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ABSTRACT 

 

 

 

 

When wires are closely parallel, the surface current distribution becomes non 

uniform. Normal mode helical antenna is choosing in particular in order to study the 

effect of surface current distribution along its segmentation from the excitation 

segments towards the end of the antenna length. Antenna of different wire 

geometries such as wire thickness, and number of turn is designed to analyze 

anticipated results. The frequency operating in UHF band frequency spectrum is 

choose as a contribution towards widely application nowadays. The surface current 

distribution of thin wire antenna is not uniform as well for thick wire antennas. The 

difference is that thicker wire antennas results higher amount of current comparing to 

thin wire antennas. Higher amount of current of the surface wire antenna produce 

better gain and higher magnetic field strength value.     
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ABSTRAK 

 

 

 

 

Apabila wayar antenna diletakkan selari, arus pada permukaan menjadi tidak 

seragam. Mod biasa antena helik dipilih khususnya untuk mengkaji kesan 

pengagihan permukaan semasa bersama-sama segmentasi dari segmen pengujaan 

penghujung panjang antena. Antena dengan geometri yang berbeza seperti ketebalan 

wayar, dan beberapa geometri lain pula direka untuk menganalisis keputusan yang 

dijangkakan. Frekuensi didalam julat spektrum UHF digunakan diatas faktor 

sumbangan kepada keperluan masa kini. Pengaliran arus pada permukaan antena 

wayar nipis adalah tidak seragam begitu juga untuk antena menggunakan wayar yang 

lebih tebal. Dari segi kuasa penerimaan dan pancaran,  perbezaan adalah ketara 

bahawa antena wayar tebal menghasilkan nisbah kuasa penghantaran yang lebih 

tinggi jika dibandingkan dengan antena wayar yang lebih nipis. Jumlah yang lebih 

tinggi semasa antena wayar permukaan menghasilkan keuntungan yang lebih baik 

dan medan magnet kekuatan nilai yang lebih tinggi. Antena yang mempunyai arus 

pada permukaan yang lebih tinggi menghasilkan nisbah kuasa penghantaran serta 

kuasa medan magnet yang lebih tinggi. PTTA
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CHAPTER 1 
 
 
 

 
INTRODUCTION 

 
 
 

 
An antenna is defined as a “transmitting or receiving system that is designed to 

radiate or receive electromagnetic waves” [1].  An antenna can be any shape or size.  

A list of some common types of antennas is wire, aperture, microstrip, reflector, and 

arrays.  Each antenna configuration has a radiation pattern and design parameters, in 

addition to their benefits and drawbacks.  Common antenna types such as wire 

antenna, microstrip antenna, aperture antenna and others have their own benefits and 

drawbacks. When we design antennas, it is vital to be able to estimate the current 

distribution on its surface. From the current distribution, we can calculate the input 

impedance, gain and the far-field pattern for the antenna. 

 
 

1.0 Antenna parameters 

 
 
An antenna or aerial is an electrical device design to transmit or receive radio 

waves or more generally any electromagnetic waves. Antenna is used in system such 

as radio and television broadcasting, point to point radio communication, radar, 

space exploration. Physically an antenna is an arrangement of conductors that 

generate a radiating electromagnetic field in response to an applied alternating 

voltage and associated alternating electric current or can be placed in an 

electromagnetic field so that field will induce an alternating current in the antenna 

voltage between its terminals. 

The input impedance of an antenna is the ratio of the voltage to current at the 

terminals connecting the transmission line and transmitter or receiver to the antenna. 
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The impedance can be real for an antenna tuned at one frequency but generally 

would have a reactive part at another frequency.  

The electric field is in a plane orthogonal to the axis of a magnetic dipole. This 

dependence of the plane of the radiated electromagnetic wave on the orientation and 

types of antenna in terms polarization. A receiving antenna requires the same 

polarization as the wave that it is to intercept. By combining field from electric and 

magnetic dipoles that have common centre, the radiated field can be elliptically 

polarized.  

The operating bandwidth of an antenna may be limited by pattern shape, 

polarization characteristic and its impedance performance. There are two 

fundamental types of antenna which with reference to a specific three dimensional 

usually horizontal or vertical plane are either omni-directions antenna or directional 

antenna. The omni-directional antenna radiated equally in all directions while 

directional antenna radiates more in one direction than in the one. 

 

 
1.1 Radiation Efficiency  
 
 

Radiation efficiency is the “ratio of total power radiate by an antenna to the 

net power accepted by the antenna from the connected transmitter. Only 50% of the 

power supplied through the transmitter network is used to transmit. In the best case 

scenario, the maximum power accepted by the transmitting antenna is 50% of the 

total power supplied and occurs when the generator impedance and the antenna are 

matched, usually to 50Ω. The efficiency of an antenna is given by Equation 1.1 

 
 

     𝐸 =  
𝑃𝑟𝑎𝑑𝑖𝑎𝑡𝑒𝑑

𝑃
=

𝑅𝑟𝐼2

(𝑅𝑟 + 𝑅L)𝐼2
=

𝑅𝑟
(𝑅𝑟 + 𝑅𝐿)

=
1

1 + 𝑅𝐿
𝑅𝑟

                                  (1.1) 

 
 
RL is your loss resistance which corresponds to the loss of your antenna and Rr is the 

radiation resistance. 
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1.1.2 Directivity and Gain  
 
 

Directivity is defined as “the ratio of radiation intensity, in a given direction, 

to the radiation intensity that would be obtained if the power accepted by the antenna 

where radiating isotropic ally [5]. In other words it’s the ratio of the radiation 

intensity of an antenna to one that radiates equally in all direction. This is similar to 

that of antenna gain but antenna gain takes into account the efficiency of the antenna 

while directivity is the losses gain of an antenna. Directivity can be calculated using 

the Poynting Vector, P, which tells you the average real power per unit area radiated 

by an antenna in free space [6]. The equation for the directivity of an antenna is 

given by Equation 2. 

 
 

  𝐷 =  
𝑃
𝑃0

, 𝐷|𝑑𝐵 = 10𝑙𝑜𝑔10
𝑃
𝑃0

,     𝑃0 =
𝑃𝑎

4𝜋𝑟2
                                             (1.2) 

 
 

Pa is the total power radiated by the antenna and r is the distance between the 

two antennas. The antenna gain takes into account loss so the gain of an antenna will 

always be less than the directivity. Knowing the directivity of the antenna, the total 

power radiated by the antenna, and the received power which takes into account loss, 

the antenna gain can be calculated using Equation 1.3. 

 
 

               𝐺 = 𝐷
𝑃𝑎

𝑃𝑎𝑐𝑐𝑒𝑝𝑡𝑒𝑑 𝑏𝑦 𝑡ℎ𝑒 𝑎𝑛𝑡𝑒𝑛𝑛𝑎
≤ 𝐷                                                                  (1.3) 

 
 
1.1.3 Antenna Bandwidth 
  
 

Antenna bandwidth is the range of frequencies within which the performance 

of the antenna, with respect to some characteristic, conforms to a specified standard 

[5]. The bandwidth can be viewed as the frequencies left and right of the center 

frequency in which the antenna performance meets the specified values. The 

impedance bandwidth of an antenna is commonly agreed upon as the power 

delivered to the antenna greater than or equal to 90% of the available power [6]. 

Another way to interpret the antenna bandwidth is in terms of the reflection 
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coefficient Γ. Γ is usually plotted in as the power reflection coefficient by using 

Equation 1.4. 

 
 

                                              |𝛤|𝑑𝐵 = 20𝑙𝑜𝑔10|𝛤| = 10𝑙𝑜𝑔|𝛤|2                                     (1.4) 

 
 

Figure 1 displays an example of a power reflection coefficient graphed in terms of 

frequency. 

 
 

 
Figure 1.0: Power Reflection Coefficients 

 
 

fL represents the lowest frequency that satisfies the 90% power, and f U  represents 

the highest frequency that follows the criteria. The average of fL and fc will give you 

the center frequency fc and the bandwidth or commonly referred to as fractional 

bandwidth. 

 
 
1.2 Surface Current Distribution 
 

  
When wires are closely parallel, the surface current distribution become non-

uniform. This effect has been investigated previously subject to certain 

approximations. Smith and Olaefe assumed that the average current flowing in a set 

PTTA
PERP

UST
AKA
AN 
TUN
KU T

UN 
AMI
NAH



5 
 

of parallel wires was equal, which means that the cross sectional distribution of 

surface current remain constant along the wires [3]. These earlier studies were 

restricted to simple geometries. Tuluyathan used a more general treatment but still 

neglected the possibility of a circumferential component in the surface current [5]. It 

is intuitively obvious that such component must be present when there is significant 

displacement current flow in the inter wire capacitance. 

Most of the methods used for analysis of wire antenna of arbitrary shape 

including the possibility of closely parallel wire assume a uniform surface current 

distribution across the cross section [8]. Hence, surface resistive losses and reactive 

effects that may be augmented by the non-uniform surface current will not be 

correctly predicted. 

 
 

1.3 Background of Study 

 
 
 The analysis of radiation and scattering from the straight thin wire antenna is 

one of the most important problems in antenna theory. The excitation of the straight 

thin wire can be regarded as a standard canonical problem. Furthermore, this 

configuration itself is one the practical interest in the design of the antenna arrays 

same as in wire grid modeling. In a numerical sense, this relatively simple geometry 

is very convenient for testing newly developed numerical techniques.   

 
 
1.4 Statement of Problem 

 
 
 This problem is particularly significant for resonant coiled electrically smaal 

antennas, such as normal mode helical antenna, spiral antennas and other closely 

space antennas, in which the surface current distribution has a critical effect on the 

efficiency, Q-factor and resonant frequency. A new moment of method is developed 

which solves this problem. 
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1.5 Objective of the Study 
 
 
The principle objectives of the research are depicted as follows. 

 
1.5.1 To design a helix antenna using NEC Software Simulation with 

matching feeding network in the UHF-Band frequency spectrum. 

1.5.2 Analyze the different of thin and thick wire antennas to its surface 

current distribution. 

1.5.3 To optimize the performance of the helix antenna in term of surface 

current distribution between antennas of different antenna thin and 

thick dimensions. 

 
 
1.6 Scope Of The Study 

 
 

The study will focus on wires that are closely parallel to each other, in 

particular the normal-mode helical antenna and spiral antenna. The investigation will 

consider the surface current distribution which has a vital part in contribution to the 

efficiency, Q-factor and resonant frequency of an antenna. 

 
 
1.7 Significant of Study 

 
 

The analysis of non-uniform surface current distribution on wire antennas 

may improve the understanding of complex coupling processes between surface 

resistive losses and reactive effects. The design and analysis developed by the end of 

the research is hoped to determine the surface current distribution for different 

antenna wire geometries. Results of study might be of interests to related field of 

study and industry. 
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CHAPTER 2 
 
 
 
 

LITERATURE REVIEW 
 
 
 
 

2.0 Chapter Overview 
 
 

In this chapter, several topics on core theories behind the research will be 

discussed. Section 2.1 provides information on mathematical foundation on method 

of moments in antenna fundamental design which has been used in the research. Later, 

a Pocklington Iintegral Equation i s  discussed in section 2.2 in more details. In section 

2.3, researches that have been done previously by others which closely related to this 

research are revealed and discussed. 

 
 

2.1 Mathematical Foundations 
 
 

 Moment’s technic, as applied to problems in electromagnetic theory, was 

introduced by Roger F. Harrington (Harrington 1967). Throughout the history of physical 

science, natural behaviors have been represented in terms of integral-differential 

equations. In many instances, behaviors are described in terms of simple differential 

equations. 

 

 

                                                                           𝑑𝑦
𝑑𝑡

= 𝑣          (2.1) 

 
 
where the function x(t) is defined over the domain or t. The differential operator then yields 

the function x(t) which also defined over the domain of t. In other instances, where the 

function v(t) is known over the domain of (t), specific values of x may be derived from 

representatives expressions given by: 

PTTA
PERP

UST
AKA
AN 
TUN
KU T

UN 
AMI
NAH



8 
 

 
 

                                                             � 𝑣(𝑡)𝑑𝑡                                                                (2.2)   
𝑡1

0
 

 
 
For example, if v(t) = k, then x = kt1. A special case arises when the function v(t) is 

unknown and values of x are known at only discrete values of t. this type of problem 

is generally referred to as an integral equation problem where the task is to determine 

the function v(t) with boundary conditions described by values of x at specific values 

of t. the task of determining the current distribution on a wire antenna resulting from 

an arbitrary excitation may be readily stated in terms of an integral equation problem. 

The formulation begins with the development of an integral expression which defines 

the electric field resulting from an arbitrary current distribution on the wire. This 

integral expression will employ a function which relates the electric field at an 

arbitrary observation point to the current at an arbitrary source point. The integral 

equation problem then employs the integral expression to relate known electric field 

boundary conditions to an unknown current distribution on the wire. 

 The method of moments applies orthogonal expansions to translate the 

integral equation statement into a system of circuit like simultaneous linear 

equations. Basic functions are used to expand the current distribution. Testing 

functions are used to invoke the electric field boundary conditions. Matrix methods 

are then used to solve for the expansions coefficients associated with the basic 

functions. The current distribution solution is the constructed from the expansion 

coefficients. The antenna’s radiation characteristics and feed point impedance are 

then derived from the calculated current distribution [10].     

 
 
2.2 Pocklington integral Equation 

 
 
 A well-known formulation for simple wire antennas is Pocklington Integral 

Equation. The Pocklington integral equation use time domain processing model. 

Figure 2, depicts a representatives geometry from which Pocklington equation can be 

derived. A simple wire antenna is positioned along the z axis in a Cartesian 

coordinate system. The current is restricted to the centerline of the wire and directed 
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along the z axis. Elemental current segments are located at coordinate z’. Field 

observation pointsb are located at coordinate’s z. A feed gap is positioned at z=0. 

The electric field along the surface of the wire and in the feed gap, which establishes 

the boundary conditions for the problem, is defined as follows: 

 
 
                                                     𝐸𝑧 = 0                                                                               (2.3) 

 
 
On the surface of the wire. 

 
 
                                                     𝐸𝑧 =  𝑉𝑔

∆𝑧
                                                                            (2.4)       

 
 

At the feed gap,𝑉𝑔, the antenna excitation, is normally set to 1.0V for input 

impedance calculations. Δz is commonly set equal to the diameter of the wire. 

However, it is possible to study the impact of the feed gap dimensions on antenna 

input impedance by varying the value of Δz. 

 
Figure 2.0: Integral Equation Formulation 
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With the conditions presented in Figure 1, Pocklington’s equation may be written as: 

 
 

                                    ∫ 𝐼𝑧(𝑧′) � 𝜕
2

𝜕𝑧2
+ 𝑘2� 𝜚

−𝑗𝑘𝑅

4𝜋𝑅
𝑑𝑧′ = 𝑗𝜔𝜀𝐸𝑧(𝑧)                             (2.5)

𝑙
2�

−𝑙
2�

        

 
 
Where, 

 
 
                                   𝑅 = �𝜌2 + (𝑧 − 𝑧′)2                                                              (2.6) 

 
 
The variable R represents the distance between the current source and field 

observation points. The variable 𝜌 specifies the radius of the wire. The current 

distribution 𝐼𝑧(𝑧′) is defined along the length of the wire from 𝑧 = 𝑙
2
  to 𝑧 =  −𝑙

2
. The 

kernel 𝜕2

𝜕𝑧2
+ 𝑘2 denotes the wave equation differential operator on the free space 

function. The constant k specifies the free space wave number.  𝐸𝑧(𝑧) represents the 

electric field generated by the current on the wire. With the specific excitation 

applied, as modeled through the appropriate boundary conditions, radiation 

characteristics and feed point impedances are determined from knowledge of the 

antenna’s current distribution𝐼𝑧(𝑧′). Of the many techniques available to solve such 

integral equations problems, the method of moments is one of the related filed 

popular approaches. 

 
 
2.3 The Method of Moments 
 
 
 The fundamental concept behind the methods of moments employs 

orthogonal expansions and linear algebra to reduce the integral equation problem to a 

system of simultaneous linear equations. This is accomplished by defining the 

unknown current distribution 𝐼𝑧(𝑧′) in terms of an orthogonal set of basic functions 

and invoking the boundary conditions; the values of the electric field on the surface 

of the wire, and in the feed gap. Moving the currents expansions coefficients to the 

outside of the integral differential operator permits the evaluation of known 
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functions, yielding values which are loosely defined as impedances. The current 

expansions coefficients, the orthogonal projections of the electric field boundary 

conditions, and these impedances are gathered into a system of simultaneous linear 

equations. This system of equations is solved to yield the current expansion 

coefficients. The original current distribution is then determined by the introducing 

these coefficients back into the basic function expansion. 

 The solution procedure begins by defining the unknown current distribution 

𝐼𝑧(𝑧′) in terms of an orthogonal set of basic functions. Two categories of basic 

functions exist. Sub domain basic functions, significantly more popular in industry, 

subdivide the wire into small segments and model the current distribution on each 

segment by a simple geometrical construct, such as a rectangle, triangle or sinusoidal 

arc. The amplitudes of these construct represent the expansion function coefficients. 

These simple constructs, illustrated in Figure 2.1, often overlap to maintain 

continuity of the current distribution along the wire. 

 

 
 

Figure 2.1: Basic Function of Current distribution Construction (en.wikipedia.org) 

 
 

Entire domain basic functions employ a more formal orthogonal expansion, such as a 

Fourier Series to represent the current distribution along the entire wire. Entire 

domain basic functions tend to yield more complicated calculations for the 
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impedances, therefore impractical. The introduction of the redefined current 

distribution reduces the integral equation to the form: 

 
 

                                 �𝐶𝑛𝐺𝑛(𝑧) = 𝐸𝑧(𝑧)                                                                             2.6
𝑁

𝑛=1

 

 
 
Where 
 
 

                   𝐺𝑛(𝑧) =
1

𝑗4𝜋𝜔𝜀
� 𝐹𝑛(𝑧′)

𝑙/2

−𝑙/2

�
𝜕2

𝜕𝑧2
+ 𝑘2�

𝑒−𝑗𝑘𝑅

𝑅
𝑑𝑧′                                        2.7 

 
 
  𝐶𝑛      = current’s expansion coefficient 

               𝐹𝑛(𝑧′) = basic function 

 
 

The boundary conditions are now enforced through the use of an inner 

product operator with a set of orthogonal testing function. Each testing function is 

applied to both sides of the integral equation, the inner product then enforces the 

boundary condition at the location described by the testing function. This operation 

may be thought of as simply enforcing the boundary condition at a single point on 

the wire. After each testing function operation, the integral equation will be stated as: 

 
 

                                       �𝐶𝑛

𝑁

𝑛=1

〈𝐻𝑚(𝑧),𝐺𝑛(𝑧)〉 = 〈𝐻𝑚(𝑧),𝐸𝑧(𝑧)〉                                   2.8 

 
 

where  the fractional equation represent the inner product operator, 
 
 
                                           〈𝐻𝑚(𝑧),𝐺𝑧(𝑧)〉 = ∫ 𝐻𝑚(𝑧)𝐺𝑛(𝑧)𝑑𝑧𝑙/2

−𝑙/2                                   2.9   
 
 

Where 𝐻𝑚(𝑧) is a testing function which has a non-zero value for only a 

small segment of wire located at z = 𝑍𝑚. There are two common approaches to 
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