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Abstract 

In developing polymer membranes that response to prevents liquid water from 

penetrating through, while at the same time permitting moisture past out through, 

polymer membrane with various structure ranging from dense to highly asymmetric 

morphologies (0.01 - 0.25 mm) were fabricated through three different techniques; 

blends, curing and grafting fabrication. From FT-IR analysis, BP/PEG (blends, curing 

and grafting) were fully converted into solid polymer membrane with functional group of 

N-H stretching in region 3350 - 3250 cm-1. Morphological result of BP/PEG shows three 

types of surface; open, close and blind surface with cylindrical blind and ink bottle 

shaped structure randomly. Due to lower porosity of skin over a symmetric support acts 

as a barrier, BP/PEG polymer membranes resultant no water permeability as compared to 

BP/DMF, which exhibit extremely higher water permeability with value 0.161 L/s.m3 at 

lower concentration. Water absorption analysis shows that mechanical properties of the 

prepared membranes were significantly influenced by their structure and amount of water 

absorbed. Thus, BP/PEG (blends, curing and grafting) preparation gave lower amount of 

water absorption with less than 0.01% water absorption increment rather than BP/DMF 

12% (w/v) with highly porosity value of 0.07%. Thermogravimetric analysis (TGA) 

reviewed that the hard segment decomposition temperature was occur at 295 0C – 395 0C, 

meanwhile for soft segment at 370 0C – 500 0C. Based upon modulus, tensile, strain and 

tear strength also energy at break, evidently shows that the BP/PEG (grafting) method 

gave the best performance on physical and mechanical properties with highest mean 

value of 12419 N/mm, 14.11 MPa, 38.289 %, 50.67 N/mm and 21.627 N respectively. 

Reciprocally, PEG solvent does significantly increase the mechanical properties with the 

reaction of BP rather than DMF solvent with varieties of concentration. Moreover, 

BP/PEG membrane from each fabrication technique had obvious dense porous structural 

feature with open, close and blind pores in practically boundless development as of 

adequate final use in membrane application. 

PTTA
PERP

UST
AKA
AN 
TUN
KU T

UN 
AMI
NAH



 vi 

Abstrak 

Dalam membangunkan polimer membran yang menghalang tindak balas cecair 

daripada meresap dan pada masa yang sama membenarkan kelembapan melaluinya, 

polimer membran dengan pelbagai struktur, terdiri daripada morfologi yang padat 

sehingga simetri yang tertinggi ( 0.01 - 0.25 mm) telah dihasilkan melalui tiga teknik 

berbeza; campuran (blends), ikatan (curing) dan cantuman (grafting). Daripada 

analisis FT-IR, BP/PEG (campuran ,ikatan dan cantuman) telah ditukar sepenuhnya 

kepada polimer membran dengan kumpulan berfungsi NH regangan dalam rantau 

3350-3250 cm-1. Hasil morfologi, BP/PEG menunjukkan tiga jenis permukaan; 

terbuka, rapat dan buta dengan struktur silinder buta dan botol dakwat. Disebabkan 

oleh keliangan permukaan, sokongan simetri bertindak sebagai penghalang, BP/PEG 

polimer membran yang dihasilkan, tidak kebolehtelapan air berbanding BP/DMF, 

yang mempamerkan kebolehtelapan air yang sangat tinggi dengan nilai 0.161 L/s.m3 

pada kepekatan yang lebih rendah. Analisis penyerapan air menunjukkan, sifat-sifat 

mekanikal membran ketara dipengaruhi oleh struktur dan jumlah air yang menyerap. 

Oleh itu, BP/PEG (campuran, ikatan dan cantuman) memberikan jumlah yang lebih 

rendah iaitu kurang 0.01 % air kenaikan penyerapan, berbanding BP/DMF 12% 

(w/v) dengan keliangan tertinggi iaitu 0.07 %. Termogravimetri analisis ( TGA ) 

mengkaji bahawa segmen keras suhu penguraian berlaku pada 295 0C - 395 0C , 

sementara bagi segmen lembut pada 370 0C - 500 0C. Berdasarkan modulus, 

tegangan, tekanan dan kekuatan tenaga berhenti, jelas menunjukkan bahawa kaedah 

BP/PEG (cantuman) menunjukkan persediaan yang terbaik pada sifat-sifat fizikal 

dan mekanikal dengan nilai min tertinggi 12419 N / mm, 14.11 MPa, 38,289 %, 

50.67 N /mm dan 21,627 N setiapnya. Pelarut PEG ketara meningkatkan sifat 

mekanik dengan tindakbalas BP berbanding pelarut DMF. Selain itu, BP/PEG 

membran dari setiap teknik fabrikasi mempunyai ciri-ciri yang struktur jelas tebal 

berliang dengan liang terbuka, berhampiran dan buta dalam pembangunan praktikal 

terbatas pada penggunaan akhir yang mencukupi dalam aplikasi membran. 
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CHAPTER 1 

INTRODUCTION 

1.1 Background of Research 

 

Membrane and membrane processes are not a recent invention and it is a part of our 

daily life. Membrane technology is now been industrially establish in impressively 

large scale after a long period through the producing of biological membrane. As 

reported [1], the key property is the ability of membranes to control the permeation 

rate of water and liquid through the membranes. According to Baker et al. [2], 

polymeric membranes have reached high growth and have gained an important place 

in broad range of applications including in industrial sectors, gas separation, 

wastewater treatment, food processing, medical devices and many others.  

Due to the concern about global warming and the contribution of greenhouse 

effect has increased dramatically; the use of renewable resource in the preparation of 

various applications has been revitalized as studied [3]. Walpoth et al. [4] had been 

studied that vegetable oil is one of the most valuable to develop as raw materials for 

membrane. As reported [4], vegetable oil offer advantages such as low cost, 

acceptable specific properties, biodegradability and availability of renewable 

resources. 

Medical devices are one of membrane applications which are fast growing 

field that represents the largest consumption of membrane area per year as reported 

[5]. In terms of total membrane produced, medical applications are at least equivalent 

to all industrial membrane applications. By focusing to a very high cost of getting 

medical devices in particular of dental bib for dental clinic use, proposed an ideas to 

developing polymer membrane that respond to moisture/liquid content for use as a 

protective clothing based on renewable resources (vegetable oil).  
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AnikaZafiah in her studied [6-7], plant oils and their derivatives have been 

used by polymer chemists due to their renewable nature, world wide availability, 

relatively low price, and their rich application possibilities, in which its main 

constituent are triacylglycerols. Several arguments can be found to believe in the 

great potential of plant oils as an alternative resource for the production of polymeric 

materials as reported [7].  

In the context of renewable, plant oils offer many advantages apart from its 

renewability. Their world-wide availability and relatively low prices make them 

industrially attractive and feasible, as daily demonstrated with industrial 

oleochemistry. Furthermore, diverse chemistry can be applied on them, leading to a 

large variety of monomers and polymers [8].   

 

1.2 Problem Statement 

 

Although, there are many techniques that have been used in polymer membrane 

application, however it were not meet all the performance requirements for a 

membrane dedicated to a particular application. 

According to Sin et al. [9] through solvent casting techniques, it may yield 

the following disadvantages such as skin of nonporous polymer of the surface, non-

homogeneous dispersion of pores, lack of inner connectivity of the pores and 

remaining porogen within the scaffold after porogen leaching. 

Other than that, through gas foaming, this technique resulting many pores are 

closed with lack of pore inner connectivity as reported by Strathman et al. [10] . 

Therefore membrane modifications are gaining rapidly increasing importance such as 

blending, curing and grafting. 

The volume of petroleum-based synthetic material such as plastic, appear as 

wastes presents disposal authorities with an increasingly very serious problem and 

becoming implication to the environmental problem as reported by Huayu et al. [11]. 

At one time it was relatively inexpensive to dispose of domestic and industrial waste 

in holes in the ground.  

 Lucas et al. [12] in studied, reported that plant oils and their derivatives have 

been used by polymer chemists due to their renewable nature, world wide 

availability, relatively low price, and their rich application possibilities. Furthermore, 

Nayak et al. [13] studied that by increasing demand of industrial raw materials to use 
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the renewable resources, vegetable oils were brought focus as a potential source of 

raw materials. This is due to their potential to substitute petrochemical derivatives as 

studied [13].  

 According to Gogolewski et al. [14], even polymeric membranes dominating  

a very broad range due to its advantages, however membrane polymer also have their 

limitations. This include, a very well-defined regular pore structure is difficult to 

achieve. In addition, mechanical strength, thermal stability and the chemical 

resistance are rather low for many organic polymers.  

In contrast, some inorganic materials have disadvantages such as very brittle, 

and due to complicated preparation methods and manufacturing technology, the 

prices for many inorganic membranes are still very high.  

 

1.3 Aim of Research 

 

The key aim of this research is to early develop renewable biopolymer membranes 

based on new functional group by means of FTIR, morphological structure by SEM, 

water permeability, thermal stability by TGA, and mechanical properties (tensile and 

tear strength) through the different membrane preparation technique (curing, blends 

and grafting technique) with correlation of their membrane structure and property. 

 

1.4 Scope of Research 

 

This research focuses on developing renewable biopolymer membranes which based 

on three different membrane preparation technique; curing, blends and grafting. 

Polymer membranes with different range of pore (1 -100 µm) and thickness (0.01 - 

0.25 mm) were prepared. 

 Chemical composition of the functional group was studied by using Fourier 

Transform Infrared Spectroscopy (FTIR) while Scanning Electron Machine (SEM) is 

to investigate the influences of the fabrication technique on membranes surface 

morphological structure. Studies of thermal stability and mechanical properties were 

observed by using Thermal gravimetric analysis (TGA), tensile and tear strength by 

Universal Testing Machine (UTM) respectively. In addition, permeability was 

determined by using water permeability, water absorption/water uptake analysis to 

measure the amount of water through the pore of membranes. 
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1.5 Objectives of Research 

 

i. To fabricate renewable polymer membrane via three different technique 

preparation: BP/PEG (blends) - 1ply, BP/PEG (curing) – 2 plies and BP/PEG 

(grafting) – 1 ply  with PEG. 

ii. To determine the best fabrication techniques based on the physical and 

mechanical property functional group determination via FT-IR. 

iii. To investigate the morphology, decomposition, water permeability, water 

absorption and mechanical properties, physical and structure of polymer 

membranes via Scanning Electron Machine (SEM), Thermogravimetric 

Analysis (TGA), water permeation and Universal Testing Machine (UTM). 

PTTA
PERP

UST
AKA
AN 
TUN
KU T

UN 
AMI
NAH



5 

 

CHAPTER 2 

LITERATURE REVIEW 

2.1 Background of Membranes 

 

A membrane is an interphase between two adjacent phases acting as a selective 

barrier, regulating the transport of substances between the two components as studied 

by Klempner et al. [15]. In general, membranes are thin layers, that can have 

significantly different structures, but all have the common feature of selective 

transport to different components in a feed. Mulder et al. [16] from his studied, state 

that membranes are generally classified by the nature of the materials, selective 

barrier, structure, membrane morphology, geometry, preparation method, separation 

regime and process.  

 Membranes and membrane processes were first introduced as an analytical 

tool in chemical and biomedical laboratories and then developed very rapidly into 

industrial products with significant technical and commercial impact as reported 

[16]. According to Gogolewski et al. [17], membranes are used on a large scale in 

wide range of application areas such as to produce potable water from sea and 

brackish water, to clean industrial effluents and recover valuable constituents, to 

concentrate, purify, or fractionate macromolecular mixtures in the food and drug 

industries, and to separate gases and vapors in petrochemical processes. It also plays 

as key components in energy conversion and storage systems, in chemical reactors, 

in artificial organs, and in drug delivery devices. 

Lonsdale [18] in his studied, explain that membranes used in the various 

applications differ widely in their structure, function and the way operated. However, 

all membranes have several features in common that make them particularly 

attractive tools for separation of molecular mixtures. Most important is that the 
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separation is performed by physical means at ambient temperature without 

chemically altering the constituents of a mixture. 

According to Drioli et al. [19], although synthetic membranes are widely 

used as valuable scientific and technical tools in a modern industrialized society, they 

are not very well defined in terms of their structure and function. The most 

prominent association that many people have when thinking of a membrane 

resembles that of a filter. However, a membrane can be much more complex in both 

structure and function.  

Bhattacharyya et al. [20] has summarized, the permeability of a membrane is 

a measure of the rate at which a given component is transported through the 

membrane under specific conditions of concentration, temperature, pressure, or 

electric field. The study [21] shows, the transport rate of a component through 

membrane is determined by the structure of the membrane, by a size of permeating 

component, by the chemical nature and the electrical charge of the membrane 

material and permeating components, and by the driving force such as concentration, 

pressure or electrical potential gradient across the membrane.  

Drioli et al. [22] studied, the use of different membrane structures and driving 

forces has resulted in a number of rather different membrane processes such as 

reverse osmosis, microfiltration, ultrafiltration, nanofiltration, dialysis, 

electridialysis, Donnan dialysis, pervaporation, gas separation, membrane contactors, 

membrane distillation, membrane based solvent extraction, membrane reactors and 

others.  

 

2.2 Membranes Classification 

 

Membranes are grouped into polymeric and inorganic membranes. Membranes may 

be homogeneous or heterogeneous, symmetrical or asymmetrical, and porous or non-

porous or with special chemical affinity dictated the mechanism of permeation and 

separation. They also can be organic or inorganic, liquid or solid. The permeation 

properties of polymer membranes are strongly influenced by both the preparative 

route used and the final configuration (isotropic, asymmetric or composite) of the 

membrane by studied [23]. The membrane classifications are shown in Figure 2.1. 

PTTA
PERP

UST
AKA
AN 
TUN
KU T

UN 
AMI
NAH



7 

 

 

 

Figure 2.1: Membrane classification [22] 

 

From Zhang et al. [24] studied that in essence, a membrane is nothing more 

than a discrete, thin interface that moderates the permeation of chemical species in 

contact with it. This interface may be molecularly homogeneous, that is, completely 

uniform in composition and structure, or it may be chemically or physically 

heterogeneous. Figure 2.2 shows the schematic diagrams of the principal types of 

membranes. 

 

 

 

Figure 2.2: Membrane classification according to the morphology [24] 

 

2.2.1 Isotropic Membranes 

 

Isotropic microporous membranes have a rigid, interconnected pore, voided and 

structure distributed randomly. The separation process is controlled by the pore size 

distribution of microporous membranes and the hydrodynamic conditions. The 
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microporous membranes are prepared by phase separation, tracked etch, stretching, 

or leaching. The phase separation is the most important method for the isotropic 

microporous membrane preparation[25]. Figure 2.3 shows the schematic diagram of 

different membrane morphologies. 

 

(a) Dense membrane 
(b) Microporous 

membrane 

(c) Electrically charged 

membrane 

   

 

Figure 2.3: Schematic diagram of different membrane morphologies of isotropic 

membrane [25] 

 

As refer to Figure 2.3(a) of dense membrane morphology, studies from Krause et.al 

[26] shows that dense membranes, also called “diffusion” membranes have no open 

pores in the membrane wall or the outer skin of the wall. This membrane is rarely 

used in practical membrane separation process because of its low flux caused by its 

high membrane thickness, but the intrinsic properties of polymers will determine the 

membrane performance and separation characteristics. Likewise, Marcano et al. [27], 

explain that dense membranes are mainly used in laboratory to characterize the 

intrinsic membrane properties for control release, gas separation, pervaporation, 

nanofiltration, and reverse osmosis membranes for material screening. They are 

prepared by solution casting and thermal melting extrusion approaches. 

According to Klaaseen et al. [28], dense membranes consist of a dense film 

through which permeate are transported by diffusion under the driving force of a 

pressure, concentration, or electrical potential gradient. The separation of various 

components of a mixture is related directly to their relative transport rate within the 

membrane, which is determined by their diffusivity and solubility in the membrane 

material. Thus, nonporous, dense membranes can be separate permeants of similar 

size if their concentration in the membranes to perform the separation. Usually these 

membranes have an anisotropic structure to improve flux. However, the advantage of 
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these membranes was their relatively high wall thickness due to mechanical 

requirements.  

Brieter et al. [29], from their studied explain that morphology of microporous 

membrane is very similar in structure and function to a conventional filter as refer to 

Figure 2.3(b). It has a rigid, highly voided structure with randomly distribute, and 

interconnected pores. However, these pores differ from those in conventional filter 

by being extremely small, on the order of 0.01 to 10 µm in diameter. All particles 

larger than the largest pores are completely rejected by virtue of a sieving effect.  

 The sponge-like structure of this membrane is homogeneous and isotropic 

with open surfaces on both wall sides. These membranes achieve reliable, adequate 

performance and the mechanical stability in term of tensile strength and elongation at 

break is combined with high reliability and handling safely during the manufacturing 

process. Figure 2.4 below shows the types of microporous membrane structures. 

Mulder [30] in his studied, explain that electrically charged membranes 

morphology as refer to Figure 2.3(c) can be dense or microporous, but are most 

commonly very finely microporous, with the pore walls carrying fixed positively 

charged ions is referred to as an anion-exchange membrane because it binds anions 

in the surrounding fluid. Similarly, a membrane containing fixed negatively charged 

ions is called a cation-exchange membrane. Separation with charged membranes is 

achieved mainly by exclusion of ions of the same charge as the fixed ions of the 

membrane structure, and to a much lesser extent by the pore size. The separation is 

affected by the charge and concentration of the ions in solution.  

 

   

Symmetric Asymmetric Composite 

 

Figure 2.4: Schematic diagram of different membrane morphologies [30] 
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