
AN ENHANCED UML CONSISTENCY CHECKER USING LOGICAL

APPROACH

NORAINI BINTI IBRAHIM

A thesis submitted in

fulfillment of the requirement for the award of the

Doctor of Philosophy in Information Technology

Faculty of Computer Science and Information Technology

Universiti Tun Hussein Onn Malaysia

MAY 2013

PTTA
PERPUS

TAKAAN
 TUNKU

 TUN A
MINAH

v

ABSTRACT

In developing an information system, software specification is one of the common

activities to any system development methodologies. A software model is among the

ways to specify software functionalities and constraints. It is constructed as a way to

understand the software prior to actually building or modifying it, and it can help in

reducing defect density in the software design. In an object oriented based

development, Unified Modeling Language (UML) is a famous language used for

visualising, capturing and documenting software requirements. Currently, UML has

a set of fourteen (14) diagrams that permits modellers to describe different aspects of

a system. Each diagram comprises of graphical notations that adhered to UML

elements. These situations rendered UML model vulnerable to consistency problems

where two or more overlapping elements of different diagrams are not jointly

satisfiable. Even though the research in consistency between UML diagrams is

rapidly increased, there is still lack of researches of consistency based on use case in

use case diagram. UML consistency management is becoming a difficult task

because UML itself lacks of formal syntax and semantics and current approaches

using simplified version of UML make their approaches hard to implement in CASE

(Computer-aided Software Engineering) tool environment. Due to those problems,

this research introduces formal syntactical rules to UML elements of four (4) most

popular UML diagrams used by UML practitioners: use case diagram, activity

diagram, sequence diagram and class diagram. Referring to the formal syntactical

rules for UML elements, formal horizontal consistency rules based on use case are

also specified. The formal specifications introduced in this research are using logical

approach. Based on the syntactical and horizontal consistency rules, UML Checker is

implemented in the CASE tool environment. Then, the UML Checker is validated by

using UML model of Lecture Assessment System (LAS) as a case study. It shows

that the UML Checker can detect inconsistencies between four (4) UML diagrams in

the UML model and guide software modeller to correct them.

PTTA
PERPUS

TAKAAN
 TUNKU

 TUN A
MINAH

vi

ABSTRAK

Dalam membangunkan sebuah sistem maklumat, menyatakan spesifikasi sesebuah

perisian tersebut merupakan aktiviti yang perlu dilakukan dalam mana-mana

metodologi pembangunan sistem. Menghasilkan model perisian merupakan antara

cara yang digunakan untuk menyatakan fungsi dan kekangan sesebuah perisian. Ia

dihasilkan sebagai salah satu cara untuk memahami perisian sebelum perisian

tersebut dibangunkan atau diubahsuai, serta dapat membantu dalam mengurangkan

kecacatan dalam reka bentuk perisian. Dalam pembangunan sistem berorientasikan

objek, Unified Modeling Language (UML) merupakan bahasa popular yang

digunakan untuk menggambarkan, mewakilkan dan mendokumentasikan keperluan

sesebuah perisian. Sehingga kini, UML mempunyai empat belas (14) rajah yang

menerangkan pelbagai aspek sesebuah sistem. Setiap rajah pula mengandungi

tatatanda grafik yang terdiri daripada elemen-elemen UML. Keadaan ini

menyebabkan model UML terdedah kepada keadaan tidak konsisten apabila dua atau

lebih elemen yang bertindan pada rajah berbeza tidak sepadan. Walaupun

penyelidikan berkaitan konsistensi antara rajah telah meningkat dengan pantas,

masih terdapat kekurangan penyelidikan konsistensi berasaskan kes guna dalam rajah

kes guna. Pengurusan konsistensi UML menjadi sukar kerana UML sendiri

kekurangan sintaks dan semantik formal dan pendekatan terkini menggunakan versi

bukan piawaian yang menyebabkan pendekatan tersebut sukar diimplimentasikan

kepada peralatan bantuan komputer berasaskan kejuruteraan perisian (CASE atau

Computer-aided Software Engineering). Justeru, penyelidikan ini memperkenalkan

peraturan sintaksis secara formal kepada elemen bagi empat (4) rajah UML yang

paling kerap digunakan oleh pengamal UML iaitu rajah kes guna, rajah aktiviti, rajah

jujukan dan rajah kelas. Berdasarkan peraturan sintaksis secara formal bagi elemen

setiap rajah, peraturan konsistensi mendatar berasaskan kes guna secara formal

antara rajah UML tersebut turut dihasilkan. Spesifikasi formal yang dihasilkan dalam

penyelidikan ini menggunakan pendekatan logikal. Menggunakan peraturan sintaksis

PTTA
PERPUS

TAKAAN
 TUNKU

 TUN A
MINAH

vii

dan konsistensi mendatar tersebut, UML Checker diimplementasikan dalam

persekitaran peralatan bantuan komputer berasaskan kejuruteraan perisian (CASE).

Kemudian, UML Checker ditentusahkan menggunakan model UML untuk Lecture

Assessment System (LAS) sebagai kajian kes. Hasilnya menunjukkan bahawa UML

Checker tersebut boleh mengesan masalah konsistensi antara empat (4) rajah UML

dan memandu pemodel sistem untuk membetulkannya.

PTTA
PERPUS

TAKAAN
 TUNKU

 TUN A
MINAH

viii

CONTENTS

 TITLE i

 DECLARATION ii

 DEDICATION iii

 ACKNOWLEDGEMENT iv

 ABSTRACT v

 ABSTRAK vi

 CONTENTS viii

 LIST OF PUBLICATIONS xiii

 LIST OF TABLES xv

 LIST OF FIGURES xvii

 LIST OF ALGORITHMS xix

 LIST OF SYMBOLS AND ABBREVIATIONS xx

 LIST OF APPENDICES xxi

CHAPTER 1 INTRODUCTION 1

1.1 Research motivations 3

1.2 Aim and objectives of study 5

1.3 Scope of study 6

1.4 Significance of study 7

1.5 Chapter summary 8

1.6 Thesis outline 8

CHAPTER 2 LITERATURE REVIEW 10

2.1 Software specification and software model 10

2.2 Unified Modeling Language (UML) 11

2.2.1 UML model 12

2.3 UML consistency definition 23

2.4 UML consistency management framework 25

2.4.1 Consistency specification 27

PTTA
PERPUS

TAKAAN
 TUNKU

 TUN A
MINAH

ix

2.4.2 Comparative studies in consistency

management 31

2.5 Chapter summary 33

CHAPTER 3 RESEARCH METHODOLOGY 35

3.1 Research framework 35

3.2 Formalization of syntactical rules of UML

elements for UML diagrams 36

3.3 Formalization of horizontal consistency rules 37

3.4 Implementation of the syntactical and horizontal

consistency rules in tool environment 37

3.5 Validation of UML Checker using UML model in

a case study 38

3.6 Chapter summary 39

CHAPTER 4 FORMALIZATION OF SYNTACTICAL RULES AND

CONSISTENCY RULES 40

4.1 Formalization of UML elements and their

syntactical rules 40

4.1.1 UML class diagram (CD) 42

4.1.2 UML use case diagram (UCD) 44

4.1.3 UML activity diagram (AD) 46

4.1.4 UML sequence diagram (SD) 49

4.2 Formalization of horizontal consistency rules 52

4.3 Chapter summary 84

CHAPTER 5 IMPLEMENTATION OF UML CHECKER 85

5.1 Overview of UML Checker 85

5.2 Editor 86

5.3 Checker 92

5.3.1 Algorithm for consistency rules between

UCD and AD 92

5.3.2 Algorithm for consistency rules between

UCD and SD 95

5.3.3 Algorithm for consistency rules between

UCD and CD 97

PTTA
PERPUS

TAKAAN
 TUNKU

 TUN A
MINAH

x

5.3.4 Algorithm for consistency rules between

AD and SD 98

5.3.5 Algorithm for consistency rules between

AD and CD 101

5.3.6 Algorithm for consistency rules between

SD and CD 103

5.4 Report Generator 105

5.4.1 Report generated for consistency rules

between UCD and AD 105

5.4.2 Report generated for consistency rules

between UCD and AD 108

5.4.3 Report generated for consistency rules

between UCD and CD 109

5.4.4 Report generated for consistency rules

between AD and SD 110

5.4.5 Report generated for consistency rules

between AD and CD 111

5.4.6 Report generated for consistency rules

between SD and CD 113

5.5 Chapter summary 114

CHAPTER 6 EVALUATION OF UML CHECKER 116

6.1 UML model for LAS 116

6.2 Consistency verification between UCD and AD 118

6.3 Consistency verification between UCD and SD 121

6.4 Consistency verification between UCD and CD 123

6.5 Consistency verification between AD and SD 124

6.6 Consistency verification between AD and CD 126

6.7 Consistency verification between SD and CD 127

6.8 Validation of a UML model without and by using

UML Checker 129

6.9 Comparison between several researchers’ findings

on issues in detecting inconsistency among four

UML diagrams 130

PTTA
PERPUS

TAKAAN
 TUNKU

 TUN A
MINAH

xi

6.9.1 Comparative studies on consistency

between UCD and AD (UCD-AD) 130

6.9.2 Comparative studies of consistency

between UCD and SD (UCD-SD) 132

6.9.3 Comparative studies on consistency

between UCD and CD (UCD-CD) 133

6.9.4 Comparative studies on consistency

between AD and SD (AD-SD) 134

6.9.5 Comparative studies on consistency

between AD and CD (AD-CD) 135

6.9.6 Comparative studies on consistency

between SD and CD (SD-CD) 137

6.10 Chapter summary 140

CHAPTER 7 CONCLUSION AND FUTURE WORK 141

7.1 Research summary 141

7.2 Achievement of objectives 141

7.2.1 Objective 1: Formalization of UML

elements for UML use case diagram,

activity diagram, sequence diagram and

class diagram and their syntactical rules

into logical specification 141

7.2.2 Objective 2: Formalization of horizontal

consistency rules between UML use case

diagram, activity diagram, sequence

diagram and class diagram based on UML

elements in Objective 1 into logical

specification 142

7.2.3 Objective 3: Implementation of syntactical

and horizontal consistency rules in UML

Checker 142

7.2.4 Objective 4: Validation of UML Checker

using a UML model 143

7.3 Contribution 143

7.4 Future work 143

PTTA
PERPUS

TAKAAN
 TUNKU

 TUN A
MINAH

xii

7.5 Summary 144

REFERENCES 145

APPENDIX 150

VITA 237

PTTA
PERPUS

TAKAAN
 TUNKU

 TUN A
MINAH

xiii

LIST OF PUBLICATIONS

Journal:

(i) Noraini Ibrahim, Rosziati Ibrahim, Mohd Zainuri Saringat, Dzahar Mansor

and Tutut Herawan. (2012). “Use Case Driven based Rules in Ensuring

Consistency of UML Model.” In AWERProcedia Information Technology

and Computer Science. vol. 1, pp. 1485-1491.

(ii) Noraini Ibrahim, Rosziati Ibrahim, Mohd Zainuri Saringat, Dzahar Mansor

and Tutut Herawan. (2011). “Consistency Rules between UML Use Case and

Activity Diagram Using Logical Approach.” In International Journal of

Software Engineering and Its Applications. Science and Engineering Support

Center. vol. 5, no. 3, pp. 119-134.

Proceedings:

(i) Noraini Ibrahim, Rosziati Ibrahim, Mohd Zainuri Saringat, Dzahar Mansor

and Tutut Herawan. (2011). “Definition of Consistency Rules between UML

Use Case and Activity Diagram.” In T.-h. Kim, et al. (Eds.). Ubiquitous

Computing and Multimedia Applications. CCIS, Springer Berlin /

Heidelberg. vol. 151/ 2011, pp. 498-508.

(ii) Noraini Ibrahim, Rosziati Ibrahim, Mohd Zainuri Saringat, Dzahar Mansor

and Tutut Herawan. (2010). “On Well-Formedness Rules for UML Use Case

Diagram.” In F. Wang, et al. (Eds.). Web Information Systems and Mining.

LNCS, Springer Berlin / Heidelberg. vol. 6318/ 2010, pp. 432-439. Cited by

2.

(iii) Noraini Ibrahim and Rosziati Ibrahim. (2009). “Checking Inconsistencies

in UML Diagrams.” Software Engineering Postgraduate Workshop (SEPOW

2009). Penang, Malaysia.

PTTA
PERPUS

TAKAAN
 TUNKU

 TUN A
MINAH

xiv

(iv) Noraini Ibrahim and Rosziati Ibrahim. (2009). “Semantic Rules of UML

Specification.” Malaysian Technical Universities Conference on Engineering

and Technology (MUCEET 2009). Kuantan, Pahang.

(v) Noraini Ibrahim, Rosziati Ibrahim and Dzahar Mansor. (2009).

“Formalization of Well-Formedness Rules for UML Use Case Diagram.”

The 5th International Conference of Information and Communication

Technology and Systems (ICTS) 2009. Surabaya, Indonesia. pp. 127-132.

(vi) Noraini Ibrahim, Rosziati Ibrahim and Dzahar Mansor. (2009). Well-

Formedness Rules for UML Use Case Diagram. Proceeding of International

Industrial Informatics Seminar (IIS) 2009. Yogyakarta, Indonesia. pp. 169-

173.

PTTA
PERPUS

TAKAAN
 TUNKU

 TUN A
MINAH

xv

LIST OF TABLES

2.1 Concrete example of consistency problem classification

(Lucas, et al., 2009).. 23

2.2 Researchers involved in UML consistency management of

four (4) UML diagrams .. 26

3.1 Description of LAS ... 38

4.1 Overview of UML elements and their formal logical

specification in UML Checker ... 40

4.2 Relationship between formal consistency rule, propositions

and syntactical rule ... 52

5.1 UML Checker components ... 86

5.2 Mapping between elements involved in CR1 ... 92

5.3 Mapping between elements involved in CR2 ... 93

5.4 Mapping between elements involved in CR3 ... 94

5.5 Mapping between elements involved in CR4 ... 95

5.6 Mapping between elements involved in CR5 ... 96

5.7 Mapping between elements involved in CR6 ... 98

5.8 Mapping between elements involved in CR7 ... 99

5.9 Mapping between elements involved in CR8 100

5.10: Mapping between elements involved in CR9 101

5.11 Mapping between elements involved in CR10 102

5.12 Mapping between elements involved in CR11 103

5.13 Mapping between elements involved in CR12 104

6.1 Comparison between the UML LAS model without using

UML Checker and the UML LAS model after using the

UML Checker... 130

PTTA
PERPUS

TAKAAN
 TUNKU

 TUN A
MINAH

xvi

6.2 Comparison between several researchers’ findings on issues

in detecting inconsistency between UML Use Case Diagram

and Activity Diagram ... 131

6.3 Comparison between several researchers’ findings on issues

in detecting inconsistency between UML Use Case Diagram

and Sequence Diagram ... 133

6.4 Comparison between several researchers’ findings on issues

in detecting inconsistency between UML Use Case Diagram

and Class Diagram ... 134

6.5 Comparison between several researchers’ findings on issues

in detecting inconsistency between UML Activity Diagram

and Sequence Diagram ... 135

6.6 Comparison between several researchers’ findings on issues

in detecting inconsistency between UML Activity Diagram

and Class Diagram ... 136

6.7 Comparison between several researchers’ findings on issues

in detecting inconsistency between UML Sequence Diagram

and Class Diagram ... 138

 PTTA
PERPUS

TAKAAN
 TUNKU

 TUN A
MINAH

xvii

LIST OF FIGURES

2.1 UML language architecture.. 12

2.2 Graphical nodes in use case diagram ... 14

2.3 Abstract syntax for UML use case diagram (Object

Management Group (OMG), 2011b) ... 16

2.4 Graphical nodes and paths in activity diagram .. 17

2.5 Graphical nodes and paths in a sequence diagram 19

2.6 Fragment abstract syntax for UML sequence diagram (Object

Management Group (OMG), 2011b) ... 20

2.7 Lifeline format(Object Management Group (OMG), 2011b) 20

2.8 Graphical nodes in class diagram ... 21

2.9 Abstract syntax for UML class diagram(Object Management

Group (OMG), 2011b) ... 22

3.1 Framework of UML Checker ... 36

4.1 Visualisation of CR1 .. 55

4.2 Visualisation of CR2 .. 58

4.3 Visualization of CR3 .. 61

4.4 Visualisation of CR4 .. 64

4.5 Visualization of CR5 .. 66

4.6 Visualization of CR6 .. 69

4.7 Visualization of CR7 .. 71

4.8 Visualization of CR8 .. 73

4.9 Visualization of CR9 .. 75

4.10 Visualization of CR10 .. 77

4.11 Visualization of CR11 .. 79

4.12 Visualization of CR12 .. 82

5.1 Right clicking each use case and then click Add Linked

File .. 87

PTTA
PERPUS

TAKAAN
 TUNKU

 TUN A
MINAH

xviii

5.2 Selecting UML diagrams to be linked to a use case 88

5.3 Diagram linked to a use case .. 88

5.4 Selecting Delete links ... 89

5.5 Deleting a file or all.. 90

5.6: Validate UML Model by clicking Architecture menu 91

5.7 Validate UML Model by right clicking editor window 91

6.1 LAS use case diagram .. 117

6.2 Generated Output Message for CR1 .. 118

6.3 Generated Output Message for CR2 .. 119

6.4 Generated Output Message for CR2 after inconsistencies

corrected ... 119

6.5 Generated Output Message for CR3 .. 120

6.6 Generated Output Message for CR3 after inconsistencies

corrected ... 121

6.7 Generated Output Message for CR4 .. 121

6.8 Generated Output Message for CR5 .. 122

6.9 Generated Output Message for CR5 after inconsistencies

corrected ... 123

6.10 Generated Output Message for CR6 .. 123

6.11 Generated Output Message for CR6 after inconsistencies

corrected ... 124

6.12 Generated Output Message for CR7 .. 125

6.13 Generated Output Message for CR8 .. 126

6.14 Generated Output Message for CR9 .. 126

6.15 Generated Output Message for CR10 .. 127

6.16 Generated Output Message for CR11 .. 128

6.17 Generated Output Message for CR12 .. 129

PTTA
PERPUS

TAKAAN
 TUNKU

 TUN A
MINAH

xix

LIST OF ALGORITHMS

5.1 Algorithm for CR1 ... 93

5.2 Algorithm for CR2 ... 94

5.3 Algorithm for CR3 ... 95

5.4 Algorithm for CR4 ... 96

5.5 Algorithm for CR5 ... 97

5.6 Algorithm for CR6 ... 98

5.7 Algorithm for CR7 ... 99

5.8 Algorithm for CR8 ... 100

5.9 Algorithm for CR9 ... 101

5.10 Algorithm for CR10 ... 102

5.11 Algorithm for CR11 ... 104

5.12 Algorithm for CR12 ... 105

5.13 Algorithm for report generated for CR1 .. 106

5.14 Algorithm for report generated for CR2 .. 107

5.15 Algorithm for report generated for CR3 .. 108

5.16 Algorithm for report generated for CR4 .. 108

5.17 Algorithm for report generated for CR5 .. 109

5.18 Algorithm for report generated for CR6 .. 110

5.19 Algorithm for report generated for CR7 .. 111

5.20 Algorithm for report generated for CR8 .. 111

5.21 Algorithm for report generated for CR9 .. 112

5.22 Algorithm for report generated for CR10 .. 113

5.23 Algorithm for report generated for CR11 .. 113

5.24 Algorithm for report generated for CR12 .. 114

PTTA
PERPUS

TAKAAN
 TUNKU

 TUN A
MINAH

xx

LIST OF SYMBOLS AND ABBREVIATIONS

OMG - Object Management Group

UML - Unified Modeling Language

OCL - Object Constraint Language

CR1 - Consistency Rule 1

CR2 - Consistency Rule 2

CR3 - Consistency Rule 3

CR4 - Consistency Rule 4

CR5 - Consistency Rule 5

CR6 - Consistency Rule 6

CR7 - Consistency Rule 7

CR8 - Consistency Rule 8

CR9 - Consistency Rule 9

CR10 - Consistency Rule 10

CR11 - Consistency Rule 11

CR12 - Consistency Rule 12

LAS - Lecture Assessment System

UCD - Use case diagram

AD - Activity diagram

SD - Sequence diagram

CD - Class diagram

CASE - Computer-aided Software Engineering

UP - Unified Process

IS - Information system

OMT - Object Modeling Technique

OOSE - Object Oriented Software Engineering

DL - Description Logic

VS - Microsoft Visual Studio 2010 Ultimate

PTTA
PERPUS

TAKAAN
 TUNKU

 TUN A
MINAH

xxi

LIST OF APPENDICES

APPENDIX TITLE PAGE

A Listing A.1: Part of source codes for CR1

Listing A.2: Part of source codes for CR2

Listing A.3: Part of source codes for CR3

Listing A.4: Part of source codes for CR4

Listing A.5: Part of source codes for CR5

Listing A.6: Part of source codes for CR6

Listing A.7: Part of source codes for CR7

Listing A.8: Part of source codes for CR8

Listing A.9: Part of source codes for CR9

Listing A.10: Part of source codes for

CR10

Listing A.11: Part of source codes for

CR11

Listing A.12: Part of source codes for

CR12

150

151

153

155

156

158

159

161

163

164

167

168

B Table B.1: List of diagrams in LAS and

their associated files in Visual Studio

2010

172

 Table B.2: Description of use cases and

their associated activity diagrams,

sequence diagrams and class diagram

174

 Figure B.1: LAS activity diagram for use

case Manage Marks

175

 Figure B.2: LAS activity diagram for use

case Manage Student Attendance

176

PTTA
PERPUS

TAKAAN
 TUNKU

 TUN A
MINAH

xxii

APPENDIX TITLE PAGE

B Figure B.3: LAS activity diagram for use

case Retrieve Report (Academic

Advisor)

177

 Figure B.4: LAS activity diagram for use

case Retrieve Report (Academic

Management Officer)

178

 Figure B.5: LAS activity diagram for use

case Retrieve Report (Head of

Department)

179

 Figure B.6: LAS activity diagram for use

case Manage User

180

 Figure B.7: LAS activity diagram for use

case Login

181

 Figure B.8: LAS sequence diagram for

use case Manage Marks (Basic flow)

182

 Figure B.9: LAS sequence diagram for

use case Manage Marks (Exit from

percentage)

183

 Figure B.10: LAS sequence diagram for

use case Manage Marks (Exit from

update marks)

184

 Figure B.11: LAS sequence diagram for

use case Manage Marks (Update mark

graph)

185

 Figure B.12: LAS sequence diagram for

use case Manage Marks (Update

percentage)

186

 Figure B.13: LAS sequence diagram for

use case Manage Student Attendance

(Basic flow)

187

PTTA
PERPUS

TAKAAN
 TUNKU

 TUN A
MINAH

xxiii

APPENDIX TITLE PAGE

B Figure B.14: LAS sequence diagram for

use case Manage Student Attendance

(Exit register student)

188

 Figure B.15: LAS sequence diagram for

use case Manage Student Attendance

(Exit student attendance)

189

 Figure B.16: LAS sequence diagram for

use case Manage Student Attendance

(Fill in student attendance)

190

 Figure B.17: LAS sequence diagram for

use case Manage Student Attendance

(Print warning letter)

191

 Figure B.18: LAS sequence diagram for

use case Manage Student Attendance

(Retrieve student register from SMP)

192

 Figure B.19: LAS sequence diagram for

use case Retrieve Report (Academic

Advisor)

193

 Figure B.20: LAS sequence diagram for

use case Retrieve Report (Academic

Management Officer)

194

 Figure B.21: LAS sequence diagram for

use case Retrieve Report (Head of

Department)

195

 Figure B.22: LAS sequence diagram for

use case Manage User (Assign modules)

196

 Figure B.23: LAS sequence diagram for

use case Manage User (Change

password-not system admin)

197

PTTA
PERPUS

TAKAAN
 TUNKU

 TUN A
MINAH

xxiv

APPENDIX TITLE PAGE

B Figure B.24: LAS sequence diagram for

use case Manage User (Change

password-system admin)

198

 Figure B.25: LAS sequence diagram for

use case Manage User (Create account)

199

 Figure B.26: LAS sequence diagram for

use case Manage User (delete Account)

200

 Figure B.27: LAS sequence diagram for

use case Manage User (Update profile)

201

 Figure B.28: LAS sequence diagram for

use case Manage User (User is already

exist)

202

 Figure B.29: LAS sequence diagram for

use case Manage User (User is not

authorized)

203

 Figure B.30: LAS sequence diagram for

use case Manage User (User is not

found)

204

 Figure B.31 LAS sequence diagram for

use caseLogin (Basic flow)

205

 Figure B.32: LAS sequence diagram for

use case Login (Invalid password)

206

 Figure B.33: LAS class diagram 207

 Figure B.34: LAS activity diagram for

use case Manage Marks (after modified)

208

 Figure B.35: LAS activity diagram for

use case Manage Student Attendance

(after modified)

209

 Figure B.36: LAS sequence diagram for

use case Manage Marks (Basic flow)

(after modified)

210

PTTA
PERPUS

TAKAAN
 TUNKU

 TUN A
MINAH

xxv

APPENDIX TITLE PAGE

B Figure B.37: LAS class diagram (after

modified)

211

C Table C.1: Detail of LAS related to CR1 212

 Table C.2:Detail of LAS related to CR2 212

 Table C.3: Detail of LAS related to CR3 214

 Table C.4: Detail of LAS related to CR4 215

 Table C.5: Detail of LAS related to CR5 216

 Table C.6: Detail of LAS related to CR6 217

 Table C.7: Detail of LAS related to CR7 218

 Table C.8: Detail of LAS related to CR8 219

 Table C.9: Detail of LAS related to CR9 220

 Table C.10: Detail of LAS related to

CR10

221

 Table C.11:Detail of LAS related to

CR11

222

 Table C.12:Detail of LAS related to

CR12

226

D Compact Disc (CD)-Digital copy of LAS

UML model

236

PTTA
PERPUS

TAKAAN
 TUNKU

 TUN A
MINAH

1 CHAPTER 1

INTRODUCTION

Currently, as a result of innovation and technology, computer has been made

as part of everyone’s life. People nowadays cannot live without computers. The

current challenge is to develop the best software that suits people best. In developing

a computer system or software, there are different set of processes or activities. The

most generic activities are software specification, software development, software

validation and software evolution (Sommerville, 2011). In the software specification,

functionalities and constrains of the software must be defined and specified.

Software model is one of the ways used to document software specification. It is

constructed as a way to understand the software prior to building or modifying it, and

it can help in reducing defect density in software design (Nugroho & Chaudron,

2009).

In an object-oriented based system, Unified Modeling Language (UML) is

used in visualizing, capturing and documenting the requirements of software.

Currently, UML is represented by fourteen (14) diagrams that are used to describe

the different views of a system; structural and behavioural. Each of the UML

diagrams is represented by their own graphical elements. The graphical element

adheres to UML elements and relationships as described by UML abstract syntax.

For example, an actor in a use case diagram is represented by a stick man icon with

its name, while the stick man adhered to the Actor element. Abstract syntax is used to

show attributes of the UML elements and their relationship with other elements as

well as their constraints or well-formedness rules. It is not sufficient to show the

description of each UML elements by the abstract syntax only, hence in UML

standard (Object Management Group (OMG), 2011b), their semantics, notation and

added constraints are described in natural language and part of the constraints are

PTTA
PERPUS

TAKAAN
 TUNKU

 TUN A
MINAH

 2

supported by the Object Constraint Language (OCL). Constraints are well-

formedness rules that apply to the elements (Object Management Group (OMG),

2011b). These constraints are important to be satisfied within a single UML diagram

as they impact the completeness of a UML model (Christian F. J. Lange &

Chaudron, 2004). However, UML constraints lack of formal syntax (Elaasar &

Briand, 2004, Huzar, et al., 2005). This situation presents an opportunity to many

researchers (Chanda, Kanjilal & Sengupta, 2010, Chanda, et al., 2009, Li, Liu & He,

2001, Mostafa, et al., 2007, Övergaard & Palmkvist, 2004, Sengupta &

Bhattacharya, 2008, Shinkawa, 2006) in giving formal definition to UML.

On the other hand, different UML diagrams use different notations to

describe a system. Furthermore, the various types of UML diagram permits UML

practitioners to describe different views of a system. For example, an actor in use

case diagram (behavioural view) is used to represent role played by an entity that

interacts with system, while a class in class diagram (structural view) is used to

represent an object such as person, place, thing, element, event, screen or report in a

system (Ambler, 2011). Thus, some overlapping elements between an actor and a

class in two different UML diagrams might happen and results in inconsistencies. A

huge complexity of UML that contains different notations, different types of diagram

for different view of a system and lack of formal description open consistency

problem in UML diagrams (Elaasar & Briand, 2004, Huzar, et al., 2005).

Consistency is the situation where two or more overlapping elements of

different software models that describe the aspects of a system are satisfy to joint

(Spanoudakis & Zisman, 2001). Consistency of UML model is very important

because it is one (1) of the attributes used in measuring quality of UML model

(Nugroho & Chaudron, 2008). Consistent model also helps in the implementation of

the models, making sure that the models are not having troubles (Nugroho &

Chaudron, 2009, 2008) such as inconsistencies, because inconsistencies are surveyed

as one of the factors leading to implementation problems (Christian F.J. Lange,

Chaudron & Musken, 2006). Consistency problem viewed in different perspectives;

syntactical consistency, semantic consistency, horizontal or intra-model consistency

and vertical or inter-model consistency (Elaasar & Briand, 2004, Huzar, et al., 2005,

Lucas, Molina & Toval, 2009, Mens, Straeten & Simmonds, 2005b, Usman, et al.,

2008). Syntactical consistency problems involve the conformance of UML diagrams

to its abstract syntax, while semantic consistency problem intricate compatibility of a

PTTA
PERPUS

TAKAAN
 TUNKU

 TUN A
MINAH

 3

model’s behaviour to its semantics (Elaasar & Briand, 2004, Engels, et al., 2001).

Consistency within a model which is built at the same level of abstraction is called

horizontal consistency, while consistency between models which are built at different

level of abstraction is called vertical consistency (Elaasar & Briand, 2004, Engels, et

al., 2001). This research is only focusing on syntactical and horizontal consistency

rules as it is a prerequisite to any further consistency analysis. In this research, the

consistency are specified among four (4) UML diagrams; UML class diagram, use

case diagram, sequence diagram and activity diagram as they are surveyed as the

most UML diagrams used by UML practitioners (Dobing & Parsons, 2008,

Grossman, Aronson & McCarthy, 2005).

1.1 Research motivations

In consistency management, there are three (3) main activities. They are consistency

specification, inconsistency detection and inconsistency handling (Hubaux, et al.,

2009, Spanoudakis & Zisman, 2001). In consistency specification activity, one of

things to be considered is consistency rules. The consistency rules are conditions that

UML model must satisfy for it to be considered a valid UML model (Egyed, 2007b).

A UML model is inconsistent when it violates the specific consistency rules

(Hubaux, et al., 2009, Sourrouille & Caplat, 2004, Spanoudakis & Zisman, 2001).

However, UML standard (Object Management Group (OMG), 2011a, b) does not

describe or state any consistency rules that should be followed. In software

development methodologies like Unified Process (UP), the consistency rules are

important because the construction of one diagram depends on information provided

by another diagram (Satzinger, Jackson & Burd, 2005). For example activity

diagrams are the detail descriptions of use cases, while the details descriptions in the

activity diagrams are also important for the development of sequence diagrams. So,

the activity diagrams and sequence diagrams must all be consistent with the use

cases. Therefore, validating the consistency between UML diagrams is very

important in addressing issues pertaining quality of UML model (Baruzzo & Comini,

2008, Christian F. J. Lange & Chaudron, 2005, Christian F.J. Lange, et al., 2006,

Nugroho & Chaudron, 2009, 2008).

PTTA
PERPUS

TAKAAN
 TUNKU

 TUN A
MINAH

 4

Similar to programming language like C++, Java and others, conformance of

UML elements to its abstract syntax is prerequisite to any further consistency

analysis. At the same time, ensuring consistency within a model in the same level of

abstraction is a priority before confirming consistency at different level of

abstractions. Therefore, there are many researchers involved in the research on

syntactical and horizontal consistency management (Lucas, et al., 2009, Usman, et

al., 2008). Consistency between UML sequence diagram and class diagram is an area

that is most regularly focused by researchers (Chanda, et al., 2010, Egyed, 2007a,

2006, 2007b, Hee, et al., 2006, Mens, et al., 2005b, Sapna & Mohanty, 2007,

Spanoudakis & Kim, 2002, Straeten, 2005, Straeten, et al., 2003). Consistency

between UML use case diagram and activity diagram has been defined by Chanda et

al. (2009), Sapna & Mohanty (2007) and Shinkawa (2006). Sapna & Mohanty (2007)

also specify the consistency between UML use case diagram and sequence diagram,

and UML activity diagram and sequence diagram. Furthermore, consistency between

UML use case diagram and class diagram has also been defined by Sapna &

Mohanty (2007), and Fryz & Kotulski (2007). Chanda et al.(2009) have also defined

the consistency between UML activity diagram and class diagram.

On the other hand, each consistency rules is defined over a set of UML

elements (Hubaux, et al., 2009). In UML standard (Object Management Group

(OMG), 2011b), the description of the UML elements are defined using abstract

syntax and supported by natural language and some of them are specified using

Object Constraint Language (OCL). This makes UML consistency management is

becoming more difficult because UML itself lacks of formal syntax and semantics.

Even though, there is increasing research in horizontal consistency between diagrams

(Lucas, et al., 2009, Usman, et al., 2008), there are still lacks of researches of

consistency based on use case. In famous system development methodologies such

as ICONIX and Unified Process (UP), use cases provide the foundation for defining

functional requirements and design throughout system development (Rosenberg &

Stephens, 2007, Satzinger, et al., 2005). The importance of use case can be seen in a

survey done by Dobing & Parsons(2008) as it is second ranked diagram used by

UML practitioners. Majority of the researches (Chanda, et al., 2010, Chanda, et al.,

2009, Hee, et al., 2006, Sapna & Mohanty, 2007, Shinkawa, 2006, Spanoudakis &

Kim, 2002) are using the simplified version of UML. Hence, the usage of simplified

PTTA
PERPUS

TAKAAN
 TUNKU

 TUN A
MINAH

 5

version of UML makes their approaches hard to implement in CASE tool

environment (Lucas, et al., 2009).

Therefore, this research will look into horizontal consistency based on use

case between four (4) most popular UML diagrams used by UML practitioners; use

case diagram, activity diagram, sequence diagram and class diagram. The syntactical

rule of the UML elements adhered for the UML diagrams are specified in formal

logic specifications in order to express the UML elements description in more

precise terms and avoid ambiguity. The formal specifications of the UML elements

are then used to formalize twelve (12) horizontal consistency rules based on use case.

Three (3) consistency rules between use case diagram and activity diagram (UCD-

AD), two (2) consistency rules between use case diagram and sequence diagram

(UCD-SD), one (1) consistency rule between use case diagram and class diagram

(UCD-CD), two (2) consistency rules between activity diagram and sequence

diagram (AD-SD), two (2) consistency rules between activity diagram and class

diagram (AD-CD), and two (2) consistency rules between sequence diagram and

class diagram (SD-CD). Out of the twelve (12) consistency rules, two (2) of them are

totally new while the remaining has been refined according to UML elements as in

the UML standard. UML Checker is then developed to implement the presented

syntactical rules and horizontal consistency rules in Microsoft Visual Studio 2010

Ultimate as the CASE tool corresponds to the UML Superstructure Specification

2.1.2 (Object Management Group (OMG), 2007). Each of the UML elements

involved in the syntactical and horizontal consistency rules are mapped to types

provided by the CASE tool to ensure that the syntactical and horizontal consistency

rules are implementable and can be used to validate the UML model.

1.2 Aim and objectives of study

The aim of this study is to ensure that the presented syntactical rules and horizontal

consistency rules can be used to validate the consistency of a UML model consisting

of four (4) UML diagrams: use case diagram, activity diagram, sequence diagram

and class diagram, and the rules are implementable in CASE tool environment.

PTTA
PERPUS

TAKAAN
 TUNKU

 TUN A
MINAH

 6

The objectives of this study are:

(i) to formalize the syntactical rules for UML elements concentrating on UML

use case diagram, activity diagram, sequence diagram and class diagram into

logical specification,

(ii) to formalize horizontal consistency rules between the UML use case diagram,

activity diagram, sequence diagram and class diagram based on the UML

elements in (i) into logical specification,

(iii) to develop a UML Checker by integrating syntactical rules for UML elements

in (i) and horizontal consistency rules in (ii) in CASE tool environment, and

(iv) to validate the UML Checker using a UML model.

1.3 Scope of study

The scope of this research is as follows:

(i) Syntactical rules and horizontal consistency rules generation

UML consistency is categorized into horizontal or intra-model consistency,

vertical or inter-model consistency, syntactic consistency, and semantic

consistency. This research is only focusing on the syntactical and horizontal

consistency because they are prerequisite to other consistency analysis. There

are four (4) UML diagrams to be focused: UML use case diagram, activity

diagram, sequence diagram and class diagram as they are the most popular

UML diagrams used by UML practitioners: The UML elements defined for

the UML diagrams are based on UML 2.4.1 standard specification (Object

Management Group (OMG), 2011b).

(ii) Formalization of the UML elements and syntactical rules and horizontal

consistency rules

The consistency rules are defined over a set of UML elements adhering to the

UML diagrams. Due to lack of UML formal syntax and semantics, there are

three (3) formal techniques frequently used by researchers in giving formal

definition to UML elements. Therefore, in this research the UML elements

PTTA
PERPUS

TAKAAN
 TUNKU

 TUN A
MINAH

 7

for the four (4) UML diagrams and consistency rules between them are

specified into logical specification as this type of specification more suitable

in describing the structure of a system despite of its behaviour.

(iii) Implementation of rules syntactical and consistency rules in CASE tool

environment

In implementing syntactical rules and horizontal consistency rules between

UML diagrams in a CASE tool, it is important to ensure that the CASE tool

conforms to UML standard specification. In this research, Microsoft Visual

Studio 2010 Ultimate is used in implementing the presented syntactical and

horizontal consistency rules. The CASE tool conforms to UML Specification

2.1.2.

(iv) Validating UML Checker using a case study

In ensuring that the presented syntactical rules and horizontal consistency

rules implemented in UML Checker can be used in validating the consistency

of a UML model, Lecture Assessment System (LAS) is used as a case study.

1.4 Significance of study

UML modeling can help in reducing defect density in software design (Nugroho &

Chaudron, 2008). Therefore, taking great heed on the consistencies of UML models

at early stage of software development helps in improving the quality of UML

models (Nugroho & Chaudron, 2009). As consistency is one of the factor lead the

implementation problems (Christian F.J. Lange, et al., 2006), this will also indirectly

improve the software implementation. Formalizing syntactical rules of UML

elements helps in precisely defining the consistency between diagrams, while

integrating the syntactical and horizontal consistency rules in CASE tool will ease

the user in understanding and modelling complete and correct software models.

PTTA
PERPUS

TAKAAN
 TUNKU

 TUN A
MINAH

 8

1.5 Chapter summary

There are many researchers involved in doing research on managing syntactical and

horizontal inconsistency between UML diagrams. However, limitations such as huge

complexity of the UML that contains different notations, different types of diagram

for different view of a system and lack of UML syntax and semantics are some of the

sources of inconsistencies problem in a UML model. Therefore, in order to improve

the validating consistency of the UML model requires constant improvements.

Numerous approaches related to consistency specification and inconsistency

detection has been carried out. However, current solutions using simplified version

of the UML result in poor integration between the consistency management with

CASE tool environment. Therefore, improvement on consistency rules specification

requires the rules to be specified over standard UML elements that adhered to the

UML models. Thus, in overcoming the drawbacks as mentioned before, this research

focuses on formalizing syntactical rules for part of the UML elements adhering to

four (4) UML diagrams; use case diagram, activity diagram, sequence diagram and

class diagram, into logical specification. Syntactical rules for each of the UML

elements are defined in logical specification to give more precise description to their

natural language descriptions. The UML elements are then used to formalize twelve

(12) horizontal consistency rules that will be used in detecting inconsistencies

between those four (4) UML diagrams. The consistency rules are integrated into

UML Checker and are used to validate the UML model. The next chapter discusses

the literature on the existing approaches related to consistency management.

1.6 Thesis outline

The rest of this thesis is organized into the following chapters. Chapter 2 starts by

describing the role of software specification activity in software development. Then

it is followed by overview of the UML itself and syntactical rules for part of the

UML elements that adhering to four (4) UML diagrams; use case diagram, activity

diagram, sequence diagram and class diagram. Next, related literature to horizontal

consistency problems and technique to specify and validate them also discussed in

this chapter. Finally, comparative studies of solutions towards horizontal consistency

PTTA
PERPUS

TAKAAN
 TUNKU

 TUN A
MINAH

 9

problems are discussed. Chapter 3 describes four (4) main activities involved in this

research, while Chapter 4 focuses on formalization of the syntactical rules for UML

elements adhering to four (4) UML diagrams: use case, activity, sequence and class

diagram, and horizontal consistency rules between those diagrams into logical

specification. Then, as a way to implement the syntactical and horizontal consistency

rules, Chapter 5 describes the integration of the UML elements and consistency rules

into the UML Checker. Chapter 6 describes the validation of the UML model in a

case study of Lecture Assessment System (LAS) using the UML Checker. Finally,

Chapter 7 concludes this research work and proposes on how this work can be

extended.

PTTA
PERPUS

TAKAAN
 TUNKU

 TUN A
MINAH

2 CHAPTER 2

LITERATURE REVIEW

This chapter covers the literature related to this research. Topics discussed are to

support the research made in consistency management, especially in consistency

specification of the UML model. Section 2.1 dwells on elements of information

system (IS) and common activities involved to develop an IS. In Section 2.2, the

description of UML as a prominent modelling language is given. Then, the notion of

consistency is discussed in Section 2.3. Next, in Section 2.4, strategies taken by

researchers in coping with inconsistency management are elaborated. Finally,

Section 2.5 summarizes the topics discussed in this chapter.

2.1 Software specification and software model

In the process of Information System (IS) development, a system methodology offers

guidelines for completing activities in system development. There are various

software development methodologies such as Rational Unified Process (RUP),

ICONIX, Agile Methodology and others. Among them, there are four (4) common

activities. They are software specification, software design and implementation,

software validation and software evolution (Sommerville, 2011). In software

specification, functionalities and constraints of the software are specified. The use of

models is one of the ways to specify the requirements. A software model is

constructed to provide structure for problem solving, experiment to explore multiple

solutions and abstractions to manage complexity. Building software model also helps

in reducing defect density in the software design (Nugroho & Chaudron, 2009). In

PTTA
PERPUS

TAKAAN
 TUNKU

 TUN A
MINAH

 11

representing the model, it is found out that the Unified Modeling Language (UML) is

the most popular graphical notation used (Sommerville, 2011).

 Therefore, the following section will describe the UML as a language used in

visualizing, capturing and documenting requirements of software.

2.2 Unified Modeling Language (UML)

UML was developed in 1994 by integrating the ideas of three (3) most prominent

researchers in object oriented modelling: Grady Booch, James Rumbaugh and Ivar

Jacobson. They are known as the Three (3) Amigos that led three (3) object oriented

modelling approaches; Grady Booch’s Booch Method, Rumbaugh’s Object

Modeling Technique (OMT) and Object Oriented Software Engineering (OOSE).

After major revision to the previous version, UML 2.0 has been introduced. Until

now, it has evolved to UML 2.4.1. In this thesis, UML acronym is used to represent

the current UML version of 2.4.1. There are two (2) main specification references for

UML. They are Infrastructure Specification (Object Management Group (OMG),

2011a) and Superstructure Specification (Object Management Group (OMG),

2011b). Infrastructure Specification specifies on the foundational UML constructs

and it is complemented by Superstructure Specification that defines the user level

construct for UML. Both standards are developed by Object Management Group

(OMG).

UML is defined by using a metamodeling approach where a metamodel was

used to specify the model that comprises UML elements (Object Management Group

(OMG), 2011b). As an example, in Figure 2.1, at layer M0, Ali is a real object or

run-time instances of Customer in M1, where M0 contains run-time instances of

model elements in M1. Customer and Order Clerk are actors and use cases

Create new order, Look up item availability, Validate

customer account and Update order in model layer (M1) are instances of

Actor element and UseCase element in layer M2 (metamodel) respectively.

PTTA
PERPUS

TAKAAN
 TUNKU

 TUN A
MINAH

 12

M2 (metamodel)

M1(model)

M0

(run-time

instances)

Figure 2.1: UML language architecture

 In the following section, details of UML diagrams are discussed to get the

overview of the model.

2.2.1 UML model

A UML model may consist of different UML diagrams (Huzar, et al., 2005,

Shinkawa, 2006, Straeten, 2005). Currently, UML 2.4.1 specifies fourteen (14) UML

diagrams. They can be used to describe different views of a system. Structural view

is specified by structure diagrams such as profile diagram, class diagram, composite

structure diagram, component diagram, deployment diagram, object diagram and

package diagram, while behavioural view is specified by behaviour diagrams such as

Actor

Ali: Customer

UseCase Include
+includingCase

+include

<<instanceOf>> <<instanceOf>>

<<instanceOf>>

<<instanceOf>>

PTTA
PERPUS

TAKAAN
 TUNKU

 TUN A
MINAH

 13

activity diagram, sequence diagram, communication diagram, interaction overview

diagram, timing diagram, use case diagram and state machine diagram. Among the

diagrams, UML class diagram, use case diagram, sequence diagram and activity

diagrams are the most frequently used diagrams by the UML practitioners (Dobing &

Parsons, 2008, Grossman, et al., 2005). Each of the UML diagram is used to describe

various aspects of a system. For example, use case diagram is used to highlight main

functions of a system and roles that interact to it, while activity diagram is used to

model scenario of use cases in terms of dynamic aspect of a society of objects. On

the other hand, sequence diagram is modelled to show communication between

objects in term of sequence of messages, while the class diagram is to show the

classes of the objects in term of their attributes, methods and relationship to other

classes.

Furthermore, UML diagrams contain graphical representations of nodes and

paths. As an example, in Figure 2.1, use case diagram in layer M1 (model) is

depicted by the actor, use case and include graphic nodes. Each graphic node has its

notation; for example, notation for the actor is an icon of a stick man with its name.

The nodes and paths represent UML elements in the metamodel layer (M1). In the

metamodel layer, the UML modelling elements, their attributes, relationships, as well

as their rules and constraints are defined in UML standard (Object Management

Group (OMG), 2011b) in the form of abstract syntax. In the standard, each of the

UML elements in the abstract syntax is also given added descriptions as mention in

constraints, semantics and notations sections. The constraints of UML elements as

described in abstract syntax and constraints sections are well-formedness rules that

apply to the elements (Object Management Group (OMG), 2011b). They are

important to be satisfied within a single UML diagram as they impact the

completeness of the UML model (Christian F. J. Lange & Chaudron, 2004).

However, the constraints in constraint section in the UML standard are specified in

natural language and some of them are specified using Object Constraint Language

(OCL).

Therefore, in the following section, four (4) UML diagrams focused in this

research, namely UML use case diagram, activity diagram, sequence diagram and

class diagram are explained in terms of their functions, graphical nodes and paths,

abstract syntaxes and constraints.

PTTA
PERPUS

TAKAAN
 TUNKU

 TUN A
MINAH

 14

2.2.1.1 Use case diagram

A use case diagram visualizes the main functions of a system and different roles that

interact with it. The system functions are represented by a set of use cases, while the

roles that interact to the system are represented by a set of actors. The use case

diagram may also contain associations between the actors and the use cases,

generalization among the use cases and actors, and relationship between use cases.

As an example of use case diagram is in Figure 2.2. In the figure, there are two (2)

actors, Customer and Order Clerk. Actor Customer has association

(communicate) with use cases named Create new order, Look up item

availability and Update order. While actor Order Clerk interacts with

Look up item availability and Update order. Based on Figure 2.2, it

is also shown that Create new order and Update Order use cases include

two (2) use cases Look up item availability and Validate

customer account.In this example, Create new order and Update

Order use cases are the including use cases, while Look up item

availability and Validate customer account are the included use

cases.

Figure 2.2: Graphical nodes in use case diagram

PTTA
PERPUS

TAKAAN
 TUNKU

 TUN A
MINAH

 15

These graphical nodes for use case diagram adhere to UML elements and

their relationships as described by its abstract syntax are shown in Figure 2.3. This

research looks into Actor, UseCase and Include elements. Actor is a role played by a

user and other system that interact with the system to be built. An Actor must have a

name and can only have associations with UseCase and the association must be

binary. This also confirms that actors are not allowed to interact or associate with

other actors. Next, UseCase is a specification of a set of actions performed by the

system. A UseCase must also have a name. It cannot have any association with other

use cases. It can only be involved in binary associations to Actor. A UseCase can

also include other use cases. A source use case that includes other use cases is called

including use case, while the target use cases are called included use case. Include

element is to show that the behaviour of the included use case is inserted to the

behaviour of the including use case. The including use case also cannot include itself.

Because Actor and UseCase elements itself do not state about the generalization

between actors and between use cases, this constraint is stated in Classifier elements.

The Classifier is generalized by BehavioredClassifier element where Actor and

UseCase are generalized to (as shown in Figure 2.3). In this thesis, the proposed

formal specifications for the elements and their relationships are described in Chapter

4.

 PTTA
PERPUS

TAKAAN
 TUNKU

 TUN A
MINAH

 16

Figure 2.3: Abstract syntax for UML use case diagram (Object Management Group
(OMG), 2011b)

2.2.1.2 Activity diagram

Activity diagram is used to model the workflow of use cases (Ericsson, 2004) . It is a

simply workflow diagram that describes the various user or system activities, the

person who does each activity and the sequential flow of these activities (Satzinger,

et al., 2005). It can be the same as flow chart and data flow diagramming in

structured based software development. The diagram may consist of initial node,

activity state, activity partition, object flows, guard, fork, join and end-node. As

shown in an example of activity diagram with heading act

CreateNewOrderScenario1in Figure 2.4, there is an initial node and three (3)

activity partitions which are Customer, Order Clerk and Computer

System. There are sixteen (16) actions; among them Contact RMO, Enter

Classifier

UML::Classes::Kernel::Namespace

UseCase

0..1

*
{subsets ownedMember}

+ownedUseCase * +useCase

* +subject

Extend Include

 {subsets source}
 1 +includingCase

 {sub sets ownedMember
* +include *

{subsets target} 1
 +addition

*

{subsets target} 1
 +extendedCase

*

{subsets source}
 +extension 1

{subsets ownedMember}
+extend

UML::Classess::Kernel::
Directe
dRelati
onship

UML::Classess::Kernel::
Named
Elemen

t

Actor

UML::CommonBehaviors::BasicBehaviors::
BehavioredClassifier

PTTA
PERPUS

TAKAAN
 TUNKU

 TUN A
MINAH

 17

customer information, Display customer information and others.

There is also one (1) object node; Order and one (1) activity final node.

Figure 2.4: Graphical nodes and paths in activity diagram

These graphic elements are categorized into three (3) categories; graphic

nodes, graphic paths and containment. Graphic nodes may consist of control nodes,

action nodes and object nodes. Example of action nodes and object nodes are as

explained in Figure 2.4, while control nodes consist of initial node, activity final

node, flow final node, decision node, join node, fork node and merge node. Graphic

path is the activity edges which contains of control flows and object flows.

Containment consists of a set of activities and activity partitions. There are twenty

four (24) figures in UML Superstructure Specification (Object Management Group

PTTA
PERPUS

TAKAAN
 TUNKU

 TUN A
MINAH

 18

(OMG), 2011b) used to show elements and their relationship adhering to those

graphical nodes and paths for activity diagram. Therefore, to simplify the figures,

only elements that are related to this research will be discussed in the thesis. This

research will look into Action, ObjectNode, ControlNode, ControlFlow, ObjectFlow,

Activity and ActivityPartition elements. An action (Action) is a single step within an

activity (Activity), while an activity (Activity) represents a behaviour that is

composed of actions. An object node (ObjectNode) is an activity node that indicates

an instance of a particular classifier. It is used in showing the flow of objects. Paths

that link two (2) action nodes are called ControlFlow, while paths that link actions

and object nodes are called ObjectFlow. Finally, an ActivityPartition is used to group

actions that have some characteristics in common. Formalization of UML elements

in activity diagram into logical specification as alternative description to the elements

are described in Chapter 4 in this thesis.

2.2.1.3 Sequence diagram

In Unified Process (UP), sequence diagrams have the dependency to use case

diagram, activity diagram and class diagram (Satzinger, et al., 2005). Sequence

diagram focuses on interchange of messages between lifelines. A sequence diagram

may consist of frame, lifeline, execution specification, occurrence specification,

interaction use, combined fragment, state invariant, asynchronous message,

synchronous message, lost message, found message and others. For example,

sequence diagram in Figure 2.5 shows that it is in a frame with heading sd

CreateNewOrderScenario1. There are also two (2) lifelines; order clerk

and system, three (3) asynchronous messages; +startOrder(accountNo),

+addItem(catalogID, prodID, size, quantity)and

+completeOrder(paymentAmt), one (1) synchronous message;

+addItem(catalogID, prodID, size, quantity) and

description,price,extendedPrice and four (4) execution specifications

represented as thin rectangles on the system lifeline.

PTTA
PERPUS

TAKAAN
 TUNKU

 TUN A
MINAH

 19

Figure 2.5: Graphical nodes and paths in a sequence diagram

There are eight (8) figures in UML Superstructure Specification used to

show the elements and their relationship adhering to the graphical nodes and paths

for sequence diagram (Object Management Group (OMG), 2011b). Straeten (2005)

uses Figure 2.6 below to simplify those figures.

PTTA
PERPUS

TAKAAN
 TUNKU

 TUN A
MINAH

 20

Figure 2.6: Fragment abstract syntax for UML sequence diagram (Object
Management Group (OMG), 2011b)

Elements shown in the figure are restricted to elements that are used in this

research. This research will look into Interaction, Lifeline, Message and

ConnectableElement. In an Interaction, there is more than one Lifeline. A lifeline

format is shown as Figure 2.7.

<lifelineident>::=([<connectable-element-name>[‘[‘<selector>’]’]][:<class_name>]
[decomposition])|‘self’<selector>::=<expression><decomposition>::=‘ref’<interactio
nident> [‘strict’]

Figure 2.7: Lifeline format(Object Management Group (OMG), 2011b)

As shown in Figure 2.6, a Lifeline represents a ConnectableElement. It

reflects to lifeline format in Figure 2.7 where <connectable-element-name> is

referring to the ConnectableElement. According UML Superstructure Specification,

<class_name> in Figure 2.7 refers to type referenced of ConnectableElement (Object

Management Group (OMG), 2011b). Hence, ConnectableElement can be defined as

a set of objects that are instance of set of classes (Straeten, 2005). A Message is a

communication between Lifeline. It associates normally to two

OccurenceSpecification, one for sending OccurenceSpecification and one for

receiving OccurenceSpecification. In this thesis, the proposed formal logical

specification for those UML elements in sequence diagram as alternative description

to the elements are described in Chapter 4.

Lifeline

ConnectableElement

Interaction

*

+represents

OccurenceSpecification Message *

+event

s

1

+covered

MessageEnd

+sendEvent +receiveEvent

PTTA
PERPUS

TAKAAN
 TUNKU

 TUN A
MINAH

 21

2.2.1.4 Class diagram

From sequence diagrams, all types of the lifelines which are classes are gathered in a

class diagram. Class diagram is a collection of static modelling elements, such as

classes and their relationships. It is used to represent explicitly the information on a

domain of interest. The diagram may consist of classes and the association between

them. As shown in Figure 2.8, there are eleven (11) classes which are Catalog,

ProductItem, ReturnItem, Customer, CatalogProduct,

InventoryItem, OrderItem, Order, Shipper, Shipment and

OrderTransaction. There are also associations between those classes such as

between Catalog and ProductItem, ProductItem and InventoryItem,

and others.

Figure 2.8: Graphical nodes in class diagram

In the UML Superstructure Specification, there are seventeen (17) figures

used to show elements and their relationship adhered to those graphical nodes and

paths for class diagram (Object Management Group (OMG), 2011b). They are

PTTA
PERPUS

TAKAAN
 TUNKU

 TUN A
MINAH

 22

simplified to one (1) figure (as shown in Figure 2.9) showing the significant elements

used in this thesis. This thesis will look into Class and Association elements. A Class

represents a set of objects. A Class is a kind of Classifier that has attributes

(ownedAttribute) and operations (ownedOperation). The attributes of a Class are

instances of Property. An Operation is a behavioural feature of a classifier that

specifies name, type (Type), parameter (Parameter) and constraint (Constraint). The

formal logical specifications for the UML elements in class diagram are described in

Chapter 4 of this thesis.

Figure 2.9: Abstract syntax for UML class diagram(Object Management Group
(OMG), 2011b)

As described in this section, there are various diagrams with different views -

structural and behavioural - which are used to describe different aspects of a system,

with different notations and elements. On the other hand, the specification of

constraints of each of UML elements in abstract syntax, natural language and some

of them in OCL shows the lack of formal syntax and semantics in UML. These

features of UML itself are prone to have consistency problems or UML

inconsistencies between UML diagrams. Therefore, in the following section, details

of UML consistency are discussed.

Class

Classifier

Type

Property
+class
0..1

+ownedAttribute

*

Operation

+class

+ownedOperation

0..1

*

Association

+memberEnd
*

+association
0..1

Type

Constraint Parameter

0..1 0..1

+ownedParameter *

+operation

InstanceSpecification

+classifier
+instanceSpecification

PTTA
PERPUS

TAKAAN
 TUNKU

 TUN A
MINAH

 23

2.3 UML consistency definition

Spanoudakis & Zisman (2001) define consistency as a state in which two or more

overlapping elements of different software models make assertion about the aspects

of the system they describe which are jointly satisfiable. While, Shinkawa (2006)

defines a set of UML model as consistent when there are no conflicts between two

arbitrary UML diagrams. On the other hand, a UML model is inconsistent when it

violates the constraints (Hubaux, et al., 2009, Sourrouille & Caplat, 2004,

Spanoudakis & Zisman, 2001). It is important to ensure that a UML model is

consistent as it is one of the attributes used in measuring the quality of a UML model

(Nugroho & Chaudron, 2008). UML consistency is classified into horizontal or intra-

model consistency, vertical or inter-model consistency, syntactic consistency, and

semantic consistency (Elaasar & Briand, 2004, Huzar, et al., 2005, Lucas, et al.,

2009, Mens, et al., 2005b, Usman, et al., 2008). In horizontal or intra-model

consistency, consistency is validated at a same level of abstraction between different

UML diagrams, while in vertical or inter-model consistency, consistency of different

UML diagrams are validated at different level of abstraction (Huzar, et al., 2005).

Meanwhile, syntactic consistency confirming a UML diagram towards its abstract

syntax, while semantic consistency validating semantic compatibility of diagram’s

behaviour (Huzar, et al., 2005). Syntactical consistency includes the well-formedness

rules described as a constraint in UML Superstructure Specification (Object

Management Group (OMG), 2011b). Table 2.1 below shows Lucas et al. (2009)

giving concrete example of each consistency.

Table 2.1: Concrete example of consistency problem classification (Lucas, et al.,
2009)

Type of consistency Syntactic Semantic

Horizontal The class names used in the
sequence diagram should appear in
the associated class diagram

The events produced in a sequence diagram should
not produce inconsistent states in the
state diagrams of the objects which
participate in the interaction

Vertical The methods definition of a class should be
consistent in all abstraction levels in
which these methods could be
defined

When some child classes are created in a
refinement from a parent class, the
traces defined by the state machine of
the parent class should be supported
by the low level state machine of the
child classes

PTTA
PERPUS

TAKAAN
 TUNKU

 TUN A
MINAH

 24

Similar to programming language like C++, Java and others, UML syntactic

correctness is a prerequisite to any further consistency analysis. The importance of

syntactic checking can be seen by the increase in the number of research done on the

syntactic checking as reviewed by (Lucas, et al., 2009, Usman, et al., 2008). They

also showed that horizontal consistency checking is the area that that have been

focused primarily by the researchers. Even though there is an increase in the number

of researchers in the field of syntactical and horizontal consistency checking, there

are some issues that have not been addressed yet. Therefore, this research is focusing

on syntactical and horizontal consistency between four (4) UML diagrams - use case

diagram, activity diagram, sequence diagram and class diagram - as these diagrams

are ranked as the most popular UML diagrams used by UML practitioners (Dobing

& Parsons, 2008, Grossman, et al., 2005). Hence, in the following sections of this

thesis, the discussion will be only related to syntactical and horizontal consistency of

those four (4) UML diagrams.

Huzar et al. (2005) highlights two (2) main sources of UML inconsistency.

Firstly is because of multiple views of UML model where at some level of details, a

system is described as a collection of different UML diagrams which are from

different views dealing with different UML elements but possibly overlapping or

same aspect of a system. For example, use case diagram is used to model behavioural

view in a system, while class diagram is used to model the structural view. In the use

case diagram, an actor is used to represent the role played by an entity that interacts

with system (Object Management Group (OMG), 2011b), while in the class diagram,

a class is representing an object such as person, place, thing, element, event, screen

or report in a system (Ambler, 2011), where they can also be considered as an entity.

Hence, once an actor is added to the use case diagram without adding the actor as a

class in a class diagram, such practice can be deemed as inconsistent. This is what

this research call as overlapping element actor in a use case diagram with an element

class in a class diagram which do not joint. This matter becomes worse because most

of UML tools do not perform consistency check between those diagrams. Second

source of UML inconsistency is because a system is developed and refined in

different phases and using different iterations where each phase produces a new and

refined UML diagrams. For example, use case diagrams, activity diagrams and class

diagrams created in analysis phase are refined in design phase. Even though

semantics of UML element are informally defined in order to give flexibility for

PTTA
PERPUS

TAKAAN
 TUNKU

 TUN A
MINAH

 145

REFERENCES

Ambler, S. W. (2011). Agile Modeling (AM) Home Page. Retrieved on May, 8, 2012,

from http://www,agilemodeling.com/.

Baruzzo, A. and Comini, M. (2008). A Methodology for UML Models V & V.

Proceeding of the First International Conference on Software Testing,

Verification, and Validation (ICST 2008). Lillehammer, Norway: IEEE

Computer Society. pp. 513-516.

Chanda, J., Kanjilal, A. and Sengupta, S. (2010). UML-Compiler: A Framework for

Syntactic and Semantic Verification of UML Diagrams. in (Ed.). Springer-

Verlag Berlin Heidelberg. pp. 194-205.

Chanda, J., Kanjilal, A., Sengupta, S. and Bhattacharya, S. (2009). Traceability of

Requirements and Consistency Verification of UML UseCase, Activity and

Class diagram: A Formal Approach. Proceeding of the International

Conference on Methods and Models in Computer Science 2009 (ICM2CS).

New Delhi, India: IEEE Press. pp. 1-4.

Chaudron, M. R. V. (2012). Quality Assurance in Model-Based Software

Development -Challenges and Opportunities-. in S. Biffl, D. Winkler and J.

Bergsmann (Ed.). Software Quality. Process Automation in Software

Development. Vienna: Springer-Verlag Berlin Heidelberg. pp. 1-9.

Dobing, B. and Parsons, J. (2008). Dimensions of UML Diagram Use: A Survey of

Practitioners. Journal of Database Management, 19(1), pp. 18.

Egyed, A. (2007a). Fixing Inconsistencies in UML Design Models. Proceeding of

the 29th International Conference on Software Engineering (ICSE 2007).

Minneapolis: IEEE Press. pp. 292-301.

Egyed, A. (2006). Instant consistency checking for the UML. Proceeding of the 28th

international conference on Software engineering. Shanghai, China: ACM.

pp. 381-390.

PTTA
PERPUS

TAKAAN
 TUNKU

 TUN A
MINAH

http://www,agilemodeling.com/

 146

Egyed, A. (2007b). UML/Analyzer: A tool for the instant consistency checking for

UML models. Proceeding of the 29th International Conference on Software

Engineering (ICSE 2007). Minneapolis: IEEE Press. pp. 793-796.

Elaasar, M. and Briand, L. (2004). An Overview of UML Consistency Management.

Retrieved on Jun, 2010, from

http://squall.sce.carleton.ca/pubs/tech_report/TR-SCE-04-18.pdf.

Engels, G., Kuster, J. M., Heckel, R. and Groenewegen, L. (2001). A methodology

for specifying and analyzing consistency of object-oriented behavioral

models. SIGSOFT Softw. Eng. Notes, 26(5), pp. 186-195.

Ericsson, M. (2004). Activity Diagrams: What They Are and How to Use Them.

Retrieved on 1 September 2009, from

http://www.ibm.com/developerworks/rational/library/2802.html.

Fan, E. (2010). How can I add partitions (swimlanes) to an activity diagram with

Visual Studio 2010? Retrieved on from

http://social.msdn.microsoft.com/Forums/en/vsarch/thread/44814587-6458-

44c0-88aa-7c41799dbe0f.

Fryz, L. and Kotulski, L. (2007). Assurance of System Consistency During

Independent Creation of UML Diagrams. Proceeding of the 2nd International

Conference on Dependability of Computer Systems, 2007 (DepCoS-

RELCOMEX '07). Szklarska: IEEE Press. pp. 51-58.

Ghezzi, C., Jazayeri, M. and Mandrioli, D. (2003). Fundamentals of Software

Engineering. New Jersey: Pearson Education.

Grossman, M., Aronson, J. E. and McCarthy, R. V. (2005). Does UML make the

grade? Insights from the software development community. Information and

Software Technology, 47(6), pp. 383-397.

Hee, K. v., Sidorova, N., Somers, L. and Voorhoeve, M. (2006). Consistency in

model integration. Data & Knowledge Engineering, 56(1), pp. 4-22.

Hubaux, A., Cleve, A., Schobbens, P.-Y., Keller, A., Muliawan, O., Castro, S.,

Mens, K., Deridder, D. and Straeten, R. V. D. (2009). Towards a Unifying

Conceptual Framework for Inconsistency Management Approaches.

University of Namur Rue Grandgagnage:

Huzar, Z., Kuzniarz, L., Reggio, G. and Sourrouille, J. L. (2005). Consistency

Problems in UML-Based Software Development. in N. J. Nunes, B. Selic, A.

PTTA
PERPUS

TAKAAN
 TUNKU

 TUN A
MINAH

http://squall.sce.carleton.ca/pubs/tech_report/TR-SCE-04-18.pdf
http://www.ibm.com/developerworks/rational/library/2802.html
http://social.msdn.microsoft.com/Forums/en/vsarch/thread/44814587-6458-44c0-88aa-7c41799dbe0f
http://social.msdn.microsoft.com/Forums/en/vsarch/thread/44814587-6458-44c0-88aa-7c41799dbe0f

 147

R. d. Silva and A. T. Alvarez (Ed.). UML Modeling Languages and

Applications. Springer, Heidelberg. pp. 1-12.

Lange, C. F. J. and Chaudron, M. R. V. (2004). An empirical assessment of

completeness in UML designs. IEE Seminar Digests, 2004(920), pp. 111-

119.

Lange, C. F. J. and Chaudron, M. R. V. (2005). Managing Model Quality in UML-

based Software Development. Proceeding of the 13th IEEE International

Workshop on Software Technology and Engineering Practice (STEP'05).

Budapest, Hungary: IEEE. pp. 7-16.

Lange, C. F. J., Chaudron, M. R. V. and Musken, J. (2006). In Practice: UML

Software Architecture and Design Description. Retrieved on 31/03/2010,

from http://www.computer.org/software.

Li, X., Liu, Z. and He, J. (2001). Formal and use-case driven requirement analysis in

UML. Proceeding of the Computer Software and Applications Conference,

2001. COMPSAC 2001. 25th Annual International. pp. 215-224.

Lucas, F. J., Molina, F. and Toval, A. (2009). A Systematic Review of UML Model

Consistency Management. Information and Software Technology, 51(pp.

1631-1645.

Mens, T., Straeten, R. V. D. and Simmonds, J. (2005a). A Framework for Managing

Consistency of Evolving UML Models in H. Yang (Ed.). Software Evolution

with UML and XML. IGI Global. pp. 1-30.

Mens, T., Straeten, R. V. D. and Simmonds, J. (2005b). A Framework for Managing

Consistency of Evolving UML Models. in H. Yang (Ed.). Software Evolution

with UML and XML. Hershey, PA: Idea Group Publishing. pp. 1-30.

Mostafa, A. M., Ismail, M. A., El-Bolok, H. and Saad, E. M. (2007). Toward a

Formalization of UML2.0 Metamodel using Z Specifications. Proceeding of

the Software Engineering, Artificial Intelligence, Networking, and

Parallel/Distributed Computing, 2007. SNPD 2007. Eighth ACIS

International Conference on. pp. 694-701.

N. Ibrahim (2003). Lecture Assessment System: Module Login and Manage User.

Universiti Teknologi Malaysia (UTM): Master of Computer Science (Real

Time Software Engineering).

Nugroho, A. and Chaudron, M. R. V. (2009). Evaluating the Impact of UML

Modeling on Software Quality: An Industrial Case Study. in A. Schurr and B.

PTTA
PERPUS

TAKAAN
 TUNKU

 TUN A
MINAH

http://www.computer.org/software

 148

Selic (Ed.). Model Driven Engineering Languages and Systems. Denver:

Springer-Verlag Berlin Heidelberg 2009. pp. 181-195.

Nugroho, A. and Chaudron, M. R. V. (2008). A survey into the rigor of UML use

and its perceived impact on quality and productivity. Proceeding of the

Proceedings of the Second ACM-IEEE international symposium on Empirical

software engineering and measurement. Kaiserslautern, Germany: ACM. pp.

90-99.

Övergaard, G. and Palmkvist, K. (2004). A Formal Approach to Use Cases and Their

Relationships. in (Ed.). The Unified Modeling Language. «UML»’98: Beyond

the Notation. Springer Berlin / Heidelberg. pp. 406-418.

Rosenberg, D. and Stephens, M. (2007). Use Case Driven Object Modeling with

UML: Theory and Practice. Berkeley: Apress.

Sapna, P. G. and Mohanty, H. (2007). Ensuring Consistency in Relational Repository

of UML Models. Proceeding of the 10th International Conference on

Information Technology (ICIT 2007). pp. 217-222.

Saringat, M. Z. (2003). Lecture Assessment System (LAS): Module Manage Marks

and Module Manage Attendance. Universiti Teknologi Malaysia (UTM):

Master of Computer Science (Real Time Software Engineering).

Satzinger, J. W., Jackson, R. B. and Burd, S. D. (2005). Object-Oriented Analysis

and Design with the Unified Process. Massachusetts: Thomson Course

Technology.

Selamat, N. (2003). Lecture Assessment System (LAS): Module Retrieve Report.

Universiti Teknologi Malaysia (UTM): Master of Computer Science (Real

Time Software Engineering).

Sengupta, S. and Bhattacharya, S. (2008). Formalization of UML diagrams and their

consistency verification: A Z notation based approach. Proceeding of the

Proceedings of the 1st India software engineering conference. Hyderabad,

India: ACM. pp. 151-152.

Shinkawa, Y. (2006). Inter-Model Consistency in UML Based on CPN Formalism.

Proceeding of the 13th Asia Pacific Software Engineering Conference

(APSEC '06) Kanpur: IEEE Press. pp. 414-418.

Sommerville, I. (2011). Software Engineering 9. Ninth Edition. Massachusetts:

Pearson.

PTTA
PERPUS

TAKAAN
 TUNKU

 TUN A
MINAH

 149

Sourrouille, J. L. and Caplat, G. (2004). A Pragmatic View about Consistency

Checking of UML Models. Blekinge Institute of Technology: Workshop on

Consistency Problems in UML-based Software Development II

Spanoudakis, G. and Kim, H. (2002). Diagnosis of the significance of inconsistencies

in object oriented designs: a framework and its experimental evaluation.

Journal of Systems and Software, 64(1), pp. 3-22.

Spanoudakis, G. and Zisman, A. (2001). Inconsistency Management in Software

Engineering: Survey and Open Research Issues. in (Ed.). Handbook of

Software Engineering and Knowledge Engineering. New Jersey: World

Scientific Pub. Co. pp.

Straeten, R. V. D. (2005). Inconsistency Management in Model-Driven Engineering

An Approach using Description Logics. Vrije Universiteit Brussel: Doctor in

Science.

Straeten, R. V. D., Mens, T., Simmonds, J. and Jonckers, V. (2003). Using

Description Logic to Maintain Consistency between UML Models. in P.

Stevens et al. (Ed.). "UML" 2003 - The Unified Modeling Language. Springer

Berlin / Heidelberg. pp. 326-340.

Usman, M., Nadeem, A., Tai-hoon, K. and Eun-suk, C. (2008). A Survey of

Consistency Checking Techniques for UML Models. Proceeding of the

Advanced Software Engineering and Its Applications, 2008. ASEA 2008. pp.

57-62.

PTTA
PERPUS

TAKAAN
 TUNKU

 TUN A
MINAH

