, and crown anchors. Connection plates and crown anchors are 

normally installed in solid zones of concrete and can therefore be considered rigid 

shear connections as shown in Figure 2.3. 
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Capacities of shear connectors may be obtained from the connector 

manufacturer or, in some cases, calculated using allowable bond stresses for plain 

smooth bars along with allowable steel stresses for bending, shear, and axial forces. 

When solid zones of concrete are utilized, a commonly used ultimate shear stress 

value is 80 psi (550 kPa) across the area of solid regions (ACI 318-05, 2005).  

In some cases, the insulation layer itself may transfer shear between the 

wythes. Rough-faced, dense insulation provides more shear transfer than slick-faced 

insulation. Shear resistance that may be available from bonded insulation is, 

however, considered to be temporary. With non-composite panels, the assumption is 

sometimes made that the insulation provides sufficient shear transfer to create 

composite action during form stripping, handling, and erection, but the shear transfer 

is not relied on to provide composite action for resisting service loads. It should be 

noted that certain tension connectors might also provide some shear resistance. Use 

of panels with these connectors may be justified by providing data to the proper 

building officials (ACI 318-05, 2005). 
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Figure 2.2: One-way shear connectors, stiff in only one direction. 

(PCI Journal Spring 2011) 
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Figure 2.3: Two-way shear connectors, stiff in at least two perpendicular directions. 

(PCI Journal Spring 2011) 

 

Non-composite connectors are generally considered capable of transferring 

only tension forces between the wythes. Shear connectors are used in non-composite 

panels to transfer normal forces between wythes and in composite panels as auxiliary 

connectors to the shear connectors when the spacing of the shear connectors is large. 

Because these connectors are unable to transfer significant shear, their contribution 

to composite action is usually neglected. Examples of tension connectors are plastic 

pins, fiber composite connectors, metal C-ties, M-ties, hairpins, and continuous 

welded ladders Figure 2.4. 
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Figure 2.4: Non-composite connectors 

(PCI Journal Spring 2011) 

 

2.3 Precast Concrete Sandwich Panel  

 

A sandwich panel is a three-layer element, comprising of two thin, flat facing plates 

of high-strength material and between which a thick lightweight core of low average 

strength is attached. Figure 2.5 presents a several types of sandwich panel elements 

(An Chen, 2004). Such sandwich structures have gained widespread acceptance 

within the aerospace, naval/marine, automotive and general transportation industries 

as an excellent way to obtain extremely lightweight components and structures with 

very high bending stiffness, high strength and high buckling resistance (Mahfuz et 

al., 2004). 

The concrete wvthes may be of a standard shape, such as a flat slab, hollow-

core section or double tee. The wythes can be connected together using shear 

connectors through the insulation layer to promote composite action so that the 

system can be used as structural element. Figure 2.6 shows a typical 3-D view of a 

sandwich panel with truss shaped shear connectors.  
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Figure 2.5: Types of sandwich elements 

(An Chen, 2004) 

 

 

  

Figure 2.6: Precast concrete sandwich panel in 3-D 

(Benayoune A et al., 2006) 

 

2.3.1 Advantages Of Sandwich Panels 

 

Sandwich construction form has distinct advantages over conventional structural 

sections because it promises high stiffness and high strength-to-weight ratio (Tat and 

Qian, 2000; Araffa and Balaguru, 2006) as compared with a solid member. Sandwich 

composite structure possesses excellent flexural and shear properties. Their inherent 
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lightweight characteristics make them ideal structural components where weight 

reduction is desirable (Serrano et al., 2007). Thus structural sandwich panels are 

becoming important elements in modern lightweight construction.  

In concrete construction, self-weight of structure represents a very large 

proportion of the total load on the structures (Mouli and Khelafi, 2006). Thus 

reduction in the self-weight of the structures by adopting an appropriate approach 

results in the reduction of element cross-section, size of foundation and supporting 

elements thereby reduced overall cost of the project. The lightweight structural 

elements can be applied for construction of the buildings on soils with lower load-

bearing capacity (Carmichael, 1986). 

Reduced self-weight of the structures using lightweight concrete reduces the 

risk of earthquake damages to the structures because the earth quake forces that will 

influence the civil engineering structures and buildings are proportional to the mass 

of the structures and building. Thus reducing the mass of the structure or building is 

of utmost importance to reduce their risk due to earthquake acceleration (Ergul et al., 

2004). Among the other advantages, its good thermal insulation due to the cellular 

thick core makes it an ideal external construction component (Bottcher and Lange, 

2006). Some recent investigations suggest their excellent energy-absorbing 

characteristics under high-velocity, impact loading conditions (Villanueva and 

Cantwell, 2004). Sandwich structures have been considered a potential candidate to 

mitigate impulsive (short duration) loads (Nemat-Nasser et al., 2007). 

 

2.3.2 Description of Sandwich Panel Types 

 

(i) Non-Composite: A non-composite sandwich panel is analyzed, designed, 

detailed, and manufactured so that the two concrete wythes act independently. 

Generally, there is a structural wythe and a nonstructural wythe, with the 

structural wythe being the thicker of the two. 

(ii)  Composite: Composite sandwich panels are analyzed, designed, detailed, and 

manufactured so that the two concrete wythes act together to resist applied loads. 

The entire panel acts as a single unit in bending. This is accomplished by 

providing full shear transfer between the wythes. 
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(iii)  Partial Composite: Partial composite sandwich panels have shear ties 

connecting the wythes, but the connectors do not provide full composite action. 

The bending stiffness and strength of these panel types fall between the stiffness 

and strength of full composite and non-composite sandwich panels. Figure 2.7.  

 

 

 

Figure 2.7: Strain distribution in sandwich panel under flexure 

(Benayoune, A et al, 2008) 

 

2.4 Previous Studies 

 

2.4.1 Sandwich Panels 

 

According to Bush & Stine (1994), six precast concrete sandwich panels with 

continuous truss connectors were tested. The primary variables of the test included 

number, orientation, and spacing of the shear connectors. The test showed that a high 

degree of composite stiffness and flexural capacity could be achieved with truss 

connectors oriented longitudinally in the panel. The test also revealed that shear was 

transferred through stripping and handling inserts as well as through the solid 

concrete ribs. It was further shown that a friction bond between insulation and 

concrete provided a contribution to the overall shear transfer. 

Einea et al. (1994) investigated experimentally and analytically with a newly 

developed PCSP system with high thermal resistance and optimum structure 

performance by provided a connector that was made of fiber reinforced plastic bent 

bar (FRPBB) and chords that were pre-stressed steel stands as shown in Figure 2.8. 
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Figure 2.8: FRPBB connector 

(Einea et al, 1994) 

 

The experiment comprised of full scale panel testing by flexural loading and 

small scale specimens by pure shear and flexural loading, Table 2.1 shows the details 

of each panel.  

 

Table 2.1: Details of panel testing by flexural load 

(Einea et al, 1994) 

 

Full scale  Parameters of panels  

Two Panels  
h(m) t (mm) w (m) EPS FRPBB connector LP1 LP2 

9.14 204 2.44 76 10 mm 3 8.9 

Where h; high, t; thickness, w; wide, EPS; expended polystyrene insulation, LP1; load of panel 1(kPa), 

LP2; load of panel 2 (kPa),  

 

The full scale test was carried out to investigate the structure behaviour of the 

new development subjected to uniformly distributed load. Three of the five strands in 

each panel were used as chords for the FRPBB connector and the panel performed as 

full composition action. The observation was that the panel behaved linearly up to 

pressure load 2.9 kPa, Figure 2.9 showed that the high initial stiffness of the panel 

corresponded to the stiffness computed assuming the diagonals were rigidly 

embedded in the concrete wythes. The decrease in stiffness that occurs at 2.9 kPa 

corresponded to the computed panel stiffness and load above 3.8 to 4.8. Cracking of 

the wythes further reducde the stiffness of the panel.  
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Figure 2.9: Applied load vs. mid-span displacement relationship 

(Einea et al, 1994) 

 

Small scale tests were conducted to assess the behaviour of the FRPBB 

connector. The study comprised of shear and flexure tests. Figure 2.10 shows the 

details of panels that were used for shear test and the test was carried out by using 

sequence of pure shear testing as shown in Figure 2.11. Table 2.2 shows the details 

of each panel.  

 

 Table 2.2: Details of panels 

(Einea et al, 1994) 

 

Small scale 

Parameters of panels 

EPS 
fc'  

(MPa) 

FRPBB 

connector 

Load 

(KN) 

Re-L 

(KN) 
EI 

Panel 1 
Faced with bond  

breaker sheets 76mm 42.7 10 mm 
24.9 28.2 594 

Panel 2 Un-faced insulation - 35.6 924 

Where L; load, Re-L; reloaded to failure, EI; elastic stiffness (KN-m
2
) 
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Figure 2.10: Details of shear specimens 

(Einea et al, 1994) 

 

 

 

Figure 2.11: Panel under shear test  

(Einea et al, 1994) 

 

The significant observations of shear testing show that the axial strength of 

the connector governs the shear strength of specimens and no failure occurs in the 
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wythes. The majority of the FRPBB connectors failed at the portions of the diagonals 

falling within the insulation layer due to flexural combined with axial compression. 

Small scale flexural tests were performed to explore the behaviour of the FRPBB 

connectors in flexure; Figure 2.12 shows the details of the panel under concentrated 

load, supported by a steel roller at each end. 

 

 

 

Figure 2.12: Flexure test setup 

(Einea et al, 1994) 

 

As shown in Figure 2.13, the observation was that most of the cracks are 

concentrated at the located of the peak moment in each wythes, For panel 1; the first 

crack was at the bottom of surface of the bottom of wythe at a load 8.9 KN while the 

cracking in the top wythe occurred at load 17.3 KN. For panel 2; cracks initiated in 
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the bottom wythe at a load of 15.6 KN and in the top wythe at a load of 23.6 KN; the 

shear strength contribution of the unfaced insulation increased the composite 

behaviour of the panel.  

 

 

 

Figure 2.13: Load-deflection curves 

(Einea et al, 1994) 

 

The observation was also included the ultimate moment at the locations of the 

concentrated loads including self weight and steel bracket, are 12.1 and 15.0 KN-m 

for panel 1, 2 respectively. From the result that found that the load deflection 

relationship in the elastic range. The panels behaved as non-composite (65 percent 

composite of panel 1 and 81 for panel 2) system at the elastic stress level although 

their ultimate strength was close to the composite ultimate strength. The behaviour 

indicated that the FRP bars slip inside the concrete at early stages of load. The force 
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increase gradually in these bars as the load increases until their strength is reached at 

the ultimate strength of the specimens. This behaviour can reduce the bowing due to 

the differential temperature conditions of sandwich panels during their service life. In 

a compression with the full scale flexural test, the full scale panels are much stiffer 

than in small scale.  

An analytical investigation using FEM linear and nonlinear material models 

of the tested small scale specimens indicates that the load displacement curve 

obtained is very similar to the experiment obtained as shown in Figure 2.14. 

 

 

 

Figure 2.14: FEM’s load deflection curve 

(Einea et al, 1994) 
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From the experimental and analytical investigations it was found that the result from 

FEM and from theory elasticity equations correlated well and showed that the 

developed panels system met the objective of the study. 

Pokharel & Mahendran (2003) carried out an experimental investigation and 

design of sandwich panels subjected to local buckling and post buckling effects. The 

sandwich panel was made of polystyrene foam core and high strength steel faces. 

The steel plates were glued to the foam core by using a suitable adhesive. A series of 

compression test were conducted on flat steel plate elements with various b/t ratios 

from 50 to 500 as shown in Figure 2.15.  

 

 

 

Figure 2.15: Critical b/t ratios of profiled sandwich panel for local buckling 

(Pokharel and Mahendran, 2003) 

 

The experiment was conducted for two grades of steel; mild steel with yield 

strength of 250 MPa and high strength steel with yield strength of 550 MPa. Results 

revealed that the sandwich panel with low b/t ratio is adequate to resist local 

buckling. It was observed that all the specimens failed in a similar manner with the 

continuous application of the compression load. 

According to Pessiki & Mlynarczyk (2003), four full scale of PCSP were 

tested. The first panel was a typical precast, prestressed concrete sandwich panel that 

had shear connector provided by regions of solid concrete in the insulation wythe, 

metal wythe connector(M-ties), and bond between the concrete wythes and the 

insulation wythe. It was found that the solid concrete region provide most of the 

strength and stiffness that contribute to composite behaviour. Steel M-ties connectors 

and bond between the insulation and concrete contribute relatively little to composite 
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behaviour. Therefore, it is recommended that solid concrete region be proportioned 

to provide all of the required composite action in precast sandwich panel wall. 

Kabir (2005) investigated the structural performance of shotcrete lightweight 

sandwich panels with compressive strength of 12 MPa and tensile strength of 1.2 

MPa under shear and bearing loads. The sandwich panels consisted of shotcrete 

wythes which enclose the polystyrene core. Three specimens are provided for 

horizontal bending tests, each sandwich panel is 300 cm long and 100 cm wide with 

the upper and lower concrete wythes at 6 and 4 cm thick respectively. It was 

reinforced by the diagonal 3.5 mm cross steel wires welded to the 2.5 mm steel fabric 

embedded in each wythe as shown in Figure 2.16. Tests for flexural and direct shear 

loading were carried out based on ASTM E-72 and ASTM 564 respectively.  

 

 

 

Figure 2.16: Shotcrete lightweight sandwich panel 

(Kabir, 2005) 

 

The loading points on the specimens are placed at L/4 and 3L/4, of the slab 

span as shown in Figure 2.17. From the experiment, it was found that the crack 

propagates to the upper layer, at 1200 kg load. The bottom mesh was yielded and the 

crushing of concrete caused the instability of the panel. The maximum load was 

recorded at 2200 kg. Table 2.3 shows the ultimate loads and their corresponding 

displacement of slabs for the horizontal flexural test. 
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Figure 2.17: Geometry and applied boundary condition assumed for panel. 

(Kabir, 2005) 

 

Table 2.3: Experimental results for bending test 

(Kabir, 2005) 

 

Specimen No 
Thickness 

(cm) 

Type of 

Shotcrete 

Cement 

Content 
   (Kg) 

Max. Deflection 

(mm) 

Slab-1 

Slab-2 

Slab-3 

16 

16 

16 

Manual 

Manual 

Manual 

300 kg/m³ 

300 kg/m³ 

300 kg/m³ 

2200 

1900 

1800 

80 

40 

80 

 

Benayoune A et al (2006) studied the behaviour of precast reinforced 

sandwich wall panels with slenderness ratio varying from 10 to 20 under the 

influence of eccentric load. Total of six panel specimens with various slenderness 

ratios, H/t, were cast and tested tinder eccentric load. The test results were analysed 

in the context of load bearing capacity, load-deformation profiles, load-strain curves, 

cracking patterns and the mode of failure. It was observed that all test panels 

ultimately failed by crushing. The first crack was noticed to occur at about 38 to 55 

percent of the failure loads. It was also found that the failure modes of the six panels 

showed separation of the two concrete wythes near the upper part of the wall. Both 

concrete wythes of sandwich panels deflected together up to the point of failure. 

Higher lateral deflections were recorded in the specimen with higher slenderness 

ratio. It was observed that the ultimate strength of the panel decrease nonlinearly 

with the increase in the slenderness ratio as shown in Figure 2.18. 
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