DESIGN AND IMPLEMENTATION OF MIMO-LONG TERM EVOLUTION-ADVANCED TO SUPPORT LARGER BANDWIDTH

AWS ZUHEER YONIS ALASHQER

A thesis submitted in

e AMINA fulfillment of the requirement for the award of the

Doctor of Philosophy

PERPUSTAKAAN Faculty of Electrical and Electronic Engineering

Universiti Tun Hussein Onn Malaysia

2013

ACKNOWLEDGEMENT

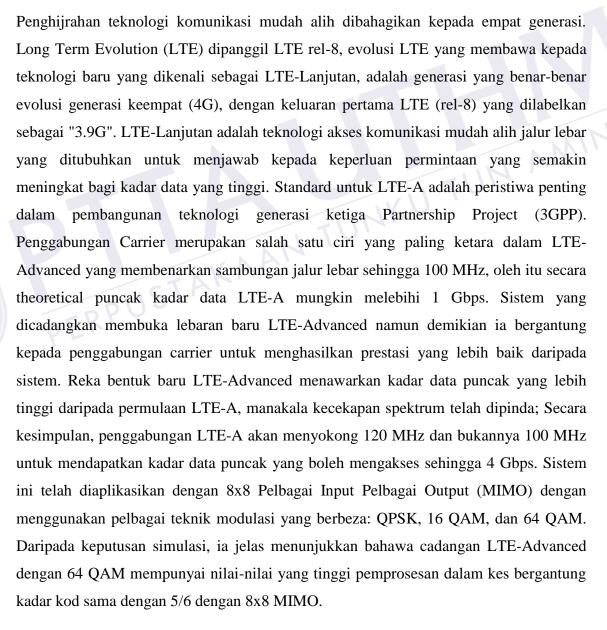
This thesis is carried out in the Communications Laboratory, Department of Communication Engineering, Faculty of Electrical and Electronic Engineering, University Tun Hussein Onn Malaysia, Johor, Malaysia. I would like to take the opportunity to thank people who guided and supported me during this work.

I wish to express my deepest gratitude to my supervisor Associate Prof. Dr. Mohammad Faiz Liew Abdullah for showing great interest in my work and for the guidance that he has given me.

Thanks to my siblings and friends for their encouragement and mental support during my stay in Malaysia.

The most heartfelt gratitude goes to the three most special people in my life, my father, my mother and my wife. I would like to thank my parents and my wife for making my life a wonderful one .To my father and mother in Iraq, for their endless support, love and pride in me. To my wife, I am deeply grateful for her continued love and devotion. I am thankful for her and her wonderful family for believing in me and giving me their full support. To my precious children Mustafa and Layal, who bring joy into my life every day. To my family and friends; this work is dedicated to them.

Aws Zuheer Yonis 2013 Johor, Malaysia



ABSTRACT

The migration of mobile communication technologies are divided into four generations. Long Term Evolution (LTE) is called LTE rel-8, the evolution of LTE led to new technology referred to as LTE-Advanced, is the true fourth generation (4G) evolution step, with the first release of LTE (rel-8) which was labeled as "3.9G". LTE-Advanced is a mobile broadband access technology founded as a response to the need for the improvement to support the increasing demand for high data rates. The standard for LTE-A is a milestone in the development of Third Generation Partnership Project (3GPP) technologies. Carrier Aggregation is one of the most distinct features of LTE-Advanced that makes the bandwidth extension of up to 100 MHz thus the theoretical peak data rate of LTE-A may be even up to 1 Gbps. This proposed system presents new LTE-Advanced depending on carrier aggregation to obtain better performance of the system. The new design of LTE-Advanced offers higher peak data rates than even the initial LTE-A; while the spectrum efficiency has been amended; As a result, the aggregated LTE-A will support 120 MHz instead of 100 MHz in order to obtain higher peak data rate access up to 4 Gbps. The system was applied with 8x8 Multiple Input Multiple Output (MIMO) using different modulation techniques: QPSK, 16 QAM, and 64 QAM. From the simulation results, it is clear that proposed LTE-Advanced with 64 QAM has high values of throughput in case of depending code rate equals to 5/6 with 8x8 MIMO.

ABSTRAK

TABLE OF CONTENTS

TITLE	I
DECLARATION	ш
ACKNOWLEDGEMENT	V
ABSTRACT	VI
TABLE OF CONTENTS	VIII
LIST OF FIGURES	XIII
LIST OF TABLES	XVII
LIST OF PUBLICATIONS AND AWARDS	XIX
LIST OF ABBREVIATIONS	XXIII

CHAPTER 1	INTRO	DUCTION	1
	1.1	Problem Statement	2
	1.2	Objectives of the Research	3
	1.3	Scope of the Research	3
	1.4	Contributions of the Research	4
	1.5	Outline of The Thesis	4

CHAPTER 2	LTE A	ND LTE-ADVANVACED	6
	2.1	Introduction	6
	2.2	System Requirements for LTE and LTE-Advanced	9
	2.3	Long Term Evolution Standard	11
	2.4	Key Enabling Technologies and Feature of LTE	12
	2.4.1	Downlink of Long Term Evolution	13
	2.4.2	Uplink of Long Term Evolution	24
	2.5	Long Term Evolution-Advanced Standard	26
	2.5.1	Carrier Aggregation	27
	2.5.2	Peak Data Rates and Throughput	29
	2.5.3	Peak Spectral Efficiency	31
	2.5.4	Mobility	34
	2.5.5	Latency	35
	2.6	LTE-Advanced Technologies	35
	2.6.1	Multiple Input Multiple Output (MIMO)	36
	2.6.2	Coordinated Multi-Point transmission (CoMP)	39
	2.6.3	Relaying	40
	2.7	Summary	42

IX

CHAPTER 3	С	arrier Aggregation for LTE-Advanced	43
	3.1	Introduction	43
	3.2	Carrier Aggregation Schemes in LTE and LTE-Advanced	44
	3.2.1	Intra-band Aggregation with Contiguous Component Carriers	52
	3.2.2	Intra-band Aggregation with non-Contiguous Component Carriers	52
	3.2.3	Inter-Band Aggregation with non-Contiguous Component Carriers	54
	3.3	Band Combinations for LTE-CA	61
	3.4	Summary	64
CHAPTER 4	Metho	dology	65
CHAPTER 4	Methoo 4.1	dology Introduction	65 65
CHAPTER 4			
CHAPTER 4	4.1	Introduction MIMO Physical Downlink of LTE-A System Design of the Carrier Aggregation in LTE-Advanced	65
CHAPTER 4	4.1 4.2	Introduction MIMO Physical Downlink of LTE-A System	65 66
CHAPTER 4	4.14.24.3	Introduction MIMO Physical Downlink of LTE-A System Design of the Carrier Aggregation in LTE-Advanced System	65 66 70
CHAPTER 4	4.14.24.34.4	Introduction MIMO Physical Downlink of LTE-A System Design of the Carrier Aggregation in LTE-Advanced System Design of the Proposed LTE-Advanced System	65 66 70 72
CHAPTER 4	 4.1 4.2 4.3 4.4 4.5 	Introduction MIMO Physical Downlink of LTE-A System Design of the Carrier Aggregation in LTE-Advanced System Design of the Proposed LTE-Advanced System MIMO Wideband Mobile Channel Model	65 66 70 72 80

CHAPTER 5	RES	ULTS AND DISCUSSIONS	99
	5.1	Introduction	99
	5.2	Simulation of Proposed LTE-A Bandwidth using MATLAB	99
		Program	
	5.2.1	LTE-Advanced Downlink Intra Band Contiguous	102
		Component Carriers to Support Channel Bandwidth 40 MHz	
	5.2.2	LTE-Advanced Downlink Intra Band Contiguous	103
		Component Carriers to Support Channel Bandwidth 60 MHz	
	5.2.3	LTE-Advanced Downlink Intra Band Contiguous	104
		Component Carriers to Support Channel Bandwidth 80 MHz	
	5.2.4	LTE-Advanced Downlink Intra Band Contiguous	105
		Component Carriers to Support Channel Bandwidth 100	
		MHz	
	5.2.5	LTE-Advanced Downlink Intra Band Contiguous	106
		Component Carriers to Support Channel Bandwidth 120	
		MHz	
	5.2.6	LTE-Advanced Downlink Intra Band non-Contiguous	107
		Component Carriers to Support Channel Bandwidth 40 MHz	
	5.2.7	LTE-Advanced Downlink Intra Band non-Contiguous	108
		Component Carriers to Support Channel Bandwidth 60 MHz	
	5.2.8	LTE-Advanced Downlink Intra Band non-Contiguous	109
		Component Carriers to Support Channel Bandwidth 80 MHz	
	5.2.9	LTE-Advanced Downlink Intra Band non-Contiguous	110
		Component Carriers to Support Channel Bandwidth 100	
		MHz	

XI

	5.2.10	LTE-Advanced Downlink Intra Band Non-Contiguous	111
		Component Carriers to Support Channel Bandwidth 120	
		MHz	
	5.3	Throughput Analysis of Proposed LTE-A	112
	5.3.1	Throughput of Proposed LTE-A with QPSK Modulation	113
	5.3.2	Throughput of Proposed LTE-A with 16 QAM Modulation	117
	5.3.3	Throughput of Proposed LTE-A with 64 QAM Modulation	120
	5.4	Simulation of Proposed LTE-A Bandwidth using	124
		SystemVue Program	
	5.4.1	LTE-Advanced Downlink Intra Band non-Contiguous	125
		Component Carriers	
	5.4.2	LTE-Advanced Downlink Intra Band Contiguous	131
		Component Carriers	
	5.5	SystemVue and Matlab Differences in Execution of	139
		Proposed LTE-Advanced System	
	5.6	Comparison of Proposed LTE with the LTE and LTE-	140
		Advanced	
	5.7	Summary	141
CHAPTER (6 CON	NCLUSIONS AND FUTURE WORK	142
	6.1	Conclusions	142
	6.2	Future Works	146
	REFF	CRENCES	148

APPENDIX 154

PERPUSTAKAAN TUNKU TUN AMINAH

LIST OF FIGURES

2.1	The release of 3GPP specifications for LTE	7
2.2	Block diagram for OFDMA	14
2.3	Frequency domain illustration of OFDM	15
2.4	OFDM symbol in the time domain	16
2.5	OFDMA downlink transmitter	17
2.6	OFDMA downlink receiver for user 1	18
2.7	Principles of OFDMA for downlink transmission	21
2.8	Block diagram for SC-FDMA	25
2.9	Carrier aggregation scenarios	28
2.10	Improvement in downlink spectral efficiency going from 2G to 4G	33
	system	
2.11	Mobility in LTE-Advanced technology	34
2.12	Illustration of SU and MU MIMO systems	37
2.13	MIMO for LTE-Advanced DL and UL transmission	38
2.14	Cooperative MIMO on the LTE-Advanced downlink	40
2.15	Configuration of the relaying network	41
3.1	Types of carrier aggregation for LTE-Advanced	45
3.2	Examples of carrier aggregation	47
3.3	Carrier aggregation in LTE-Advanced	49
3.4	Structure of the MAC and PHY layer of LTE-A	51
3.5	Scenarios of CA with bandwidth 100 MHz	53

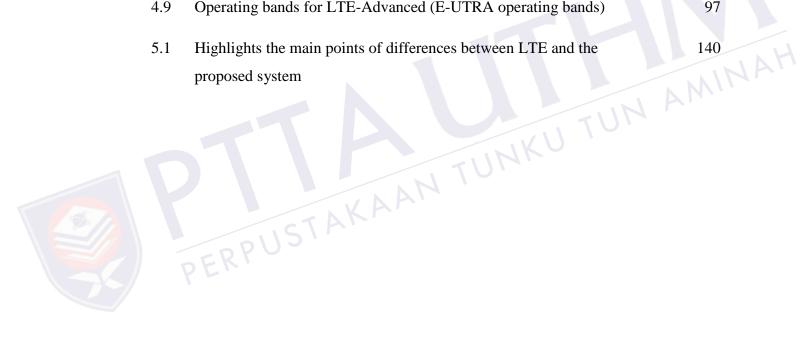
3.6	Definitions for intra band carrier aggregation RF parameters, for	54
	an example with two aggregated carriers	
3.7	The channel bandwidth for one RF carrier and the corresponding	55
	transmission bandwidth configuration	
4.1	OFDMA and SCFDMA	66
4.2	LTE-A downlink transmitter for 8x8 MIMO	68
4.3	LTE-A downlink receiver for 8x8 MIMO	69
4.4	Block diagram of downlink data aggregation	71
4.5	Proposed LTE-A system design	73
4.6	Aggregated channel bandwidth for contiguous carrier aggregation	74 75 77
4.7	Non-contiguous intra band CA	75
4.8	Interference effects on the system with 7 CC: (a) Schematic	77
	design, (b) Contiguous carrier aggregation, (c) Non-contiguous	
	carrier aggregation.	
4.9	Scenario of contiguous CA with bandwidth 120 MHz	78
4.10	Examples of non contiguous CA with bandwidth 120 MHz	79
4.11	MIMO Principle with 8x8 antenna configuration	81
4.12	Two antenna arrays in a scattering environment	82
4.13	Frequency-domain structures for LTE-A	84
4.14	The structure of the downlink resource grid	86
4.15	Types of modulation constellation	87
4.16	Relationship between throughput and no. of component carriers	96
4.17	Relationship among no. of CCs, efficiency and bandwidth in MHz	96
5.1	Data aggregation from the PHY up to MAC interface	100
5.2	LTE-A with channel bandwidth 40 MHz	102
5.3	LTE-A with channel bandwidth 60 MHz	103
5.4	LTE-A with channel bandwidth 80 MHz	104

5.5	LTE-A with channel bandwidth 100 MHz	105
5.6	LTE-A with channel bandwidth 120 MHz	106
5.7	LTE-A non-contiguous CCs with channel bandwidth 40 MHz	107
5.8	LTE-A non-contiguous CCs with channel bandwidth 60 MHz	108
5.9	LTE-A non-contiguous CCs with channel bandwidth 80MHz	109
5.10	LTE-A non-contiguous CCs with channel bandwidth 100MHz	110
5.11	LTE-A non-contiguous CCs with channel bandwidth 120MHz	111
5.12	Throughput diagram with MIMO technique	112
5.13	Throughput of 2x2 MIMO LTE-A using QPSK modulation	114
5.14	Throughput of 4x4 MIMO LTE-A using QPSK modulation	115
5.15	Throughput of 8x8 MIMO LTE-A using QPSK modulation	115
5.16	Throughput of 2x2 MIMO LTE-A using 16 QAM modulation	118
5.17	Throughput of 4x4 MIMO LTE-A using 16 QAM modulation	119
5.18	Throughput of 8x8 MIMO LTE-A using 16 QAM modulation	120
5.19	Throughput of 2x2 MIMO LTE-A using 64 QAM modulation	122
5.20	Throughput of 4x4 MIMO LTE-A using 64 QAM modulation	123
5.21	Throughput of 8x8 MIMO LTE-A using 64 QAM modulation	124
5.22	Schematic design of non-contiguous CCs with aggregated channel	125
	bandwidth 20 MHz	
5.23	Non-contiguous CCs with aggregated channel bandwidth 20 MHz	126
5.24	Schematic design of non-contiguous CCs with aggregated channel	127
	bandwidth 80 MHz	
5.25	Non-contiguous CCs with aggregated channel bandwidth 80MHz	127
5.26	Schematic design of non-contiguous CCs with aggregated channel	128
	bandwidth 100 MHz	
5.27	Non-contiguous CCs with aggregated channel bandwidth 100MHz	129
5.28	Schematic design of non-contiguous CCs with aggregated channel	130

XV

bandwidth 120 MHz

5.29	Non-contiguous CCs with aggregated channel bandwidth 120	130
	MHz	
5.30	Schematic design of contiguous CCs with aggregated channel	131
	bandwidth 40 MHz	
5.31	Contiguous CCs with aggregated channel bandwidth 40 MHz	132
5.32	Schematic design of contiguous CCs with aggregated channel	133
	bandwidth 60 MHz	
5.33	Contiguous CCs with aggregated channel bandwidth 60 MHz	133
5.34	Schematic design of contiguous CCs with aggregated channel	134
	bandwidth 80 MHz	
5.35	Contiguous CCs with aggregated channel bandwidth 80 MHz	134
5.36	Schematic design of contiguous CCs with aggregated channel	136
	bandwidth 100 MHz	
5.37	Contiguous CCs with aggregated channel bandwidth 100 MHz	136
5.38	Schematic design of contiguous CCs with aggregated channel	137
	bandwidth 120 MHz	
5.39	Contiguous CCs with aggregated channel bandwidth 120 MHz	138
6.1	Agilent W1716EP SystemVue Digital Pre-Distortion Builder	147



LIST OF TABLES

2.1	3GPP specification release for LTE and LTE-A	8
2.2	Major system requirement for Rel.8 LTE	10
2.3	System Performance Requirements for LTE-A compared to those achieved in Rel.8 LTE	11
2.4	Requirements of LTE-Advanced	30
3.1	Deployment scenarios of LTE-Advanced	50
3.2	UE Carrier Aggregation Bandwidth Classes	56
3.3	Nominal channel spacing between contiguously aggregated CCs	57
3.4	Minimum channel spacing between contiguously aggregated CCs	58
3.5	Definition of F_{offset}	59
3.6	Intra band contiguous CA	62
3.7	Inter band non-contiguous CA	63
4.1	Coding rates for QPSK, 16QAM and 64 QAM	88
4.2	Transmission bandwidth configuration NRB in E-UTRA channel bandwidths	89
4.3	Throughput of 2x2 MIMO	90

XVIII

4.4	Throughput of 4x4 MIMO	91	
4.5	Throughput of 8x8 MIMO	91	
4.6	Enhancement of data rate with different modulation techniques	92	
4.7	Proposed one-layer to four-layer TBS translation	94	
4.8	Throughput and efficiency for 8x8 MIMO LTE-A	95	
4.9	Operating bands for LTE-Advanced (E-UTRA operating bands)	97	
5.1	Highlights the main points of differences between LTE and the	140	
	proposed system		

LIST OF ABBREVIATIONS

1G	-	First Generation		
2G	-	Second Generation		
3G	-	Third Generation		
3GPP	-	Third Generation Partnership Project		
4G	-	Fourth Generation		
ACLR	-	Adjacent Channel Leakage Ratio		
AIM	-	Advanced Interference Management		
B.W	-	Bandwidth		
BER	-	Block Error Rate		
BS	c 1	Base Station		
BTS	2	Base Transceiver Station		
BWGB	-	Bandwidth Guard Band		
CA	-	Carrier Aggregation		
СВ	-	Coding Blocks		
CCs	-	Component Carriers		
CDF	-	Cumulative distribution function		
CDMA	-	Code Division Multiple Access		
СМ	-	Cubic Metric		
CoMP	-	Coordinated Multi Point		
СР	-	Cyclic Prefix		
C-Plane	-	Control-Plane		

CRC	-	Cyclic Redundancy Check
CRS	-	Cell-specific Reference Symbol
CSI	-	Channel State Information
CSI-RS	-	Channel State Information -Reference Signal
CSIT	-	Channel State Information at the Transmitter
DC	-	Direct Current
DFT	-	Discrete Fourier Transform
DFT-S-OFDM	-	Discrete Fourier Transform–Spread–OFDM
DL	-	Downlink
DRX	-	Discontinuous Reception
EDGE	-	Enhanced Data Rates for GSM Evolution enhanced Node B
eNB	-	enhanced Node B
EPC	-	Evolved Packet Core
E-UTRA	-	Evolved Universal Terrestrial Radio Access
E-UTRAN	-	Evolved UMTS Terrestrial Radio Access Networ
EVM	-	Error Vector Magnitude
FDD	5	Frequency Division Duplex
FDMA	-	Frequency Division Multiple Access
FEC	-	Forward Error Correction
FFS	-	For Further Studies
FFT	-	Fast Fourier Transform
GPRS	-	General Packet Radio Service
GPS	-	Global Positioning System
GSM	-	Global System for Mobile
HARQ	-	Hybrid Automatic Repeat Request
HeNB	-	Home eNodeB
HSDPA	-	High Speed Downlink Packet Access

HSPA	-	High Speed Packet Access
HSUPA	-	High-Speed Uplink Packet Access
IDFT	-	Inverse Discrete Fourier Transform
IFFT	-	Inverse Fast Fourier Transform
IM3	-	Third-order Inter Modulation
IMD	-	Inter Modulation Distortion
IMT-Advanced	-	International Mobile Telecommunications - Advanced
IP	-	Internet Protocol
ISI	-	Inter Symbol Interference
ITU	-	International Telecommunications Union
ITU-R	-	International Telecommunications Union ITU-Radiocommunication Joint Processing Long Term Evolution
JP	-	Joint Processing
LTE	-	Long Term Evolution
LTE-A	-	Long Term Evolution-Advanced
MA	-	Multiple Access
MAC	-	Medium Access Control
MBRs	5	Maximum Bit Rates
MIMO	-	Multi Input Multi Output
MISO	-	Multiple Input Single Output
MU-MIMO	-	Multi User- Multi Input Multi Output
OCC	-	Orthogonal Cover Codes
OFDM	-	Orthogonal Frequency Division Multiplexing
OFDMA	-	Orthogonal Frequency Division Multiple Access
Р	-	Power
P/S	-	Parallel to Serial
PA	-	Power Amplifiers
PAPR	-	Peak to Average Power Ratio

XX

P _{CC}	-	Primary component carrier
Pe	-	Error Probability
PHY layer	-	Physical layer
PRB	-	Physical Resource Block
PS	-	packet-switching
PUCCH	-	Physical Uplink Control Channel
QAM	-	Quadrature Amplitude Modulation
QoS	-	Quality of Service
QPSK	-	Quadrature Phase Shift Keyed
RBs	-	Resource Blocks
Rel-10	-	Release-10
Rel-11	-	Release-11
Rel-12	-	Resource Blocks Release-10 Release-11 Release-12
Rel-8	-	Release-8
Rel-9	-	Release-9
RF	-1	Radio Frequency
RRC	2	Radio Resource Control
RS	-	Reference Signal
S/P	-	Serial to Parallel
SAE	-	System Architecture Evolution
SC-FDMA	-	Single Carrier Frequency Division Multiple Access
SDM	-	Spatial Division Multiplexing
SEM	-	Spectrum Emission Mask
SIMO	-	Single Input Multiple Output
SISO	-	Single Input Single Output
SNR	-	Signal to Noise Ratio
SU-MIMO	-	Single User- Multi Input Multi Output

XXI

TBs	-	Transport Blocks
TDD	-	Time Division Duplexing
TD-LTE	-	Time Division -Long Term Evolution
TDMA	-	Time Division Multiple Access
TD-SCDMA	-	Time Division-Synchronous Code Division Multiple
		Access
TSG RAN	-	TSG Radio Access Network
UE	-	User equipment
UL	-	Uplink
UMTS	-	Universal Mobile Telecommunications System
U-Plane	-	Universal Mobile Telecommunications System User-Plane Wideband Code Division Multiple Access
WCDMA	-	Wideband Code Division Multiple Access
WiMAX	-	Worldwide interoperability for Microwave Access
βi	-	Fraction of Bandwidth Allocated to user i

CHAPTER 1

INTRODUCTION

The specifications of Long Term Evolution (LTE) in 3rd Generation Partnership Project (3GPP) (Release-8) has recently been completed when work began on the new Long Term Evolution- Advanced (LTE-A) standard (Release-9 and beyond). LTE-A meets or exceeds the requirements imposed by International Telecommunication Union (ITU) to Fourth Generation (4G) mobile systems. These requirements were unthinkable a few years ago, but are now a reality. Peak data rates of 1 Gbps with bandwidths of 100 MHz for the downlink, very low latency, more efficient interference management and operational cost reduction are clear examples of why LTE-A is so appealing for operators. Moreover, the quality breakthrough affects not only operators but also end users, who are going to experience standards of quality similar to optical fiber.

In order to reach these levels of capacity and quality, the international scientific community, in particular the 3GPP are developing different technological enhancements on LTE. The most important technological proposals for LTE-Advanced are support of wider bandwidth (carrier aggregation), advanced Multiple Input Multiple Output (MIMO) techniques, Coordinated Multipoint transmission or reception (CoMP), relaying and enhancements for Home eNodeB (HeNB) by Cardona, Monserrat and Cabrejas (2013).

The 3GPP is in the process of development of certain technological proposals to meet the demanding requirements of LTE-A. At this point, 3GPP has focused its attention on different points that required technological innovations and one of them is supporting of wider bandwidth (carrier aggregation) which is the main issue of this thesis. Carrier aggregation can be defined as one of the most important technologies that ensure the success of 4G technologies; this concept involves transmitting data in multiple contiguous or non-contiguous Component Carriers (CCs). Each Component Carrier (CC) takes a maximum bandwidth of 20 MHz to be compatible with LTE Release 8 (Dahlman, Parkvall, Sköld and Beming, 2008). In addition to the peak data rate, another motivation for carrier aggregation is to facilitate efficient use of fragmented spectrum. In LTE-Advanced carrier aggregation, each component carrier can take any of the channel bandwidths of 1.4, 3, 5, 10, 15, and 20 MHz that are supported by LTE. Component carriers do not have to be of the same frequency (Taha, Hassanein and Abu Ali, 2012). Operators with a fragmented spectrum can also provide high data rate services through carrier aggregation technology. Carrier aggregation also allows advanced features such as multi-carrier scheduling, interference coordination, quality of service (QoS) differentiation, carrier load balancing, and heterogeneous deployment to be used to further increase the spectral efficiency of the system. For instance, with QoS differentiation, different subscription classes can be created whereby users are assigned a bandwidth and a preferred carrier on the basis of their level of service agreement. Multi carrier scheduling can also be used to schedule users in a carrier that is experiencing less interference, thus improving throughput. Similarly, carrier aggregation can be used with inter-cell interference coordination techniques to ensure that users are scheduled in a manner that will generate less interference with surrounding cells.

1.1 Problem Statement

LTE-A has peak data rate limitations, its maximum reaches 1 Gbps due to number of component carriers which is five. Proposed LTE-Advanced offers considerably higher data rates than it in the current release of LTE-A. In addition, the spectrum usage efficiency also has been improved.

In order to achieve these very high data rates it is necessary to increase the transmission bandwidth over that has been used by the first releases of LTE. The technique being proposed is termed carrier aggregation or sometimes channels aggregation. Using LTE-Advanced carrier aggregation, it is possible to utilize several

carriers and in this way increase the overall transmission bandwidth. Proposed LTE-Advanced bandwidth for both types: contiguous and non-contiguous needs a suitable band which covers the whole bandwidth depending on the standard bands from 3GPP organization.

1.2 Objectives of the Research

The main objectives of this research are:

- 1. To improve LTE-A disadvantages by increasing the bandwidth at both sides (transmitter and receiver), where the current bandwidth is 100 MHz.
- 2. To increase peak data rate of the proposed system more than 1 Gbps which represents the peak data rate of LTE-A.
- 3. To apply MIMO technology on the proposed LTE-A system with 8x8 antennas.
- 4. To increase the efficiency of the proposed system comparing to efficiency of LTE and LTE-A systems.

1.3 Scope of the Research

This research is to study high bandwidth internet access anytime anywhere which is continuously increasing. In order to deliver the main objectives of this research; initial study of LTE and LTE-A techniques for cellular systems has been done by identifying critical parameters for performance optimization in cellular systems and deriving the mathematical formulations. Design the proposed LTE-Advanced system by developing LTE and LTE-A algorithms so that the new system will have wider bandwidth and higher peak data rate through Matlab and SystemVue programs. The design of the new

REFERENCES

- 3GPP Technical Report 36.913. Requirements for Further Advancements for Evolved Universal Terrestrial Radio Access (E-UTRA) (LTE-Advanced). www.3gpp.org.
- 3GPP Technical Report R1-050720 (2005). *Frequency selective scheduling resource block size for EUTRA downlink*. Motorola. RAN1#42. San Diego. CA.
- 3GPP Technical Report R1-060385 (2006). *Cubic Metric in 3GPP-LTE*. 3GPP Motorola. Denver. USA.
- 3GPP Technical Report R1-084469. Cubic Metric comparison of OFDMA and Clustered-DFTS-OFDM/NxDFTS-OFDM. 3GPP.
- 3GPP Technical Report R4-101062 (2010). LTE-A deployment scenarios; TSG-RAN WG4 Meeting. CA. USA.
- 3GPP Technical Report RP-100661(2010). *Revised Carrier Aggregation for LTE WID*. Nokia Corporation. Seoul. South Korea.
- 3GPP Technical Report TR 36.814 (2011). Evolved Universal Terrestrial Radio Access (E-UTRA) further advancements for E-UTRA physical layer aspects, Release 9. Section 8.1.
- 3GPP Technical Report TR 36.815. Further advancements for E-UTRA; LTE-Advanced feasibility studies in RAN WG4. (Release 9). 3GPP. v9.1.0.
- 3GPP Technical Report TR 36.819 (2011). Coordinated multi-point operation for LTE physical layer aspects. Release 11.
- 3GPP Technical Report TR 36.912 Release 10 (2011). LTE; Feasibility study for Further Advancements for E-UTRA (LTE-Advanced) Technical Report. ETSI TR 136 912 V10.0.0. pp. 22. Version 10.0.0.

- 3GPP Technical Report TR-36.808. *Technical specification group radio access network; Evolved Universal Terrestrial Radio Access (E-UTRA); carrier aggregation; base station (BS) radio transmission and reception* (Release 10).
- 3GPP Technical Report TS 25.912 (2006). Feasibility study for evolved Universal Terrestrial Radio Access (UTRA) and Universal Terrestrial Radio Access Network (UTRAN). V 5.2.0.
- 3GPP Technical Report TS 25.913 (2009). *Requirements for Evolved UTRA (E-UTRA)* and Evolved UTRAN (E-UTRAN). Release 8.
- 3GPP Technical Report TS 36.101 Release 8 (Dec. 2009) .3rd Generation Partnership Project; Evolved Universal Terrestrial Radio Access (E-UTRA) Radio Transmission and Reception (Release 8). Technical specification group radio access network. pp.14 V6.6.0.
- 3GPP Technical Report TS 36.101. User Equipment (UE) radio transmission and reception. Technical specification group radio access network.
- 3GPP Technical Report TS 36.104. *Base Station (BS) radio transmission and reception*. Technical specification group radio access network.
- Ahmadi, S. (2009). An overview of next-generation mobile WiMAX technology. *Intel Corporation-Communications Magazine. IEEE.*
- Akyildiz, I. F., Gutierrez-Estevez, D. M. & Reyes, E. C. (2010). *The evolution to 4G cellular systems: LTE Advanced.* Journal of Physical Communication. Vol. 3. No. 4. Elesevier. pp. 217–44.
- Cardona, N., Monserrat, J. F. & Cabrejas, J. (2013). *LTE-Advanced and next generation wireless networks: channel modelling and propagation*. John Wiley. pp. 13-26.
- Cox, C. (2012). An introduction to LTE: LTE, LTE-Advanced, SAE and 4G mobile communications. John Wiley. UK. pp. 12-288.
- Dahlman, E., Parkvall, S. & Sköld, J (2011). 4G LTE/LTE-Advanced for mobile broadband. Elsevier Ltd. UK. pp.11-380.

- Dahlman, E., Parkvall, S., Sköld, J. & Beming, P. (2008). *3G evolution : HSPA and LTE for mobile broadband*. Elsevier pp.543.
- Fazel K. & Kaiser, S. (2008). Multi-Carrier and Spread Spectrum Systems: From OFDM and MC-CDMA to LTE and WiMAX. A John Wiley and Sons, Ltd. Publication: Second Edition. pp. 218-220.
- Forsberg, D., Horn, G., Moeller, W. & Niemi, V. (2010). *LTE security*. John Wiley and Sons. UK. pp. 255.
- Ghosh, A. & Ratasuk, R. (2011). *Essentials of LTE and LTE-A*. Cambridge wireless essentials series. UK. pp. 3-161.
- Ghosh, A., Zhang, J. & Andrews, J. G. (2011). Fundamentals of LTE. Pearson education inc. USA. pp.168-245.
- Hashimoto, A., Yoshino, H. & Atarashi, H. (2008). *Roadmap of IMT-advanced development*. NTTDoCoMo Inc., Tokyo- Microwave Magazine. IEEE.
- Holma, H. & Toskala, A. (2007). WCDMA for UMTS HSPA evolution and LTE. Fourth edition: John Wiley and Sons. pp.473.
- Holma, H. & Toskala, A. (2009). LTE for UMTS –OFDMA and SC-FDMA based radio access. John Wiley & Sons. pp.4.
- Holma, H. & Toskala, A. (2011). LTE for UMTS: Evolution to LTE-Advanced. Second edition. John Wiley and Sons. pp.13-14.
- Holma, H. & Toskala, A. (2012). *LTE-Advanced: 3GPP Solution for IMT-Advanced*.John Wiley and Sons: First edition. pp. 5-66.
- Hossain, E., Kim, D. I. & Bhargava, V. K. (2011). *Cooperative cellular wireless networks*. Cambridge. New York. First published. pp. 427.
- Huang, H., Papadias, C. B. & Venkatesan S. (2012). MIMO communication for cellular networks. Springer. New York. Dordrecht Heidelberg London. pp. 290-295.
- Jiang, T., Song, L. & Zhang V. (2010). Orthogonal Frequency Division Multiple Access fundamentals and applications. Auerbach publications CRC. pp.5.

- Khan, F. (2009). *LTE for 4G Mobile broadband air interface technologies and performance*. Cambridge. USA. pp. 79-148.
- Khlifi, A. & Bouallegue, R. (2012). Comparison between performances of channel estimation techniques for CP-LTE and ZP-LTE downlink systems. Int. Journal of Computer Networks & Communications Vol.4. No.4. pp. 223-228.
- Korowajczuk, L. (2011). *LTE, WiMAX and WLAN network design, optimization and performance analysis.* John Wiley. USA. First edition. 2011. pp.440-443.
- Kreher, R. & Gaenger, K. (2011). *LTE Signaling, troubleshooting, and optimization*. John Wiley and Sons. pp.46.
- Lescuyer, P. & Lucidarme, T. (2008). *Evolved packet system (EPS): the LTE and SAE evolution of 3G UMTS*. John Wiley and Sons. England. pp.126-127.
- Molisch, A. F. (2011). *Wireless communications*. John Wiley and Sons: Second Edition. pp.465-670.
- Osseiran, A., Monserrat, J. F., Mohr W. (2011). *Mobile and wireless communications for IMT-Advanced and beyond*. John Wiley and Sons. pp. 46-47.
- Pagès, A. S. (2009). A Long Term Evolution link level simulator. Universitati Politècnica de Catalunya. pp. 23.
- Parkvall, S., Englund, E., Furuskär, A., Dahlman, E., Jönsson, T. & Paravati, A. (2010). LTE Evolution towards IMT-Advanced and Commercial Network Performance. Proc. IEEE Ericsson Research. Sweden. pp. 153.
- Penttinen, J. T. (2012). *The LTE / SAE deployment handbook*. John Wiley and Sons. UK. pp. 300-305.
- Preben, M., Koivisto, T., Pedersen, I., Kovács, I., Raaf, B., Pajukoski K. & Rinne M. (2009). LTE-Advanced: the path towards Gigabit/s in wireless mobile communications. Proc. Int. Conference on Wireless Communication, Vehicular Technology, Information Theory and Aerospace & Electronics Systems Technology. Aalborg. pp. 147-149.

- Sauter, M. (2009). Beyond 3G Bringing networks, terminals and the web together LTE, WiMAX, IMS, 4G devices and the mobile Web 2.0. John Wiley. UK. pp.51-54.
- Sawahashi, M., Taoka, Y. H., Tanno, M. & Nakamura, T. (2009). Broadband radio access LTE and LTE-Advanced. Proc. IEEE Int. Symposium on Intelligent Signal Processing and Communication Systems (ISPACS). pp. 224-225.
- Schoenen, R. (2009). Long Term Evolution: 3GPP LTE radio and cellular technology. Taylor & Francis Group. LLC. pp.284.
- Sesia, S., Toufik, I. & Baker, M. (2009). *LTE The UMTS Long Term Evolution: from theory to practice*. First edition John Wiley and Sons. pp.8-624.
- Sesia, S., Toufik, I. & Baker, M. (2011). LTE The UMTS Long Term Evolution: from theory to practice-including Release 10 for LTE-Advanced. Second edition John Wiley and Sons pp. 623-624.
- Taha, A. M., Hassanein, H. S. & Abu Ali, N. (2012). *LTE, LTE-Advanced and WiMAX:* towards IMT-Advanced networks. John Wiley. pp. 25-136.
- Uhrer, C. M., Wrulich, M., Ikuno, J. C., Bosanska, D. & Rupp, M (2009). Simulating the long term evolution physical layer. Proc. 17th European Signal Processing Conference (EUSIPCO 2009) Glasgow. Scotland. pp.1.
- Yahiya, A. (2011). Understanding LTE and its performance. Springer Dordrecht Heidelberg. New York. pp. 9-14.
- Yang, S. (2010). *OFDMA system analysis and design*. First editon Boston. Artech house. USA.
- Yonis, A. Z. & Abdullah, M. F. L. (2012). Simulation of novel non-adjacent component carriers in LTE-Advanced. Proc. IEEE Int. Conf. on electronic devices. system and application (ICEDSA). pp. 293-298.
- Yonis, A. Z., Abdullah, M. F. L. & Ghanim, M. F. (2012) .Design and implementation of intra band contiguous component carriers on LTE-A. Int. Journal of Computer Applications. Vol.41. No.14. USA. pp. 25-28.

- Zemede, M. (2011). *LTE-Advanced physical layer design and test challenges: carrier aggregation*. Microwave Journal. UK. pp. 20.
- Zhang, X. & Zhou, A. (2013). *LTE-Advanced air interface technology*. CRC press Taylor & Francis group. Parkway. pp.1-37.
- Zhang, J., Huang, C., Liu, G. & Zhang, P. (2006). *Comparison of the link level performance between OFDMA and SC-FDMA*. IEEE Int. Conf. on communications and networking in China. pp. 1-6.