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ABSTRACT 

 

 

 

This paper presents the power flow or load flow analysis of Ranau microgrid, a 

standalone microgrid in the district of Ranau,West Coast Division of Sabah. Power 

flow for IEEE 9 bus also performed and analyzed. Power flow is define as an 

important tool involving numerical analysis applied to power system. Power flow 

uses simplified notation such as one line diagram and per-unit system focusing on 

voltages, voltage angles, real power and reactive power. To achieved that purpose, 

this research is done by analyzing the power flow analysis and calculation of all the 

elements in the microgrid such as generators, buses, loads, transformers, 

transmission lines using the Power Factory DIGSilent 14 software to calculate the 

power flow. After the analysis and calculations, the results were analysed and 

compared. PTTA
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ABSTRAK 

 

 

 

Kajian ini mengenai laluan kuasa atau laluan beban yang dijalankan ke atas grid 

mikro Ranau. Grid mikro Ranau terletak di daerah Ranau, Pantai Barat Sabah. 

Laluan kuasa bagi system IEEE 9 bas juga dijalankan dan di analisis. Laluan arus 

adalah alat penting yang melibatkan analisis bernombor yang dilakukan ke atas 

mana-mana sistem kuasa. Laluan kuasa melibatkan gambarajah segaris dan sistem 

per unit(p.u). Ia memfokuskan kepada voltan, sudut voltan, kuasa sebenar (P) dan 

kuasa reaktif (Q). Untuk mencapai analisis laluan kuasa yang jitu, analisis dilakukan 

terhadap mana-mana sistem kuasa dan pengiraan secara numerikal semua elemen-

elemen yang terdapat di dalam sistem kuasa tersebut. Elemen-elemen tersebut adalah 

penjana, bas, beban, pengubah, talian penghantaran menggunakan software Power 

Factory DIGSilent 14. Selepas analisis dan pengiraan-pengiraan yang berkaitan, 

keputusannya di analisis dan dibandingkan antara kedua-dua sistem terlibat. PTTA
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CHAPTER 1 

 

 

 

INTRODUCTION 

 

 

 

1.1 Project background 

 

 

 Figure 1.1: Ranau, Sabah 
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Figure 1.2: Location of Ranau, Sabah 

 

Ranau, a district in Sabah, supplied with electricity in the early 1960s. The exact date 

was 15
th

 June, 1964. During the early years, the supplies were 32kW, 12-hour 

system. Consumers living nearby the generation were supplied with electricity. 

During that time, consumers served from 0600 hours to 1800 hrs. Only three areas 

supplied with electricity namely Lohan, Bundu Tuhan and Kundasang. Each areas 

connected it’s own generators. The three loads were interconnencted during the mid 

1980s. Starting in 1971, Ranau district supplied with 24 hours electricity and the 

capacity was increased to 60 kW. The capacity even further increased to 90 kW 

several years later. Generation capacity further increased and the system able to 

produce 200 kW. The establishment of Ranau Grid was done in 1990. 

At the same year as the establishment of Ranau grid, Carabau mini hydro 

station was developed by the Mamut Copper Mine (MCM). Mamut is an area in 
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Ranau which was Sabah largest producer of copper before the mineral finally runs 

out. The Carabau hydroelectric commenced into operation in June 15
th

, 1991. The 

pond located at Kg. Bambangan. The other pone located at Kg. Kimolohing and 

known as the ―Head Pond‖. The installed capacity for this hydroelectric is 1000 kW. 

In 1996, Naradau mini hydroelectric was built with two dam. They are located at 

Mesilau river and Liwagu river. 

At September 1
st
, 1998, Lembaga Lektrik Sabah (LLS) was privatised and 

taken over by Sabah Electricity Sendirian Berhad (SESB). At that time, SESB was 

100 percent under Tenaga Nasional Berhad (TNB). The privatisation were 

commenced in August, 18
th

 1998. The major objective of the privatisation  is to 

reduce to disruptions of power supplies commonly in the State of Sabah over three 

decades of operations. Another objective is to solve the financial woes for the sector 

of electrical generation in the state. As the result of the privatisation, the capacity of 

the electrical generation was increased and the distribution also increased to fulfil the 

increasing energy demand without burdening the state government. The government 

in the other hand will have better financial capacity to support other sectors to 

develop the state. The corporate mission for SESB is to supply continuous and 

reliable electricity to consumers. 

At present Ranau electricity system, the only area serviced with 12-hour 

system is Matupang. At Paus village, infrastructures are currently developed to 

supply the village with solar powered electricity. About 80 houses will benefit from 

this solar powered generator.  

In the Ranau district infrastructure masterplan, Rural Electrification 

Programme (BELB - Bekalan Elektrik Luar Bandar) currently installing electricity 

infrastructures at Melinsou, Segindai and Timbua area. 

 

1.1.1 Brief  History 

 

Electricity started in Sabah as early as 1910 supplied by 3 separate organizations. In 

1957 these three organizations combined to form North Borneo Electricity Board. 

When North Borneo joined Malaysia in 1963 and changed its name to Sabah, this 
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entity was renamed Sabah Electricity Board. On 1st of September 1998 Sabah 

Electricity Board was privatized and became Sabah Electricity Sdn. Bhd. (SESB). 

 

1.1.2 About the Company 

 

 Sabah Electricity Sdn. Bhd. is an 80% owned subsidiary of Tenaga Nasional Berhad 

(TNB) and 20% by the State Government of Sabah. It is a vertically integrated utility 

providing reliable generation, transmission and distribution services in the state of 

Sabah and the Federal Territory Labuan.  

SESB is committed to developing the electricity infrastructure in the state of 

Sabah and the Federal Territory Labuan including the implementation of the Rural 

Electrification Program. SESB generates, transmits and distributes electricity. It is 

the only power utility company in Sabah supplying electricity distributed over a wide 

area of 74,000 sq.km. As of August 2011, a total of 456.406 of which 82.8% of the 

customers are domestic customers contributing only 31.17% of the sale. 

The SESB installed capacity (excluding IPP) of the Sabah Grid which 

supplies electricity for major towns from Federal Territory Labuan to Tawau is 430.9 

MW and the maximum demand is 830 MW (as of August 2011). The Sabah Grid is 

made up of 66kV, 132kV and 275kV which links up all major towns in Sabah and 

Federal Territory of Labuan.  As of March 2011 the total length of transmission line 

in Sabah is 3,263 km. The forecast demand growth of electricity is in a region of 

7.7% per annum up to the year 2010. In order to support the growing demand, 

various generation, transmission and distribution projects will be implemented. 

This project started with characteristics of standalone Ranau microgrid 

interconnected system, relative issues of Ranau microgrid. This project also 

introduces the basic principle and basic structure of Ranau microgrid and  to analyze 

the power flow of a separate islanded mode high-voltage microgrid (MG) with 

various distributed resources (DRs). Figure 1.1 shows the location of Ranau district, 

SABAH. Figure 1.3 shows Sabah Grid Interconnection. Ranau microgrid are not 

connected to Sabah grid. Ranau microgrid is only operated on islanded operation, 

since several attempts to connect the microgrid to main power grid had failed. Grid-

connected operation are not available. 
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First, related papers and technological reports were extensively surveyed. 

Accordingly, twelve different types of DRs and their controllable loads were 

considered for integration into six primary feeders. 

 

 Figure 1.3: Sabah Grid Interconnection 
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Figure 1.4: Ranau Micro Grid Connection Diagram 
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These DRs include four 1500 kW Cummins diesel engine generators, four 

500 kW Cat diesel generators, two 1000 kW Cat diesel generators and two 1500 kW 

and 950 kW hydroelectrics. However, not all the generators are available and ready 

for generation. Some of the generators are under maintenance due to scheduled 

preventive maintenance and corrective maintenance. Most of the generators also due 

for servicing by clocking 500 hours of operation. 

The Gen3 generator is currently under outage due to unusual noise detected. 

Some of its parts particularly the fuel filter was disassembled and reassembled at 

Gen8 generator. The Gen18 also not available for operation and was sent to Jayaland, 

Keningau for maintenance. Gen19 generator is another generator under outage due to 

lubricating oil leak and suffers compression leak. 

Current running generator are also under quite bad conditions. Gen 8, Gen12, 

Gen13 and Gen20  are suffering lubrication oil leakage. Gen8 and Gen13 are 

currently due for major overhaul. Some of the generators which were put on standy 

status are not 100 percent ready to operate. There are Gen7, Gen12 and Gen14. 

These generators are with lubricating oil leakage and some of are due for major 

overhaul maintenance. 

As for the Naradau and Carabau hydroelectrics, they are fully dependent on 

the weather conditions to generate electricity. Rainy season will increase the dam 

capacity and the generation capacity will  increased. Dry season will decrease the 

dam capacity and the generation capacity will decreased. The installed capacity for 

both hydroelectric are 3.72 MW but normally they will generates power of about 0.7 

MW. 

Simulations will be carried out using PowerFactory DIGSilent 14 tool, of 

which the result presented the studies of capacity and power flow of microgrid. 

Finally, the program was used to simulate and analyze the power flow of the MG for 

one 24-hour period under the islanded operating mode. The outcomes of this paper 

should prove helpful for distribution engineers to further understand the behaviors 

and characteristics of 11 kV high-voltage Ranau microgrid. Enhancement of 

understanding of this Ranau microgrid is important for planning future expansion of 

power system as well as to determine the best operation of existing operating system.  

  

1.2 Problem Statement 
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 Figure 1.5: Model of Main Grid and Micro Grid 

 

In power engineering, the power flow study (also known as load-flow study) 

is an important tool involving numerical analysis applied to a power system. Power 

flow are typically used in operational and planning stages[15],[16]. It shows the 

importance of power flow even from planning stages. A power flow study usually 

uses simplified notation such as a one-line diagram and per-unit system, and focuses 

on various forms of AC power (i.e.: voltages, voltage angles, real power and reactive 

power). It analyzes the power systems in normal steady-state operation. A number of 

software implementations of power flow studies exist. PSS/ADEPT is an example of 

software to implement power flow studies. 

In addition to a power flow study, sometimes called the base case, many 

software implementations perform other types of analysis, such as short-circuit fault 

analysis, stability studies (transient & steady-state), unit commitment and economic 

load dispatch analysis. In particular, some programs use linear programming to find 

the optimal power flow, the conditions which give the lowest cost per kilowatthour 

delivered.  

Power flow or load-flow studies are important for planning future expansion 

of power systems as well as in determining the best operation of existing systems. 

The principal information obtained from the power flow study is the magnitude and 
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phase angle of the voltage at each bus, and the real and reactive power flowing in 

each line. 

Commercial power systems are usually too large to allow for hand solution of 

the power flow. Special purpose network analyzers were built between 1929 and the 

early 1960s to provide laboratory models of power systems; large-scale digital 

computers replaced the analog methods. 

As to the large scale microgrid interconnection, new problems as main power 

grid plan and designation, dispatching and operation, protection and control will 

emerge due to the influence of microgrid upon the steady-state power flow 

distribution and the dynamic fault characteristics of the main power grid.[1] 

This project will help the power engineers to have a deeper understanding on 

this microgrid. Deeper understanding will pave the way for better grid operation. The 

authors present the issues relating to the islanded operation of microgrid including 

coordination of microsources and storage device to maintain the satisfactory 

islanding operation of microgrid. This particular microgrid is only operated on 

islanded operation, since several attempts to connect the microgrid to main power 

grid had failed. 

 

1.3 Project Objectives 

 

The major objective of this research is to study the power flow of Ranau microgrid. 

The other objectives are: 

a) To analyze the voltage profiling of Ranau Microgrid under islanded mode of 

operation. 

b) To study the active power (KW) and reactive power (KVAR) of the microgrid. 

c) To study the reliability of Ranau microgrid by using the spinning reserve 

analysis. 

 

1.4 Project Scopes 
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This project is primarily concerned with the islanded operation of the microgrid. The 

scopes of this project are: 

 

a) To analyze the power flow of Ranau microgrid into PowerFactory DIGSilent 14 

software in islanded mode of operation, 11 kV only. 

b)  To analyze the voltage profiling of 11kV Ranau Microgrid of a separate islanded 

mode only since for the time being this microgrid operates in islanded mode. 

Several attempts to connect the microgrid to main power grid had failed. 

 

1.5  Thesis outline 

The written report was layout as follows: 

1. Chapter 1 – Introduction 

 

It briefly discussed on the importance of power flow analysis of a system. Power 

flow or load flow is a tool to analyse a system or grid. Power flow analysis will study 

the real power, reactive power, voltage, current loading, load analysis and voltage 

angles. Power flow or load-flow studies are important for planning future expansion 

of power systems as well as in determining the best operation of existing systems. 

many software implementations perform other types of analysis, such as short-circuit 

fault analysis, stability studies (transient & steady-state), unit commitment and 

economic load dispatch analysis  

 

2. Chapter 2 – Literature Review 

 

This chapter reviewed on past researches which have significant contributions to this 

study. Many software implementations perform other types of analysis, such as 

short-circuit fault analysis, stability studies (transient & steady-state), unit 

commitment and economic load dispatch analysis. Studies on microgrid topologies 
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also performed. Among others are DERs, loads, transmission lines, controls and 

protections. The terms of voltage profiling and fault analysis also sufficiently 

explored. Finally the description of previous methods in power flow explained 

briefly. Among the methods are The Newton-Raphson method and Newton Trust 

Region Method. 

3. Chapter 3 – Methodology 

 

Chapter 3 touched on the methodology of power flow analysis in achieving the 

ultimate objective of this study which was power flow analysis. The methodology 

was done accordingly by three phases, namely literature review on previous works, 

Ranau microgrid data gathering and simulations and results analysis. Project 

planning also included in Chapter 3. 

 

4. Chapter 4 – Results  

 

The findings of this study were presented under the Results section of Chapter 4. 

This chapter not only showed the graphs and data tables, but brief comments were 

also given upon the statistical simulation analysis. And on enhancing the results, they 

were neatly organized under different system, first for the  IEEE9 system and then 

Ranau microgrid. Among the results are active power (P), reactive power (Q), 

voltage angles, grid losses (MW), spinning reserves (MW), system reliability, 

generation data, load data, installed capacity, current loading for transformer and 

transmission lines as well as detailed every bus analysis.  

 

5. Chapter 5 – Conclusion 

 

Chapter 5 provided the conclusion of this study. After the lengthy studies and 

simulations, we can conclude which system is better in term of reliability. We also 

can compare both systems for capacity and power flow analysis as well as current 

loading.  It also brought up few potential further works that can be done in improving 

the research area.  
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1.6  Summary 

 

The objective of this chapter is to give the readers an understanding of the case 

studies involves IEEE9 system and Ranau microgrid. Readers can assess the 

performance and reliability of each system by reading the detailed analysis and 

conclussions. It also points out the motivation behind the study, giving out its 

objectives and scope of work before laying out the thesis outline.  
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CHAPTER 2 

 

 

 

LITERATURE REVIEW 

 

 

 

2.1 Theories - Microgrid  

  

 

Figure 2.1: Microgrid basic system topology. 

 

Microgrid is an organic system which consists of loads, micro power, i.e. DG in 

microgrid, and energy storage devices. The point where the microgrid and the main 

power grid interconnects is the Point of Common Coupling (PCC). Connection 
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Interface (CI) which is commonly configured by microgrid specific control switch is 

arranged near PCC. Each unit is connected to the microgrid bus via the Power 

Electronics Interface (PEI). Energy storage devices which can be battery, 

supercapacitor, superconducting energy storage and flywheel will realize the power 

balancing adjustment within the microgrid, reducing the influence of DG on the main 

power grid significantly and enhancing the controllability of the power flow.  

In a typical microgrid, the microsources may be rotating generators or 

Distributed Energy Resources (DER) interfaced by power electronic inverters. The 

installed DERs may be biomass, fuel cells, geothermal, solar, wind, steam or gas 

turbines and reciprocation internal combustion engines. The overall efficiency may 

be improved by using combined heat and power sources (CHP)[2]. 

Loads also can be various, mainly are impedance loads, motors and heat 

loads. The connected loads may be critical or non-critical. Critical loads require 

reliable source of energy and good power quality. These loads are supported by their 

own microsources because they require an uninterrupted supply of energy. 

Noncritical loads may be shed when required decided by the microgrid operating 

policies. Since the power level of utility grid is higher than that of the microgrid, the 

same is dominated mainly by the existing power grid. But the actual performance is 

judged when the microgrid works in islanded mode[3].  

Within the microgrid, control units are interconnected by communication line 

which gathered at the control center to manage the optimal operation and the 

coordinated control, dynamically matching the load demand and achieving the power 

flow between the microgrid and the main power grid to be adjusted directionally and 

quantitatively. It should be pointed out that not all the elements are necessary for the 

microgrid, the possible combination depends upon the microgrid size and specific 

requirements of local loads on microgrid. Figure 2.1 is a basic microgrid system 

topology. Feeder lines in microgrid are usually radial distributed, and DGs are 

connected through several points. Power exchange between the microgrid and the 

main power grid is conducted via the connecting line. DGs within the microgrid and 

the main power grid are interacted through the middle and low-voltage 

transformation[1]. 

As an effective way to solve various problems in modem power systems, 

micro grid is increasingly adopted in many developed countries. MGs have become a 
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new development trend in power systems nowadays. Microgrid can operate online, 

but also according to the actual fault occurs which planning maintenance etc or run 

independently. 

Microgrid protection is considered one of the most important challenges 

facing the implementation of microgrid. The brittleness of the stand-alone running 

microgrid can be defined as natural disasters, strong external disturbance, system 

components failure, recessive fault and power quality impact factors, etc.  

To this extent, we study the steady-state characteristics of a high-voltage MG 

with two different types of DRs, namely, diesel engine generators and hydroelectric 

generators. This MG contain renewable and non-renewable DRs under islanded 

operating mode, with the assumption that the system is three-phase balanced We 

anticipate that the nature of the 11 kV high-voltage MG will be thoroughly 

understood after detailed analysis of the power flow under the islanded operation 

mode. 

Renewable sources of energy such as hydroelectric in Ranau microgrid is 

highly dependent on weather conditions and geographical factors. In their ntermittent 

nature, hydroelectric are highly variable[4]. 

Consequently, the incorporation of DRs in this particular MG reduces total 

power system loss because no transmission losses are incurred, and DRs usually 

offer the advantages of low environmental effects and high efficiency. These can be 

operated in grid-connected or islanding modes[5]. 

 

2.1.1 Voltage Profiling 

 

During the grid connected mode, main system reactive power resources such as 

generation units, switched shunt capacitors and long lines charging may contribute to 

the reactive power support of the Micro Grid and help keep the Micro Grid voltage 

profile within acceptable ranges. However, Micro Grid Voltage profile control within 

an islanded Micro Grid is more critical due to the lack of reactive power support 

from upstream main system[6]. 

 

2.1.2 Fault analysis 
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The fault analysis of a power system is required in order to provide information for 

the selection of switchgear, setting of relays and stability of system operation. A 

power system is not static but changes during operation (switching on or off of 

generators and transmission lines) and during planning (addition of generators and 

transmission lines). Thus fault studies need to be routinely performed by utility 

engineers. 

Faults usually occur in a power system due to either insulation failure, 

flashover, physical damage or human error. These faults, may either be three phase 

in nature involving all three phases in a symmetrical manner, or may be 

asymmetrical where usually only one or two phases may be involved. Faults may 

also be caused by either short-circuits to earth or between live conductors, or may be 

caused by broken conductors in one or more phases. Sometimes simultaneous faults 

may occur involving both short-circuit and broken conductor faults (also known as 

open-circuit faults).  

 

2.1.3 Reactive Power 

 

Voltage 415 V and 11 kV are available on Ranau microgrid system. Reactive power 

flow is needed in an alternating-current transmission system to support the transfer of 

real power over the systems. In AC system, energy is stored temporarily in inductive 

and capacitive elements. On the other hand, real power, P, is the energy to 

accomplished desired work. Due to inductive and capacitive elements in the network, 

a portion of power flow returned back to source. It is known as reactive power. It 

transfers no energy, but have important function in electrical grids. 

Reactive power increased as energy stored in capacitive  or inductive 

elements. It will influence the voltage level on the system. Voltage levels and rective 

power should be carefully controlled to allow any system to operate within 

acceptable limits.  
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Realpower (P) 

Reactivepower (Q) 

Complex power (S) 

Figure 2.2: Real, Reactive and Complex Power 

 

2.1.4 Real Power 

 

Real power, measured in Watt, both the current and voltage reverse their polarity at 

the same time. At any instant, the product of voltage and current is positive, 

indicating that the direction of energy flow does not reverse. In this case, only real 

power is transferred. Practical loads have resistance, inductance, and capacitance, so 

both real and reactive power will flow to real loads. The actual amount of power 

being used, or dissipated, in a circuit is called true power or real power. 

Active power consumed in the systems, while reactive power moves from 

load to source and vice versa, and it is not consumed in the system. If a system has 

0.86 power factor then it means that it has 86% active power and 14% reactive 

power. Engineers care about apparent power, because even though the current 

associated with reactive power does no work at the load, it heats the wires, wasting 

energy. Conductors, transformers and generators must be sized to carry the total 

current, not just the current that does useful work. 

   

2.2 Power Flow 

 

Power flow analysis is fundamental to the study of power systems. In fact, power 

flow forms the core of power system analysis. Load flow studies are carried out to 
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study any interconnected power system. Power flow study plays a key role in the 

planning of additions or expansions to transmission and generation facilities. Power 

flow analysis is at the heart of contingency analysis and the implementation of real-

time monitoring systems. For a given power network, with known complex power 

loads and some set of specifications or restrictions on power generations and 

voltages, solve for any unknown bus voltages and unspecified generation and finally 

for the complex power flow in the network components.  

 Such studies facilitate us in determination of best size as well as the most 

favourable location for the power capacitors for both power factor improvement and 

also for raising the network voltages. The load flow studies also helps us in 

determination of best location as well as optimal capacity of the proposed generating 

stations, substations and new transmission lines. Thus load flow studies are very 

important for planning existing system as well as its future expansion. 

 For optimized operation of an interconnected system, some informations such 

as bus bar voltage levels, machine excitation, tap change and reactive compensation 

are required which are provided by load flow studies. The main information obtained 

from load flow studies comprises the magnitude and phase angles of bus voltages, 

reactive powers of generator buses, active and reactive power flow in transmission 

lines, other variable being specified. 

For many years, load flow studies were carried out by means of special 

purpose analogue computer, called the AC network analyser, but the advent of high 

speed digital computers has tended to replace their use for a large system studies. 

This change from AC network analyser to the digital computer has resulted in greater 

flexibility, economy, accuracy and faster operation. However for system studies of a 

more local character, the network analyser is still used, particularly in the initial 

planning stages. 

 

2.2.1 Power Flow Study Steps 

 

These are the steps undertaken to study power flow in a system. 
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1. Determine element values for passive network components. 

2. Determine locations and values of all complex power loads. 

3. Determine generation specifications and constraints. 

4. Develop a mathematical model describing power flow in the network. 

5. Solve for the voltage profile of the network. 

6. Solve for the power flows and losses in the network. 

7. Check for constraint violations. 

 

2.2.2 Load Flow Solution 

 

There are four quantities of interest associated with each bus: 

1. Real Power, P 

2. Reactive Power, Q 

3. Voltage Magnitude, V 

4. Voltage Angle, δ 

At every bus of the system, two of these four quantities will be specified and 

the remaining two will be unknowns. Each of the system buses may be classified in 

accordance with which of the two quantities are specified. 

 

2.2.3 Bus Classifications 

 

Slack Bus — The slack bus for the system is a single bus for which the voltage 

magnitude and angle are specified.  
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 The real and reactive power are unknowns. 

 The bus selected as the slack bus must have a source of both real 

and reactive power, since the injected power at this bus must ―swing‖ to take up 

the ―slack‖ in the solution. 

 The best choice for the slack bus (since, in most power systems, many buses have 

real and reactive power sources) requires experience with the particular system 

under study. 

The behaviour of the solution is often influenced by the bus chosen. 

 

2.2.4 Load Bus (P-Q Bus) :  

 

A load bus is defined as any bus of the system for which the real and reactive power 

are specified. 

 Load buses may contain generators with specified real and reactive power 

outputs; however, it is often convenient to designate any bus with specified 

injected complex power as a load bus. 

Voltage Controlled Bus (P-V Bus) :  

 Any bus for which the voltage magnitude and the injected real power are 

specified is classified as a voltage controlled (or P-V) bus. 

 The injected reactive power is a variable (with specified upper and lower 

bounds) in the power flow analysis. 

 (A P-V bus must have a variable source of reactive power such as a 

generator.) 

 

2.2.5 Solution Methods 
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The solution of the simultaneous nonlinear power flow equations requires the use of 

iterative techniques for even the simplest power systems. There are many methods 

for solving nonlinear equations  such as: 

 Gauss Seidel. 

 Newton Raphson. 

 Fast Decoupled. 

 The electrical power system is currently undergoing major changes. The 

nonstop growing energy demand being fed by distributed generation (DG) units. This 

in turn, increases the microgrid system modularity and expandability. Then, the need 

for power flow analysis is essential. Among the purpose for power flow are 

distribution automation, network optimization, Var planning and reliability 

assessment. These purposes are to ensure better operated power system. 

 Power flow also will prove helpful in planning of Energy Management 

System (EMS) and power sharing, and stability analysis. Many power flow solutions 

and algorithms have been proposed since the early studies of power flow.  Most of 

them are classified as branch based methods [17],[18]. 

 

2.3 Description of previous methods 

 

There are several methods available for power flow analysis. Among the are 

Newton-Raphson method and New Trust Region Method. 

 

2.3.1 The Newton-Raphson method 

 

The Newton-Raphson method is one of the most commonly used techniques for 

solving nonlinear algebraic equations, and presents better convergence than does the 

Gauss-Seidel method. Thus, it is popularly applied in power flow analysis. The 

iteration numbers of the Newton-Raphson approach is independent of the scale of 

system and can solve the problem through a few iterations[7]. However, its Jacobian 

matrix requires recalculation and updating in each iterative step[8]. 
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Figure 2.3: The Newton-Raphson Method 
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The loads and DRs are assumed to be equivalent injected powers in power 

flow analysis. Newton-Raphson method was applied to solve the power flow of the 

high-voltage microgrid. A 24-hour operating analysis was explored in detail in this 

section, after rigorous engineering analyses and discussions on the voltage profiles, 

line flow profiles, and system losses.  

This method successfully analyse the  voltage profiles, line flow profiles, and 

system losses. This method shows the DRs integrated into the distribution network 

are clearly helpful to the system voltage profiles. The DRs also proven to share load 

demands and lessen the power supply requirement from the upstream utility grid. 

system losses also concluded to decrease because of to the incorporation of DRs.  

This method is among the most used techniques for solving nonlinear 

algebraic equations and better convergences than Gauss-Siedel method[9]. 

In the case of islanded microgrids, Newton Raphson methods may fail to get 

a solution even with starting from a flat initial guess. Typically this situation is due to 

the fact that the region of attraction of the power flow solution in the islanded 

microgrid is narrow[10]. Moreover, the system is operating close to the boundary 

between the solvable and unsolvable region as there is no infinite bus in the system. 

  

2.3.2 Newton Trust Region Method 

 

Traditionally the non-linear equations of the power flow problem are solved using 

the Newton Raphson (NR) algorithms. Generally, the NR algorithms provide fast 

quadratic convergence characteristics. However they face several challenges when 

dealing with distribution systems due to several factors such as the high R/X ratio as 

well as the sparse Jacobian matrix inversion. 

Newton Trust Region Method three-phase power flow algorithm is 

formulated for islanded microgrids. The algorithm is novel since it adapts the real 

characteristics of the islanded microgrid operation. All possible operation modes of 

DG units (droop, PV, or PQ) have been considered. The problem has been 

formulated as a set of nonlinear equations. A globally convergent Newton-trust 

region method has been proposed to solve this set of nonlinear equations. The 

proposed algorithm is a helpful tool to perform accurate steady state studies of the 

islanded microgrid.  
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Newton-Trust region method as an alternative to the NR algorithms. Trust 

region methods are simple and powerful tools for solving systems of nonlinear 

equations and large scale optimization problems[4]. The proposed algorithm has 

been validated by comparing its results with the results of a detailed time-domain 

simulation. The results show good convergence characteristics in all operating 

conditions. The proposed algorithm is a powerful tool to study the power flow in an 

islanded microgrid. This power flow analysis helps to consider the islanded 

microgrid in both operational and planning studies. 

 

2.4  DIGSILENT PowerFactory 14.0 

 

The calculation program PowerFactory, as written by DIgSILENT, is a computer 

aided engineering tool for the analysis of industrial, utility, and commercial electrical 

power systems. It has been designed as an advanced integrated and interactive 

software package dedicated to electrical power system and control analysis in order 

to achieve the main objectives of planning and operation optimization. 

The name DIgSILENT stands for "DIgital SImuLation and Electrical 

NeTwork calculation program''. DIgSILENT Version 7 was the world's first power 

system analysis software with an integrated graphical one-line interface. That 

interactive one-line diagram included drawing functions, editing capabilities and all 

relevant static and dynamic calculation features. 

The PowerFactory package was designed and developed by qualified 

engineers and programmers with many years of experience in both electrical power 

system analysis and programming fields. The accuracy and validity of the results 

obtained with this package has been confirmed in a large number of 

implementations, by organizations involved in planning and operation of power 

systems. 

In order to meet today's power system analysis requirements, the DIgSILENT 

power system calculation package was designed as an integrated engineering tool 

which provides a complete 'walk-around' technique through all available functions, 

PTTA
PERPUS

TAKAAN
 TUNKU

 TUN A
MINAH



24 

 

 

 

rather than a collection of different software modules. The following key-features are 

provided within one single executable program: 

 

1  PowerFactory core functions: definition, modification and organization of  

cases; core numerical routines; output and documentation functions 

2  Integrated interactive single line graphic and data case handling 

3  Power system element and base case database 

4  Integrated calculation functions (e.g. line and machine parameter calculation 

based on geometrical or nameplate information) 

5  Power system network configuration with interactive or on-line access to the  

    SCADA system 

6  Generic interface for computer-based mapping systems 

 

By using just a single database, containing all the required data for all 

equipment within a power system (e.g. line data, generator data, protection data, 

harmonic data, controller data), PowerFactory can easily execute any or all available 

functions, all within the same program environment. Some of these functions are 

load-flow, short-circuit calculation, harmonic analysis, protection coordination, 

stability calculation and modal analysis.  

Load flow calculations are used to analyze power systems under steady-state 

and nonfaulted (short-circuit-free) conditions. The load flow calculates the active and 

reactive power flows for all branches, and the voltage magnitude and phase for all 

nodes. The main areas for the application of load flow calculations are: 

 Calculation of branch loadings, system losses and voltage profiles for system 

planning and operation (normal and abnormal conditions). 

 Contingency analysis, network security assessment (abnormal conditions). 

 Optimization tasks, i.e. minimizing system losses, minimizing generation costs, 

open tie optimization in distributed networks, etc. (normal or abnormal 

conditions). 

 Verification of system conditions during reliability calculations. 

 Automatic determination of optimal system resupplying strategies. 

 Optimization of load-shedding (abnormal conditions). 

 Calculation of steady-state initial conditions for stability simulations or   

PTTA
PERPUS

TAKAAN
 TUNKU

 TUN A
MINAH



 

 

90 

 

REFERENCES 

 

 

 

1. Peng, L., et al. Analysis of acceptable capacity of microgrid connected to the 

main power grid. in Electric Utility Deregulation and Restructuring and 

Power Technologies (DRPT), 2011 4th International Conference on. 2011. 

2. Hatziargyriou, N., et al., Microgrids. IEEE Power and Energy Magazine, 

2007. 

3. Basak, P., et al. Microgrid: Control techniques and modeling. in Universities 

Power Engineering Conference (UPEC), 2009 Proceedings of the 44th 

International. 2009. 

4. Augustine, N., Economic dispatch for a microgrid considering renewable 

energy cost functions IEEE, 2011. 

5. Lasseter, R.H., MicroGrids. IEEE Power and Energy Magazine, 2007. 5(4): 

p. 78-94. 

6. Tabrizi, M.A., G. Radman, and A. Tamersi. Micro Grid Voltage profile 

improvement using Micro Grid Voltage Controller. in Southeastcon, 2012 

Proceedings of IEEE. 2012. 

7. Srinivas, M.S., Distribution load flows: a brief review. IEEE Power 

Engineering Society Winter Meeting, 2000. 2: p. 942-945. 

8. Scott, B., Review of load-flow calculation methods. Proceedings of the IEEE, 

1974. 62: p. 916-929. 

9. Wei-Tzer, H. and Y. Wen-Chih. Power flow analysis of a grid-connected 

high-voltage microgrid with various distributed resources. in Mechanic 

Automation and Control Engineering (MACE), 2011 Second International 

Conference on. 2011. 

 

10. Abdelaziz, M.M.A., A Novel and Generalized Three-Phase Power Flow 

Algorithm for Islanded Microgrids Using a Newton Trust Region Method. 

IEEE Transactions on Power Systems, 2012: p. 1.

PTTA
PERPUS

TAKAAN
 TUNKU

 TUN A
MINAH



 

 

91 

 

11. B. J. Kirby, Spinning Reserve From Responsive Loads, Oak Ridge National 

Laboratory, March 2003. 

12. Lescano, G.A.; Aurich, M.C.; Ohishi, T.; , "Optimal spinning reserve 

allocation considering transmission constraints," Power and Energy Society 

General Meeting - Conversion and Delivery of Electrical Energy in the 21st 

Century, 2008 IEEE , vol., no., pp.1-6, 20-24 July 2008. 

13. Savaghebi, M.; Jalilian, A.; Gholami, A.; , "A new approach for transformer 

loading capability assessment under non-linear load currents," Industrial 

Technology, 2008. ICIT 2008. IEEE International Conference on , vol., no., 

pp.1-5, 21-24 April 2008. 

14. G. Swift, S. Zocholl and M. Bajpai, “Adaptive transformer thermal overload 

protection,” IEEE Transactions on Power Deliv., vol. 16, no. 4, pp. 516-521, 

Oct. 2001. 

15.  C. S. Cheng and D. Shirmohammadi, “A three phase power flow method for 

real time distribution system analysis,” IEEE Trans. Power Syst., vol. 10, no. 

2, pp. 671-679, May 1995. 

16. S. M. Moghaddas-Tafreshi and E.Mashhour, “Distributed generation 

modelling for power flow studies and three phase unbalanced power flow 

solution for radial distribution system considering distributed generation,” 

Elect. Power Syst. Vol. 79, no. 4, pp. 680-686, Apr.2009. 

17. G. W. Chang, S.Y. Chu, and H. L. Wang, “ An improved backward/forward 

sweep load flow algorithm for radial distribution systems. “ IEEE Trans. 

Power Syst., vol. 22, no. 2, pp. 882-884, May 2007. 

18. Y. Zhu and K. Tomsovic, “Development of three-phase unbalanced power 

flow using PV and PQ models for distributed generation and study of the 

impact of DG models.” IEEE Trans. Power Syst., vol. 22, no. 3, pp,1019-

1025, Aug 2007. 

 

 

 

 

 

PTTA
PERPUS

TAKAAN
 TUNKU

 TUN A
MINAH

http://certs.lbl.gov/pdf/spinning-reserves.pdf



