A STUDY OF THE EFFECTIVENESS OF LOCAL EXHAUST VENTILATION (LEV) IN TRAINING FACILITIES BUILDING USING COMPUTATIONAL FLUID DYNAMICS (CFD) APPROACH

NG CHEE SENG

A thesis submitted in fulfillment of the requirements for the award of the Degree of Master of Mechanical Engineering

> Faculty of Mechanical and Manufacturing Engineering Universiti Tun Hussein Onn Malaysia

> > December 2013

To my loving father and mother My love to you will always remain and shall never change.

ACKNOWLEDGEMENT

The author would like to convey his sincere appreciation to his supervisor, Associate Professor Engr. Dr. Abdul Mutalib bin Leman for his consistent encouragement, advice and invaluable guidance throughout the entire course of this research study.

I would also like to express my sincere appreciation to my co-supervisor Dr. Norzelawati binti Asmuin; Industrial Hygiene Executive of NIOSH Bangi, Mr. Shaffuan bin Abu Kasim; and UTHM Thermal Environmental Laboratory technician, Mr. Mohd. Azizi bin Mohd. Afandi, who provided me with valuable suggestions and guidance on my study.

My appreciation also goes to the following members: Amir Abdullah bin Muhamad Damanhuri and Nuur Azreen binti Paiman for their invaluable help towards the completion of this thesis. I am also deeply indebted to my parents for their love, sacrifice, motivation and support given during the course of this study.

Finally, I would like to thank those who have contributed directly or indirectly towards the success of this study.

ABSTRACT

The purpose of this study is to identify effectiveness of local exhaust ventilation (LEV) systems and to validate computational fluid dynamics (CFD) simulation results with actual experimental results. Three case studies had been conducted at Ventilation Laboratory in National Institute of Occupational Safety and Health (NIOSH) Bangi, Welding Laboratory and Thermal Environmental Laboratory in Universiti Tun Hussein Onn Malaysia (UTHM). LEV is a ventilation system that captures contaminants, for example dusts, mists, gases, vapours or fumes out from workstations, so that they can't be breathed by occupants. Employers allocate and install LEV in order to protect occupants' exposure to contaminants, but it doesn't work properly. To overcome this issue, Guidelines on Occupational Safety and Health for Design, Inspection, Testing and Examination of LEV system and CFD can be implemented. The guideline stated that the recommended minimum hood velocity is 100 ft/min; while the recommended velocity along ducts for vapours, gases, smoke is 1000 ft/min and 2000 ft/min is required for welding. It was found that Ventilation Laboratory in NIOSH Bangi using Control Speed of 80%, Welding Laboratory and Thermal Environmental Laboratory in UTHM met all the minimum requirements set by the guideline, where LEV systems are effective to be used. In terms of CFD modeling, upon validation, average absolute error obtained from three case studies ranges from 2.804% and 4.862%. Validity of CFD modeling is acceptable, which is less than 5% and good agreement is achieved between actual experimental results and CFD simulation results. Therefore, it can be concluded that simple CFD modeling can be performed as a tool to simulate air velocity in LEV system, which saves labour costs and time consumption when it is used during earliest stage of LEV design development prior to actual construction. The outcome of this study can be used as a benchmark or guideline for training facilities building equipped with LEV system to protect occupants' health.

ABSTRAK

Kajian ini bertujuan untuk mengenalpasti keberkesanan sistem pengudaraan ekzos setempat (LEV) dan mengesahkan keputusan perkomputeran dinamik bendalir (CFD) dengan keputusan eksperimen sebenar. Tiga kajian kes telah dijalankan di Makmal Ventilasi yang terletak di Institut Keselamatan dan Kes Pekerjaan Negara (IKKPN) Bangi; Makmal Kimpalan dan Makmal Persekitaran Terma yang terletak di Universiti Tun Hussein Onn Malaysia (UTHM). LEV ialah satu sistem ventilasi yang menangkap bahan-bahan tercemar, seperti habuk, kabus, gas-gas, wap atau asap keluar dari tempat kerja, supaya bahan-bahan tercemar ini tidak dapat disedut oleh penghuni-penghuni. Majikan-majikan memperuntukkan dan memasang LEV supaya melindungi pekerjapekerja daripada terdedah kepada bahan-bahan tercemar, tetapi LEV tidak berfungsi dengan betul. Untuk mengatasi isu ini, garis panduan "Guidelines on Occupational Safety and Health for Design, Inspection, Testing and Examination of LEV system" dan CFD boleh dilaksanakan. Garis panduan tersebut menyatakan bahawa halaju minimum tudung yang dicadangkan ialah 100 kaki/minit; manakala halaju sepanjang saluran untuk wap, gas-gas, asap yang dicadangkan ialah 1000 kaki/minit dan 2000 kaki/min untuk gas kimpalan. Keputusan didapati bahawa Makmal Ventilasi di IKKPN Bangi yang menggunakan Halaju Kawalan sebanyak 80%, Makmal Kimpalan dan Makmal Persekitaran Terma di UTHM mencapai semua keperluan minimum yang dicadangkan oleh garis panduan tersebut, di mana sistem-sistem LEV tersebut adalah berkesan untuk digunakan. Dari segi permodelan CFD, selepas pengesahan dilakukan, didapati julat ralat purata diperolehi daripada tiga kajian kes ialah dari 2.804% sehingga 4.862%. Kesahihan permodelan CFD boleh diterima, dimana ia adalah jurang daripada 5%. Oleh itu, permodelan CFD yang mudah boleh digunakan sebagai satu alat perisian untuk

mensimulasi halaju udara dalam sistem LEV, dimana kos buruh dapat dijimatkan dan penggunaan masa dapat dikurangkan apabila ia digunakan semasa peringkat terawal pembangunan rekabentuk LEV sebelum pembinaan sebenar dilakukan. Hasil kajian ini dapat digunakan sebagai garis panduan untuk bangunan kemudahan latihan yang dilengkapi dengan sistem LEV untuk melindungi kesihatan pekerja-pekerja.

CONTENTS

CHAPTER

TOPIC

PAGE

DEDICATION	iv
ACKNOWLEDGEMENT	v
ABSTRACT	vi
ABSTRAK	vii
CONTENTS	ix
LIST OF TABLES	xiv
LIST OF FIGURES	xvi
LIST OF SYMBOLS AND ABBREVIATIONS	xxi
LIST OF APPENDICES	xxiii

1.

INTRODUCTION

1.1	Background of Problem	2
1.2	Objective of Study	4
1.3	Problem Statement of Study	4
1.4	Scope of Study	5
1.5	Significance of Study	6

2.

THEORY AND LITERATURE REVIEW

2.1	Local	Exhaust Ventilation (LEV)	7
	2.1.1	Hood	8
	2.1.2	Duct	10
	2.1.3	Fan	11
2.2	Appli	cation of LEV System	12
	2.2.1	Engineering Control of Disc Sander in a	
		Plant	12
	2.2.2	Engineering Control in Welding Industry	13
	2.2.3	Engineering Control of Exhaust Hoods of	
		LEV System	15
	2.2.4	Engineering Control of Wet Grinding,	
		Ventilated Grinding and Uncontrolled	
		Conventional Grinding in Construction	
		Industry	21
2.3	Comp	outational Fluid Dynamics (CFD)	25
	2.3.1	Boundary Conditions	27
	2.3.2	Turbulence Model	31
2.4	LEV S	Simulation Using CFD	33
PERP 2.5	Summ	nary	39

Х

METH	IODOI	LOGY	42
3 1	Genera	al Experimental Design	12
2.2			42
5.2	Flow C		43
3.3	Study I	Framework	44
3.4	Case S	tudies	45
	3.4.1	First Case Study: Ventilation Laboratory in	
		National Institute for Occupational Safety	
		and Health (NIOSH) Bangi	45
	3.4.2	Second Case Study: Welding Laboratory	
		in Universiti Tun Hussein Onn Malaysia	
		(UTHM)	48
	3.4.3	Third Case Study: Thermal Environmental	
		Laboratory in UTHM	50
3.5	Instrun	nentation	53
3.6	Actual	Experiment Methods	55
	3.6.1	Measurement of Velocity Pressure (VP)	55
	3.6.2	Computing Average Velocity from	
		Velocity Pressure Readings	61
3.7	CFD S	imulation Techniques	62
	3.7.1	Pre-processing	62
	3.7.2	Solver	72
	3.7.3	Post-processing	73
3.8	Compu	uting Absolute Error Calculation from	
	Veloci	ty Value	74

3.

4.

4.1	Result	s of Actual Experiment at Ventilation	
	Labora	tory in NIOSH Bangi, Selangor	76
	4.1.1	Results of Actual Experiment at Ventilation	
		Laboratory in NIOSH Bangi Using	
		Speed Control of 20%	76
	4.1.2	Results of Actual Experiment at Ventilation	
		Laboratory in NIOSH Bangi Using	
		Speed Control of 40%	79
	4.1.3	Results of Actual Experiment at Ventilation	
		Laboratory in NIOSH Bangi Using	
		Speed Control of 60%	81
	4.1.4	Results of Actual Experiment at Ventilation	
		Laboratory in NIOSH Bangi Using	
		Speed Control of 80%	84
4.2	Result	s of Actual Experiment at Welding	
	Labora	atory in UTHM	86
4.3	Result	s of Actual Experiment at Thermal	
	Enviro	nmental Laboratory in UTHM	89
4.4	Valida	tion of LEV at Ventilation Laboratory	
	in NIO	SH Bangi, Selangor	92
	4.4.1	Validation of LEV at Ventilation Laboratory	7
		in NIOSH Bangi Using Speed Control	
		of 20%	92
	4.4.2	Validation of LEV at Ventilation Laboratory	7
		in NIOSH Bangi Using Speed Control	
		of 40%	93

	4.4.3	Validation of LEV at Ventilation Laboratory	/
		in NIOSH Bangi Using Speed Control	
		of 60%	94
	4.4.4	Validation of LEV at Ventilation Laboratory	/
		in NIOSH Bangi Using Speed Control	
		of 80%	95
4.5	Valida	tion of LEV at Welding Laboratory in	
	UTHM	1	96
4.6	Valida	tion of LEV at Thermal Environmental	
	Labora	atory in UTHM	97
4.7	Discus	ssion of Actual Experiments of LEV System	98
4.8	Discus	sion of CFD Validation of LEV System	103

5.	CON	ICLUSION AND RECOMMENDATION	108
	5.1	Conclusion	109
	5.2	Contribution to Society	110
	5.3	Recommendation for Future Work	111

REFERENCES 112

APPENDICES

LIST OF TABLES

TITLE

TABLE

2.1	Quantitative collection efficiencies for each hood	
	(Old et al., 2008)	18
2.2	The difference between Wong et al.'s work and current	
	study's work	35
2.3	Summary of past studies on LEV system	39
2.4	Summary of literature review on CFD	40
3.1	Recommended traverse insertion depths for round ducts	
	(Guidelines on Occupational Safety and Health for Design,	
	Inspection, Testing and Examination of LEV system, 2008)	57
3.2	An example of how insertion depths of pitot tube were	
	determined for round ducts using 10 insertion points	58
3.3	Nodes and elements of three case studies	70
4.1a	Results of Actual Experiment using Speed Control of 20%	
	(Ventilation Laboratory in NIOSH Bangi)	77
4.1b	Results of Actual Experiment using Speed Control of 20%	
	(Ventilation Laboratory in NIOSH Bangi)	77
4.2a	Results of Actual Experiment using Speed Control of 40%	
	(Ventilation Laboratory in NIOSH Bangi)	79
4.2b	Results of Actual Experiment using Speed Control of 40%	
	(Ventilation Laboratory in NIOSH Bangi)	80

PAGE

4.3a	Results of Actual Experiment using Speed Control of 60%	
	(Ventilation Laboratory in NIOSH Bangi)	82
4.3b	Results of Actual Experiment using Speed Control of 60%	
	(Ventilation Laboratory in NIOSH Bangi)	82
4.4a	Results of Actual Experiment using Speed Control of 80%	
	(Ventilation Laboratory in NIOSH Bangi)	84
4.4b	Results of Actual Experiment using Speed Control of 80%	
	(Ventilation Laboratory in NIOSH Bangi)	85
4.5a	Results of Actual Experiment (Welding Laboratory in UTHM)	87
4.5b	Results of Actual Experiment (Welding Laboratory in UTHM)	87
4.6a	Results of Actual Experiment (Thermal Environmental	
	Laboratory in UTHM)	89
4.6b	Results of Actual Experiment (Thermal Environmental	
	Laboratory in UTHM)	90 A A
4.7	Validation of air velocity results with Speed Control of 20%	
	(Ventilation Laboratory in NIOSH Bangi)	92
4.8	Validation of air velocity results with Speed Control of 40%	
	(Ventilation Laboratory in NIOSH Bangi)	93
4.9	Validation of air velocity results with Speed Control of 60%	
	(Ventilation Laboratory in NIOSH Bangi)	94
4.10 FR	Validation of air velocity results with Speed Control of 80%	
	(Ventilation Laboratory in NIOSH Bangi)	95
4.11	Validation of air velocity results (Welding Laboratory in UTHM)	96
4.12	Validation of air velocity results (Thermal Environmental	
	Laboratory in UTHM)	97
4.13	Hood velocity obtained in three case studies	98
4.14	Velocity along ducts in three case studies	99
4.15	Summary of overall LEV system effectiveness of all	
	three case studies	101
4.16	Range of flow rate measured for all three case studies	102
4.17	Average absolute error of all three case studies	107

LIST OF FIGURES

FIGURE

TITLE

PAGE

2.1	Common elements of a simple LEV system (Guidelines on	
	Occupational Safety and Health for Design, Inspection,	
	Testing and Examination of LEV system, 2008)	7
2.2	An example of enclosure hood (Guidelines on Occupational	
	Safety and Health for Design, Inspection, Testing and	
	Examination of LEV system, 2008)	8
2.3	Example of exterior hoods (Guidelines on Occupational	
	Safety and Health for Design, Inspection, Testing and	
	Examination of LEV system, 2008)	9
2.4	An example of ducts at Welding Laboratory in UTHM	10
$2.5 \mathbf{pFR}$	Examples of fan used in LEV system (Guidelines on	
	Occupational Safety and Health for Design, Inspection,	
	Testing and Examination of LEV system, 2008)	11
2.6	Sketch of disc sander with LEV system (Mazzuckelli et al., 2004)	12
2.7	Small mixing ventilated exhaust hood (Old et al., 2008)	16
2.8	Large mixing ventilated booth-type exhaust hood	
	(Old et al., 2008)	16
2.9	Tracer gas capture test setup (Old et al., 2008)	17
2.10	Real-time evaluation of bench top exhaust hoods – control on /	
	control off (Old et al., 2008)	19

2.11	A 17.5 cm size uncontrolled conventional grinder	
	(Khanzadeh et al., 2007)	22
2.12	A 17.5 cm size wet grinder with water hose attached	
	(Khanzadeh et al., 2007)	23
2.13	A 15 cm LEV grinder with vacuum system	
	(Khanzadeh et al., 2007)	23
2.14	A region surrounded by a boundary	
	(STAR-CCM+ Tutorial Guide, 2009)	27
2.15	Three separate regions with three different boundaries	
	(STAR-CCM+ Tutorial Guide, 2009)	28
2.16	CFD simulations of food court center with four different	
	mechanical ventilation systems (Wong et al., 2006)	34
2.17	Initial configuration of simulation model of Case 1	
	(Mendez et al., 2008)	36
2.18	Five local ventilation outlets used for analysis. Three	
	outlets emanate from the roof (R1, R2, and R3) while two	
	from the floor (F1 and F2) (Inthavong et al., 2009)	37
3.1	Flow chart of this study	43
3.2	Framework of this study	44
3.3	Overview of LEV at Ventilation Laboratory in NIOSH Bangi	46
3.4 DER	Speed Control panel of LEV at Ventilation Laboratory in	
	NIOSH Bangi	47
3.5	Nine locations where measurements were conducted at	
	Ventilation Laboratory in NIOSH Bangi	48
3.6	Overview of LEV at Welding Laboratory in UTHM	49
3.7	Seven locations where measurements were conducted at	
	Welding Laboratory in UTHM	50
3.8	Overview of LEV at Thermal Environmental Laboratory	
	in UTHM	51
3.9	Four locations where measurements were conducted at	
	Thermal Environmental Laboratory in UTHM	52

xvii

3.10	Anemometer VelociCalc Plus Meter Model 8386	53
3.11	Pitot tube	53
3.12	Insertion depths for round ducts (Guidelines on Occupational	
	Safety and Health for Design, Inspection, Testing and	
	Examination of LEV system, 2008)	56
3.13	Insertion measurement points for rectangular ducts	
	(Guidelines on Occupational Safety and Health for Design,	
	Inspection, Testing and Examination of LEV system, 2008)	57
3.14	Insertion depths of pitot tube for round ducts at Location 1	
	of Ventilation Laboratory LEV in NIOSH Bangi using	
	10 insertion points	59
3.15	Round duct of LEV at Ventilation Laboratory in Bangi NIOSH	60
3.16	Round duct of LEV at Welding Laboratory in UTHM	60
3.17	Rectangular duct of LEV at Thermal Environmental Laboratory	
	in UTHM	61
3.18	SolidWorks drawing board	63
3.19	Geometry model of LEV hood drawn using SolidWorks	63
3.20	LEV geometry model at Ventilation Laboratory in	
	NIOSH Bangi	64
3.21	LEV geometry model at Welding Laboratory in UTHM	65
3.22 ER	LEV geometry model at Thermal Environmental	
	Laboratory in UTHM	65
3.23	ANSYS Workbench	66
3.24	Selecting CFX on ANSYS Workbench	67
3.25	Importing IGS file format to ANSYS CFX Workbench	67
3.26	Applying boundary conditions on LEV geometry model	68
3.27	Selecting turbulence model on LEV geometry model	69
3.28	Generating meshing on LEV geometry model at	
	Ventilation Laboratory in NIOSH Bangi	70
3.29	Generating meshing on LEV geometry model at	
	Welding Laboratory in UTHM	71

3.30	Generating meshing on LEV geometry model at	
	Thermal Environmental Laboratory in UTHM	71
3.31	Iteration of CFD tool, ANSYS	72
3.32	Obtaining CFD results on ANSYS Workbench	73
4.1	Graph of velocities of each location at Ventilation Laboratory	
	in NIOSH Bangi using Speed Control of 20%	78
4.2	Graph of velocity profile at Ventilation Laboratory	
	in NIOSH Bangi using Speed Control of 20%	78
4.3	Graph of velocities of each location at Ventilation Laboratory	
	in NIOSH Bangi using Speed Control of 40%	80
4.4	Graph of velocity profile at Ventilation Laboratory	
	in NIOSH Bangi using Speed Control of 40%	81
4.5	Graph of velocities of each location at Ventilation Laboratory	
	in NIOSH Bangi using Speed Control of 60%	83 A A
4.6	Graph of velocity profile at Ventilation Laboratory	
	in NIOSH Bangi using Speed Control of 60%	83
4.7	Graph of velocities of each location at Ventilation Laboratory	
	in NIOSH Bangi using Speed Control of 80%	85
4.8	Graph of velocity profile at Ventilation Laboratory	
	in NIOSH Bangi using Speed Control of 80%	86
4.9 DER	Graph of velocities of each location at Welding Laboratory	
	in UTHM	88
4.10	Graph of velocity profile at Welding Laboratory in UTHM	88
4.11	Graph of velocities of each location at Thermal	
	Environmental Laboratory in UTHM	90
4.12	Graph of velocity profile at Thermal Environmental	
	Laboratory in UTHM	91
4.13	CFD simulation of LEV at Ventilation Laboratory in	
	NIOSH Bangi using Speed Control of 20%	103
4.14	CFD simulation of LEV at Ventilation Laboratory in	
	NIOSH Bangi using Speed Control of 40%	104

4.15	CFD simulation of LEV at Ventilation Laboratory in	
	NIOSH Bangi using Speed Control of 60%	104
4.16	CFD simulation of LEV at Ventilation Laboratory in	
	NIOSH Bangi using Speed Control of 80%	105
4.17	CFD simulation of LEV at Welding Laboratory in UTHM	105
4.18	CFD simulation of LEV at Thermal Environmental Laboratory	
	in UTHM	106

LIST OF SYMBOLS AND ABBREVIATIONS

AWS	-	American Welding Society
CAE	-	Computer-aided Engineering
CFD	-	Computational Fluid Dynamics
CNT	-	Carbon Nanotubes
DOSH	-	Department of Occupational Safety and Health
DV	-	Dilution Ventilation
LEV	-	Local Exhaust Ventilation
NIOSH	-	National Institute for Occupational Safety and Health
PBZ	-	Personal Breathing Zone
RANS	-	Reynolds-Averaged Navier-Stokes
RCF	-	Refractory Ceramic Fibers
R&D	57 P	Research and Development
SPR	-	Static Pressure
UTHM	-	Universiti Tun Hussein Onn Malaysia
UV	-	Ultraviolet
V	-	Velocity
VP	-	Velocity Pressure
cm	-	centimeter
cfm	-	cubic feet per minute
E _{ABS}	-	absolute error percentage
f/cc	-	fibers/cubic centimeter
ft^2	-	square feet
ft/min	-	feet per minute

k	-	Turbulent Kinetic Energy
k-E	-	Turbulence Model k-E
L/min	-	Liter per minute
L/s	-	Liters per second
m/s	-	meters per second
mm	-	millimeter
rpm	-	revolution per minute
X _{CFD}	-	CFD simulated value for variable X
X _{exp}	-	actual experiment value for variable X
2D	-	two dimensional
3D	-	three dimensional
3	-	Turbulent Dissipation
°C	-	Celsius
ʻʻwg	-	inches of water gauge
%	-	Percentage

LIST OF APPENDICES

APPENDIX

TITLE

PAGE

А	Measurement and Equipment	117
В	Actual Experimental Results at Ventilation Laboratory in	
	NIOSH Bangi Using Speed Control of 20% (First Case Study)	123
С	Actual Experimental Results at Ventilation Laboratory in	
	NIOSH Bangi Using Speed Control of 40% (First Case Study)	131
D	Actual Experimental Results at Ventilation Laboratory in	
	NIOSH Bangi Using Speed Control of 60% (First Case Study)	139
Е	Actual Experimental Results at Ventilation Laboratory in	
	NIOSH Bangi Using Speed Control of 80% (First Case Study)	147
F	Actual Experimental Results at Welding Laboratory	
	in UTHM (Second Case Study)	155
G	Actual Experimental Results at Thermal Environmental	
	Laboratory in UTHM (Third Case Study)	168
Н	CFD Simulation of LEV	175
Ι	CFD Simulation of LEV at Ventilation Laboratory in	
	NIOSH Bangi Using SolidWorks and ANSYS (First Case Study)	182
J	CFD Results and Validation at Ventilation Laboratory in	
	NIOSH Bangi (First Case Study)	189
K	CFD Simulation of LEV at Welding Laboratory in	
	UTHM Using SolidWorks and ANSYS (Second Case Study)	194

L	CFD Results and Validation at Welding Laboratory in UTHM	
	(Second Case Study)	198
Μ	CFD Simulation of LEV at Thermal Environmental	
	Laboratory in UTHM Using SolidWorks and ANSYS	
	(Third Case Study)	200
Ν	CFD Results and Validation at Thermal Environmental	
	Laboratory in UTHM (Third Case Study)	204
0	CFD Simulation of LEV at Welding Laboratory in UTHM	
	with Different Types of Contaminant Sources Using ANSYS	206
Р	Calculation to Determine LEV System is Turbulent	211
Q	Calculation to Determine Fluid Flow is Incompressible	215

CHAPTER 1

INTRODUCTION

Contaminants such as dusts, mists, gases, vapour, fumes and so forth are the most common organic in which humans are exposed due to extensive use at workstations. Each year, at least thousands of workers are infected with occupational asthma and other lung diseases (Health and Safety Executive, 2010). Studies have found that exposure to such contaminants mentioned above can cause health effects (Flynn et al., 2003). Although some machines may come with a dust or fume handling device attached together, it is often necessary to meet exposure level requirements.

An efficient and capable method to this problem is the installation of local exhaust ventilation (LEV). LEV captures airborne contaminants close to the source of emission. It is generally achieved by using hood, duct, air cleaner, fan and discharge which remove contaminants before they have a chance to escape in workstations. LEV is used in order to help reducing workers' exposure to contaminants at workstations. The use of LEV resulted in an overall exposure reduction of 92% (Croteau et al., 2004). However, the reduction is highly depending on the way it is installed and used by workers (Wurzelbacher et al., 2010). The design and usage of LEV are often underappreciated (Shepherd et al., 2008). More attention should be paid to proper use and maintenance of LEV in various sectors (Meijster et al., 2007).

In order to take advantage of LEV design to ensure higher efficiency and performance of LEV, computational fluid dynamics (CFD) can be used and performed.

CFD is a design tool used to describe and simulate fluid dynamic phenomena. Simulation is used to forecast or reconstruct the behavior of an engineering product or physical situation under assumed or measured boundary conditions. Moreover, CFD can provide information of airflow distribution and air quality within a room. CFD have been increasingly used to calculate airflow velocities and temperatures in indoor environment such as food court center (Wong et al., 2006), home appliances (Lim et al., 2008), stadium (Stamou et al., 2008), hospital room (Mendez et al., 2008), and aircraft cabin (Yan et al., 2009). Despite the extensive usage of CFD application in various indoor environments, there are only a few past studies involving LEV.

1.1 Background of Problem

LEV is often used in industries and training facilities building where trainings on the work tasks are provided to occupants. Examples of places where application of LEV is used are Ventilation Laboratory in National Institute for Occupational Safety and Health (NIOSH) Bangi, Welding Laboratory and Thermal Environmental Laboratory in Universiti Tun Hussein Onn. Case studies were performed at these three places to perform actual experiments and CFD simulations.

The usage of LEV significantly reduced exposure of fiber particles with LEV than with no LEV (Mazzuckelli et al., 2004). Although the reduction showed good indication of LEV usage, however, Mazzuckelli et al. suggested that proper design of LEV is the main vital point to LEV effectiveness. Another similar study showed that application of LEV decreased total particulate concentrations by 75% (Wurzelbacher et al., 2010). In a food flavourings production facility, an average concentration reduction by up to 96% was obtained after LEV system was installed (Khanzadeh et al., 2007). Based on Khanzadeh et al. result, it demonstrated that basic exhaust hood design can help reducing occupants' exposure during the mixture of flavouring chemicals. Another researcher stated that effectiveness of LEV was effective at reducing welder's exposure during welding tasks if proper design and usage of exhaust hood was implemented

REFERENCES

American Conference of Governmental Industrial Hygienists (ACGIH), 2007. Industrial Ventilation. A Manual of Recommended Practice for Operation and Maintenance.

Carlo, R.V., Sheehy, J., Feng, H.A., Sieber, W.K., 2010. Laboratory Evaluation to Reduce Respirable Crystalline Silica Dust When Cutting Concrete Roofing Tiles Using a Masonry Saw. Journal of Occupational and Environmental Hygiene Volume 7:4, page 245 – 251.

CD-adapco STAR-CCM+ 2009. STAR-CCM+ Tutorial Guide.

Cena, L.G., Peters, T.M., 2011. Characterization and Control of Airborne Particles Emitted During Production of Epoxy/Carbon Nanotube Nanocomposites. Journal of Occupational and Environmental Hygiene Volume 8:2, page 86 – 92.

CFD Online Discussion Forums. http://www.cfd-online.com/Forums/

Croteau, G.A., Flanagan, M.E., Camp, J.E., Seixas, N.S., 2004. The Efficacy of Local Exhaust Ventilation for Controlling Dust Exposures During Concrete Surface Grinding. Annals of Occupational Hygiene Journal Volume 48, page 509 – 518.

- Department of Occupational Safety and Health (DOSH), 2008. Guidelines on Occupational Safety and Health for Design, Inspection, Testing and Examination of Local Exhaust Ventilation System.
- Flynn M.R., Susi, P., 2003. A Review of Engineering Controls for Selected Silica and Dust Exposures in the Construction Industry. Applied Occupational and Environmental Hygiene Journal Volume 18:4, page 268 – 277.
- Health and Safety Executive, 2010. Working with Substances Hazardous to Health. A Brief Guide to Control of Substances Hazardous to Health (COSHH) Regulations.
- Inthavong, K., Tian, Z.F., Tu, J.Y., 2009. Effect of Ventilation Design on Removal of Particles in Woodturning Workstations. Building and Environment Journal Volume 44, page 125 – 136.
- Kaviany, M., 2002. Principles of Heat Transfer. Wiley-Interscience Publication. John Wiley & Sons, Inc., New York.
- Khanzadeh, F.A., Milz, S., Ames, A., Susi, P.P., Bisesi, M., Khuder, S.A., Khanzadeh,
 M.A., 2007. Crystalline Silica Dust and Respirable Particulate Matter During
 Indoor Concrete Grinding Wet Grinding and Ventilated Grinding Compared
 with Uncontrolled Conventional Grinding. Journal of Occupational and
 Environmental Hygiene Volume 4, page 770 779.
- Khanzadeh, F.A., Milz, S.A., Wagner, C.D., Bisesi, M.S., Ames, A.L., Khuder, S., Susi,
 P., Khanzadeh, M.A., 2010. Effectiveness of Dust Control Methods for
 Crystalline Silica and Respirable Suspended Particulate Matter Exposure During
 Manual Concrete Surface Grinding. Journal of Occupational and Environmental
 Hygiene Volume 7:12, page 700 711.

Kulmala, I.K., 1997. Air Flow Field Near a Welding Exhaust Hood. Applied Occupational and Environmental Hygiene Journal Volume 12:2, page 101 – 104.

- Lim, K., Lee, C., 2008. A Numerical Study on The Characteristics of Flow Field, Temperature and Concentration Distribution According to Changing the Shape of Separation Plate of Kitchen Hood System. Energy and Buildings Journal Volume 40, page 175 – 184.
- Mazzuckelli, L., Dunn, K.H., Shulman, S.A., Cecala, A.B., Venturin, D.E., 2004.
 Evaluation of a Local Exhaust Ventilation System for Controlling Refractory Ceramic Fibers During Disc Sanding. Journal of Occupational and Environmental Hygiene Volume 1:10, page D107 – D111.
- Meeker, J.D., Susi, P., Flynn, M.R., 2010. Hexavalent Chromium (CrVI) Exposure and Control in Welding Tasks. Journal of Occupational and Environmental Hygiene Volume 7:11, page 607 – 615.

 Meijster, T., Tielemans, E., Pater, N., Heederik, D., 2007. Modeling Exposure in Flour Processing Sectors in The Netherlands: a Baseline Measurement in the Context of an Intervention Program. Annals of Occupational Hygiene Journal Volume 51, page 293 – 304.

Mendez, C., San Jose, J.F., Villafruela, J.M., Castro, F., 2008. Optimization of a Hospital Room By Means of CFD For More Efficient Ventilation. Energy and Buildings Journal Volume 40, page 849 – 854.

- Norton, T., Sun, D.W., Grant, J., Fallon, R., Dodd, V., 2007. Applications of Computational Fluid Dynamics (CFD) in The Modelling and Design of Ventilation Systems in The Agricultural Industry: A Review. Bioresource Technology Journal Volume 98, page 2386 – 2414.
- Ojima, J., 2007. Efficiency of a Tool-mounted Local Exhaust Ventilation System for Controlling Dust Exposure During Metal Grinding Operations. Journal of Occupational Health & Safety Volume 45, page 817 – 819.
- Old, L., Dunn, K.H., Garcia, A., Echt, A., 2008. Evaluation of a Local Exhaust Ventilation System for Controlling Exposures During Liquid Flavoring Production. Journal of Occupational and Environmental Hygiene Volume 5:11, page D103 – D110.
- Shepherd, S., Woskie, S.R., Holcroft. C., Ellenbecker M., 2008. Reducing Silica and Dust Exposures in Construction During Use of Powered Concrete-Cutting Hand Tools: Efficacy of Local Exhaust Ventilation on Hammer Drills. Journal of Occupational and Environmental Hygiene Volume 6:1, page 42 – 51.
- Smandych, R.S., Thomson, M., Goodfellow, H., 1998. Dust Control for Material
 Handling Operations: A Systematic Approach. American Industrial Hygiene
 Association Journal Volume 59:2, page 139 146.
- Versteeg, H.K., Malalasekera, W., 2007. An Introduction to Computational Fluid Dynamics: The Finite Volume Method (2nd Edition). Prentice Hall.
- Wallace, M., Fischbach, T., 2002. Effectiveness of Local Exhaust for Reducing Welding Fume Exposure During Boiler Rehabilitation. Applied Occupational and Environmental Hygiene Journal Volume 17:3, page 145 – 151.

- Wong, N.H., Song, J., Istiadji, A.D., 2006. A study of the effectiveness of mechanical ventilation systems of a hawker center in Singapore using CFD simulations.
 Building and Environment Journal Volume 41, page 726 733.
- Wurzelbacher, S.J., Hudock, S.D., Johnston, O.E., Blade, L.M., Shulman, S.A., 2010. A
 Pilot Study on the Effects of Two Ventilation Methods on Weld Fume Exposures
 in a Shipyard Confined Space Welding Task. Applied Occupational and
 Environmental Hygiene Journal Volume 17:11, page 735 740.