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ABSTRACT 

 

 

 

The quad rotor is an aerial vehicle whose motion is based on the speed of four 

motors. Due to its ease of maintenance, high maneuverability, vertical takeoff and 

landing capabilities (VTOL), etc., it is being increasingly used. The constraint with 

the quad rotor is the high degree of control required for maintaining the stability of 

the system. It is an inherently unstable system. There are six degrees of freedom – 

translational and rotational parameters. These are being controlled by 4 actuating 

signals. The x and y axis translational motion are coupled with the roll and pitch. 

Thus we need to constantly monitor the state of the system, and give appropriate 

control signals to the motors. The variation in speeds of the motors based on these 

signals will help stabilize the system. The unbalanced problem is one of the major 

problems for quad-rotor. The quad-rotor balance stability will disturb in case the 

disturbance exist such direct on it like a high wind speed or during outdoor flight. In 

this project will implement the PID controller for improving the quad-rotor self-

balancing system. The aim of this development is to give a contribution in field of 

UAV and control system. 
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CHAPTER 1 

 

 

 

INTRODUCTION 

 

 

 

1.1  Overview 

 

The quad-rotor is an aerial vehicle with four motor with lift-generating propellers 

mounted on it. The motor was generating with spinning two propellers in clockwise 

and two others in counter-clockwise with all the propellers axes of rotation are fixed 

and parallel. The configuration of opposite pair’s directions removes the need for a 

tail rotor that commonly use in standard helicopter structure. 

An effective autonomous quad-rotor would have many applications such 

locating fire and avalanche victims to surveillance and military. The advantages to 

developing an autonomous quad-rotor are various and make it a worthy research 

topic. These belong to the so-called UAVs - VTOL (Vertical Take Off and 

Landing)[6], which generally are used in different areas and social approaches .The 

big challenge with the quad rotor is the high degree of control required for 

maintaining the stability of the system. 

It is an inherently unstable system. There are six degrees of freedom – 

translational and rotational parameters[4]. These are being controlled by 4 actuating 

signals. The x and y axis translational motion are coupled with the roll and pitch. 

Thus we need to constantly monitor the state of the system, and give appropriate 

control signals to the motors. The variation in speeds of the motors based on these 

signals will help stabilize the system. 

The thrust produced by the motors should lift the quad rotor structure, the 
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 2 

motors themselves and the electronic components associated with quad rotor control. 

An optimum quad-rotor design using light and strong materials can help reduce the 

weight of the quad-rotor. This will be one of the challenges faced during the course 

of the project. The hardware assembly should also be as accurate as possible to avoid 

any vibrations which will affect the sensors. This will make the control system 

perform more effectively. The complexity in the control system of the quad-rotor is 

accounted for in the minimal mechanical complexity of the system. As 4 small rotors 

are being used instead of one big rotor, there is less kinetic energy and thus, less 

damage in case of accidents. There is also no need of rotor shaft tilting. 

 

1.2 Problem Statement 

 

The unbalanced problem is one of the major problems for quad-rotor. The quad-rotor 

balance stability will disturb in case the disturbance exist such direct on it like a high 

wind speed or during outdoor flight. To overcome that problem, in this project will 

implement the PID controller for improving the quad-rotor self-balancing system. 

The aim of this development is to give a contribution in field of UAV and control 

system. 

 

1.3 Objective 

 

 

The goal of this project is to develop simulation control system stability for the quad 

rotor using a Matlab. The control scheme must enable the quad-rotor to perform 

stability during hovering position in rough condition (outdoor and high speed wind). 

It’s can be list as: 

 

1) To implement open loop control with and PID enhancement control for 
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stability in hovering condition. 

2) To derive the mathematical model of quad-rotor. 

3) To perform basic translational motion while maintaining stability. 

4) To simulate and analyze the performance of the designed controller. 

 

1.4 Project Scope 

      

1) The control system design and simulation are implemented using Matlab 

Simulink . 

2) The controller develops for improving Quad rotor stability with PID controller  

 

1.5 Definition of Terminology 

 

 

1) UAV – Unmanned Aerial Vehicle 

2) 3 DOF – Three degree of freedom 

3) 6 DOF – Six degree of freedom 

4) PID – Proportional integral derivative 
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CHAPTER 2 

 

 

 

LITERATURE REVIEW 

 

 

2.1 Concepts of Quad Rotor 

 

The quad-rotor is very well modeled with a four rotors in a cross configuration. This 

cross structure is quite thin and light, however it shows robustness by linking 

mechanically the motors (which are heavier than the structure). Each propeller is 

connected to the motor through the reduction gears. All the propellers axes of 

rotation are fixed and parallel [11][5]. Furthermore, they have fixed-pitch blades and 

their air flow points downwards (to get an upward lift). These considerations point 

out that the structure is quite rigid and the only things that can vary are the propeller 

speeds. 

In this section, neither the motors nor the reduction gears are fundamental 

because the movements are directly related just to the propellers velocities. The 

others parts will be taken into account in the following sections. Another neglected 

component is the electronic box. As in the previous case, the electronic box is not 

essential to understand how the quad-rotor flies. It follows that the basic model to 

evaluate the quad-rotor movements it is composed just of a thin cross structure with 

four propellers on its ends. 

The front and the rear propellers rotate counter-clockwise, while the left and 

the right ones turn clockwise[11]. This configuration of opposite pair’s directions 

removes the need for a tail rotor (needed instead in the standard helicopter structure). 

Figure 2.1 shows the structure model in hovering condition, where all the propellers 

have the same speed. 
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In figure 2.1 a sketch of the quad-rotor structure is presented in black. The 

fixed-body B-frame is shown in green and in blue is represented the angular speed of 

the propellers. In addition to the name of the velocity variable, for each propeller, 

two arrows are drawn: the curved one represents the direction of rotation; the other 

one represents the velocity. 

 

 

 

Figure 2.1: Simplified quad-rotor motor in hovering 

 

This last vector always points upwards hence it doesn’t follow the right hand rule 

(for clockwise rotation) because it also models a vertical thrust and it would be 

confusing to have two speed vectors pointing upwards and the other two pointing 

downwards. 

In the model of figure 2.1 all the propellers rotate at the same (hovering)    

speeds ΩH [rad s
−1

] to counterbalance the acceleration due to gravity. Thus, the 

quad-rotor performs stationary flight and no forces or torques moves it from its 

position. Even though the quad-rotor has 6 DOF, it is equipped just with four 

propellers; hence it is not possible to reach a desired set-point for all the DOF, but at 

maximum four. However, thanks to its structure, it is quite easy to choose the four 

best controllable variables and to decouple them to make the controller easier. The 

four quad-rotor targets are thus related to the four basic movements which allow the 

helicopter to reach a certain height and attitude. It follows the description of these 

basic movements: 
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2.1.1 Throttle 

 

This command is provided by increasing (or decreasing) the entire propeller speeds 

by the same amount. It leads to a vertical force WRT body-fixed frame which raises 

or lowers the quad-rotor. If the helicopter is in horizontal position, the vertical 

direction of the inertial frame and that one of the body-fixed frame coincide. 

Otherwise the provided thrust generates both vertical and horizontal accelerations in 

the inertial frame. Figure 2.2 shows the throttle command on a quad-rotor sketch. 

 

 

Figure 2.2: Throttle motion 

 

In blue it is specified the speed of the propellers which, in this case, is equal              

to ΩH + ∆A for each one. ∆A [rad s
−1

] is a positive variable which represents an 

increment respect of the constant ΩH. ∆A can’t be too large because the model 

would eventually be influenced by strong non linearity or saturations. 

 

2.1.2 Roll 

 

This command is provided by increasing (or decreasing) the left propeller speed and 

by decreasing (or increasing) the right one. It leads to a torque with respect to the xB 

axis which makes the quad-rotor turn. The overall vertical thrust is the same as in 

hovering; hence this command leads only to roll angle acceleration (in first 
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approximation)[10]. Figure 2.3 shows the roll command on a quad-rotor sketch. 

The positive variables ∆A and ∆B [rad s
−1

] are chosen to maintain the 

vertical thrust unchanged. It can be demonstrated that for small values of ∆A, ∆B ≈ 

∆A. As in the previous case, they can’t be too large because the model would 

eventually be influenced by strong non linearities or saturations. 

 

Figure 2.3: Roll motion 

 

2.1.3 Pitch 

 

This command is very similar to the roll and is provided by increasing (or 

decreasing) the rear propeller speed and by decreasing (or increasing) the front one 

[10]. It leads to a torque with respect to the yB axis which makes the quad-rotor turn. 

The overall vertical thrust is the same as in hovering; hence this command leads only 

to pitch angle acceleration (in first approximation).  

 

 

Figure 2.4: Pitch motion 

 

PTTA
PERPUS

TAKAAN
 TUNKU

 TUN A
MINAH



 

 

8 

Figure 2.4 shows the pitch command on a quad-rotor sketch. As in the previous case, 

the positive variables ∆A and ∆B are chosen to maintain the vertical thrust 

unchanged and they can’t be too large. Furthermore, for small values of ∆A, it occurs 

∆B ≈ ∆A. 

 

2.1.4 Yaw  

This command is provided by increasing (or decreasing) the front-rear propellers’ 

speed and by decreasing (or increasing) that of the left-right couple. It leads to a 

torque with respect to the zB axis which makes the quadrotor turn. The yaw 

movement is generated thanks to the fact that the left-right propellers rotate 

clockwise while the front-rear ones rotate counterclockwise. Hence, when the overall 

torque is unbalanced, the helicopter turns on itself around zB. The total vertical thrust 

is the same as in hovering; hence this command leads only to a yaw angle 

acceleration      (in first approximation).  

 

Figure 2.5: Yaw motion 

Figure 2.5 shows the yaw command on a quad-rotor sketch. As in the 

previous two cases, the positive variables ∆A and ∆B are chosen to maintain the 

vertical thrust unchanged and they can’t be too large. Furthermore it maintains the 

equivalence     ∆B ≈ ∆A for small values of ∆A. 
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2.2 Quadcopter model 

 

 
   

Figure 2.6 : All of the States (b stands for body and e stands for earth) 

 

 

Based on figure 2.6 ,it can be modelling as where below, 

 

U1  = sum of the thrust of each motor 

Th1= thrust generated by front motor 

Th2= thrust generated by rear motor 

Th3= thrust generated by right motor 

Th4= thrust generated by left motor 

m = mass of Quadcopter 

g = the acceleration of gravity 

l = the half length of the Quadcopter  

x, y, z = three position 

θ, ɸ, ψ = three Euler angles representing pitch, roll, and yaw 

 

The mathematical design to move Quadcopter from landing position to a fixed point 

in the space is shows [1] in Equation (3.1). 

 

       
                          
                          
           

                       (2.1) 

 

Where,  
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  R = matrix transformation 

    = Sin (θ),   = Sin (ɸ),   = Sin (ψ) 

     = Cos (θ),   = Cos (ɸ),   = Cos (ψ) 

 

 

The equations of motion can be written using the force and moment balance as 

shown in Equation (3.2) to Equation (3.4).   

 

         = u1 (CosɸSinθCosψ + SinɸSin) – K1ẋ/m   (2.2) 

                 = u1 (SinɸSinθCosψ + CosɸSin) – K2ẏ/m       (2.3) 

                          = u1 (CosɸCosψ) -g – K3  /m                           (2.4) 

Where, 

Ki = drag coefficient (Assume zero since drag is negligible at low speed) 

 

From the Equation (2.2) to Equation (2.4), Pythagoras theorem can compute as 

Figure 2.6.  

 

 

Figure 2.7: Angle movement of Quadcopter 
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From the Figure 2.7, the Phi (ɸd) and Psi (ψd) can be extracted in the following 

expressions 

 ɸd =       
    

    
      (2.5) 

ψd  =       
    

                
               (2.6) 

 

Quadcopter have four input forces that are U1, U2, U3, and U4. This four 

controller’s input will affects certain side of Quadcopter. U1 affect the attitude of the 

Quadcopter, U2 affects the rotation in roll angle, U3 affects the pitch angle and U4 

control the yaw angle. These four inputs force will control the Quadcopter 

movement. The equations of these inputs are shown in Equation (2.7). 

 

 

U1 = (Th1 + Th2 + Th3 + Th4) / m 

U2 = l (-Th1-Th2+Th3+Th4) / I1 

U3 = l (-Th1+Th2+Th3-Th4) / I2 

U4 = l (Th1+Th2+Th3+Th4) / I3         (2.7) 

 

Where, 

Thi = thrust generated by four motor  

C   = the force to moment scaling factor 

Ii     = the moment of inertia with respect to the axes 

 

Therefore the Equation of Euler angles become: 

 

   = U2 – lK4  /I1     (2.8) 

        

   = U3– lK5  /I2     (2.9) 

                     

   = U1– lK6  /I3     (2.10)  

 

 

                       

U 
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2.2.1 Control System 

 

 
Jun Li et.al. [2] is done research to Dynamic Analysis and PID Control quad-rotor. 

This paper is describe the architecture of Quadrotor and analyzes the dynamic model 

on it based on PID control scheme [1]. Simulink model of PID controller and flying 

result done in this research are show in Figure 2.8 and Figure 2.9. 

 

 
 

Figure 2.8: Simulink model of PID controller block 

 

 

 
 

Figure 2.9: Simulation result for yaw and pitch angle. 
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In the research its using a conventional schemes of PID control for make the 

dynamic self-balancing. The system overshoot is small, at the same time the steady-

state error is almost zero, and the system response is fast. In the PID design some 

modification can be done to make it more effectiveness and eliminates some 

constrainess of conventional PID ( will describe in chapter 3) . 

Some controller use PI method incorporating with compensation to correct 

the error present between the reference vectors and the rotational matrix’s previous 

calculation. The Proportional, Integral that more simplify of code [2] . The derivative 

is difficult to implement on the microcontroller, both in use of resources and coding 

the algorithm. 

 
 

Figure 2.10: PI controller for mitigating gyro drift 

 

 
 
 

 

2.2.2 DraganFlyer 

 

The first quad-rotor  was invented in 1907 by French, Breguet Brothers  with named 

Gyroplane No.1 . Then in 1922  Georges de Bothezat  come out with a rotor located 

at each end of a truss structure of intersecting beams, placed in the shape of a cross . 

 

In university of Pennsylvania (Figure 2.11) utilizes DraganFlyer as a tested with 

attitude of the quadrotor is controlled with PI control law [7]. It has external pan-tilt 

ground and on-board cameras in addition to the three onboard gyroscopes.  
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Figure 2.11: Quadrotor designed in Pennsylvania State University. 

One camera placed on the ground captures the motion of five 2.5 cm colored 

markers present underneath the DraganFlyer, to obtain pitch, roll and yaw angles and 

the position of the quadrotor by utilizing a tracking algorithm and a conversion 

routine. In other words, two-camera method has been introduced for estimating the 

full six degrees of freedom (DOF) pose of the helicopter. Algorithm routines ran in 

an off board computer. Due to the weight limitations GPS or other accelerometers 

could not be add on the system. The controller obtained the relative positions and 

velocities from the cameras only. 

Two methods of control are studied – one using a series of mode-based, 

feedback linearizing controllers and the other using a back-stepping control law. The 

helicopter was restricted with a tether to vertical, yaw motions and limited x and y 

translations. Simulations performed on MATLAB-Simulink show the ability of the 

controller to perform output tracking control even when there are errors on state 

estimates. 

 

2.2.3 X4-Flyer  

 

The X4-Flyer developed in Australian National University [14] consists of a HC-12 a 

single board computer, developed at QCAT that was used as the signal conditioning 

system. This card uses two HC-12 processors and outputs PWM signals that control 

the speed drivers directly, inputs PWM signals from an R700 JR Slimline RC 
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receiver allowing direct plot input from a JP 3810 radio transmitter and has two 

separate RS232 serial channels, the first used to interface with the inertial 

measurement unit (IMU) and second used as an asynchronous data linked to the 

ground based computer. 

As an IMU the most suitable unit considered was the EiMU embedded 

inertial measurement unit developed by the robotics group in QCAT, CSIRO weighs 

50- 100g. Crossbow DMU-6 is also used in the prototype. The pilot augmentation 

control system is used. A double lead compensator is used for the inner loop. The 

setup is shown in Figure 2.11. 

 

 

Figure 2.12:  The X4-Flyer developed in FEIT, ANU 

 

 

2.2.4 STARMAC  

 

The name of the project that is worked on in stanford university is called STARMAC 

[8]. STARMAC consists of four X4-flyer rotorcraft that can autonomously track a 

given waypoint trajectory. This trajectory generated by novel trajectory planning 

algorithms for multi agent systems. STARMAC project aims a system fully capable 

of reliable autonomous waypoint tracking, making it a useful testbed for higher level 

algorithms addressing multiple-vehicle coordination. 
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The base system is the off-the-shelf four-rotor helicopter called the 

DraganFlyer III, which can lift approximately 113,40 grams of payload and fly for 

about ten minutes at full throttle. The open-loop system is unstable and has a natural 

frequency of 60 Hz, making it almost impossible for humans to fly. An existing 

onboard controller slows down the system dynamics to about 5 Hz and adds 

damping, making it pilotable by humans. It tracks commands for the three angular 

rates and thrust. An upgrade to Lithium-polymer batteries has increased both payload 

and flight duration, and has greatly enchanced the abilities of the system. 

For attitude measurement, an off-the-shelf 3-D motion sensor developed by 

Microstrain, the 3DM-G was used. This all in one IMU provides gyro stabilized 

attitude state information at a remarkable 50 Hz. For position and velocity 

measurement, Trimble Lassen LP GPS receiver was used. To improve altitude 

information a downward-pointing sonic ranger (Sodar) by Acroname were used, 

especially for critical tasks such as take off and landing. The Sodar has a sampling 

rate of 10 Hz, a range of 6 feet, and an accuracy of a few centimeters, while the GPS 

computes positions at 1 Hz, and has a differential accuracy of about 0.5 m in the 

horizontal direction and 1 m in the vertical. To obtain such accuracies, DGPS 

planned be implemented by setting up a ground station that both receives GPS 

signals and broadcasts differential correction information to the flyers. 

All of the onboard sensing is coordinated through two Microchip 40 MHz 

PIC microcontrollers programmed in C. Attitude stabilization were performed on 

board at 50 Hz, and any information was relayed upon request to a central base 

station on the ground. Communication is via a Bluetooth Class II device that has a 

range of over 150 ft. The device operates in the 2.4 GHz frequency range, and 

incorporates bandhopping, error correction and automatic retransmission. It is 

designed as a serial cable replacement and therefore operates at a maximum 

bandwidth of 115.2 kbps. The communication scheme incorporates polling and 

sequential transmissions, so that all flyers and the ground station simultaneously 

operate on the same communication link. Therefore, the bandwidth of 115.2 kbps is 

divided among all flyers. 

The base station on the ground performs differential GPS and waypoint 

tracking tasks for all four flyers, and sends commanded attitude values to the flyers 
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for position control. Manual flight is performed via standard joystick input to the 

ground station laptop. Waypoint control of the flyers was performed using Labview 

on the groundstation due to its ease of use and on the fly modification ability. 

Control loops have been implemented using simple PD controllers. The system while 

hovering is shown in Figure 2.13. 

 

 

Figure 2.13: Quadrotor designed in Stanford University 
 
 
 
 
2.3 Mathematical Analysis Of The Quad Rotor UAV 

 

The quad rotor has six degrees of freedom that can be divided into two parts: 

1) Translational – translational motion occurs in x, y, and z directions.  

2) Rotational – rotational motion occurs about x, y and z directions and 

named as roll (φ), pitch (θ), and yaw (ψ).    
 

The frames of reference used are:  

1) Earth’s frame (an inertial frame of reference)  

2) Body-axis (a non-inertial frame of reference)    
 

The model derived is based on the following assumptions:  

1) The structure is rigid and symmetrical  

2) The center of gravity and the body fixed frame origin coincide  

3) The propellers are rigid  

4) Thrust is directly proportional to the square of the propeller‟s speed  
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2.3.1 Translational Motion 

 

In order to derive the equations representing the translation motion, the basic 

equation used is: 

      

 

Where, ∑  represents the sum of all the external forces on the system, M is the total 

mass of the system    and a is the total acceleration vector of the system. 

The forces acting on the system can be devided to 2 type: 

1) Thrust due to four propellers . 

2) Force of gravity  

 

And the equations obtained are: 

                    

                              

                             

 

2.3.2 Rotational Motion 

 

In order to derive the equations representing the rotational motion, the basic equation 

used is: 

          

The equations obtained are ; 
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2.4 Multiple Input Multiple Output (MIMO) Approach 

 

The above 6 equations which represent the fundamental equations of the Quadrotor 

are coupled. To perform control the Quadrotor either a MIMO approach or a SISO 

approach can be made. For MIMO approach the following procedure can be 

followed [9]. 

 

2.4.1 State Space Equations 

 

Now, in order to study the stability of the system the system is written in the form: 

         

        

 

2.4.2 Linearization 

 

The system of equations 2.1 to 2.6 are non-linear coupled equations. Therefore, the 

system of equations was linearized using ‘small perturbation theorem’. 

The states of the system are:  

                  

Inputs to the system are: 

               
  

 

 

The perturbation was given only to the states (velocities).With the new perturbation 

technique was adopted by introducing the disturbance in positions (φ, θ and ψ) and 

acceleration due to the disturbance in velocity. 
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Equations 3.1 to 3.3 represent translational motion and equation 3.4 to 3.6 represent 

rotational motion. For simplification purpose, the following constants were assumed 

in the equations: 

       

   
    

       
   

    

       

   
    

  
   

    

  
   

   
  
   
   

 

   
    

 

   
    

 

Perturbation is marked by the suffix ‘e’. Hence, perturbation in w is written as: 

 

 

  
                               

  
 

 

                                      
  
 

 

                                            
  
 

 

 

Since 
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where 

                 and                   

 

Perturbation in u: 

                           
  
 

 

 

                                                        

                             
  
 

 

 

                                                                         

                                  
  
 

 

 

since : 

                           

                                                  

                         
  
 

 

so, 

                     

where, 

                 

                          

                          

 

 

Perturbation in   ; 
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and the state space equation was thus formed as. 

         

 

The corresponding Eigen values of the A matrix was also found.         and 

     were used to obtain the matrices A and B. 

 

 

2.5 Single Input Single Output (SISO) Approach 

 

The fundamental equations are decoupled based on certain assumptions as follows : 

1) The quad rotor is assumed to have very low linear and angular 

velocities when in motion and assumed not to tilt beyond 15 
 
in pitch 

and roll. The quad rotor is always flying at near hovering conditions 

and Coriolis and rotor moment of inertia terms can be   neglected.  

2) Attitude is controlled by manipulating the four degrees of freedom 

involved –altitude, roll, pitch and yaw.  

3) The equations representing the four degrees of freedom are:  
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CHAPTER 3 

 

 

 

METHODOLOGY 

 

 

 

3.1 Quad-Rotor Mathematical Model 

 

The dynamics of the quad-rotor is well described in the previous chapter. However 

the most important concepts can be summarized in equations (3.1) and (3.2). The 

first one shows how the quad-rotor accelerates according to the basic movement 

commands given. 
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The second system of equations show the basic movements related to the propellers’ 

squared speed. 

 

       
     

     
     

    

                   
     

    

                  
     

    

            
     

     
     

    

                

 
 

3.2 PID Controller Development 

 

A proportional integral derivative controller (PID controller) is a common method in 

control system. PID theory helps better control equation for the system. Some of the 

advantages are: 

 

1) Simple structure. 

2) Good performance for several processes, 

3) Tunable even without a specific model of the controlled system. 

 

In the PID control the algorithm is various; there is no single PID algorithm. The 

conventional PID structures show as Figure 3.1 

  

Figure 3.1: Block diagram of PID conventional structure. 

... (3.2) 
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