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BINDCT DESIGN AND IMPLEMENTATION ON FPGA WITH 

LOW POWER ARCHITECTURE 

MOHAMAD HAIROL JABBAR 

Abstract 

Image compression is widely used in today's consumer applications such as digital 
camcorders, digital cameras, videophones and high-definition television (HDTV). As 
Discrete Cosine Transform (DCT) is dominant in many international standards for 
image/video and audio compression, the introduction of multiplierless algorithm for fast 
DCT computation known as BinDCT (Binary DCT) is very well suited for VLSI 
implementation. Its performances in term of Peak Signal-to-Noise (PSNR), compression 
ratio and coding gain is proved to be best approximation to the DCT algorithm. 

In this work, the design and implementation of 8 x 8 block 2-D forward BinDCT 
algorithm on a Field Programmable Gate Array (FPGA) is presented. As this algorithm 
uses simple arithmetic operations (shift and add) rather than floating-point 
multiplications, low power hardware implementation is very promising. The aim for 
low power implementation was achieved at architectural level by employing 4 stages 
pipeline architecture with parallel processing in each stage. However, due to the trade-
off between hardware area and speed, this design is focusing on optimising hardware 
area in each stage such that it can fit the target FPGA device. 

The 8 x 8 block two-dimensional (2-D) forward BinDCT implementation can be 
run at 68.58 MHz with the power consumption of 144.10 mW. This implementation 
achieved 12.45% less power compare with the implementation of BinDCT presented 
previously if the design runs at the same speed. Furthermore, results have shown that 
this implementation achieved good accuracy compare with software implementation as 
the maximum error of the output from 2-D computation is 1.26 %. 

Several works can be done for further power optimisation such as data gating and 
latency balancing at each stage (which can improves the throughput as well). Besides, 
the implementation of 8 x 8 block 2-D inverse BinDCT should be carried out such that 
its accuracy over floating-point DCT in terms of hardware implementation can be 
analyzed. 
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CHAPTER 1 

INTRODUCTION 

Digital image processing has become widely used in modern electronic applications. As 

multimedia applications continue to growth rapidly such as videophone, camcorders, 

internet applications' using mobile phones and high-definition television (HDTV), 

development of image processing techniques has become more significant to derive 

further various multimedia applications. Thus, it has been the subject of interest for 

many researchers. Speed, performance, hardware area, throughput and power 

consumption are among the main criteria to be concern in the development of image 

processing techniques. 

Image processing requires transformation from one domain into other domain. 

Transformation is a way of converting time and space domain into spatial or frequency 

domain such that the image can be transmitted from one point to another. This is known 

as transform coding. Generally, transform coding has higher compression ratios than 

predictive coding but requires more computation through quantization processes. This is 

the reason why many of multimedia applications use transform coding rather than 

predictive coding or subband coding. Discrete Cosine Transform (DCT) is a type of 

transform coding and is the popular image compression scheme. 

1.1 Image Compression 

Compression is used in image and video processing as well as audio or speech 

processing. It is used to reduce the size of an image in order to transmit or store with 

acceptable quality degradation. Compression is achieved during quantisation and 

entropy encoding process. By compressing the image, less bandwidth is required to 

11 

PTTA
PERPUS

TAKAAN
 TUNKU

 TUN A
MINAH



transmit the image which means less time is required for the transmission. It is also 

requires less memory to store the data. For example, for a still image with 1000 x 1000 

pixels at 24 bit uses 3 megabytes of storage in uncompressed form. This large amount of 

storage is not efficient and costly to be used in any applications particularly on mobile 

devices. Through compression, for example with 50:1 compression ratio, the size of the 

original image can be reduced to 60 kilobytes. Thus, the image in compressed form can 

be used efficiently in practical applications with acceptable quality. 

There are two types of compression; lossless and lossy. Lossless, as the name suggests, 

reconstructs the image identical to the original image without losing any bits in the 

transformation. It has a low compression ratio of 3:1 or lower. While lossy compression, 

on the other hand, has a high compression ratio for instance 50:1 for images and 200:1 

for video, and thus produces reconstructed data that is not identical with the original. 

The effect of different compression ratio is shown in Figure 1-1. The human eye can see 

the difference between an original image and compressed image up to a certain limit of 

compression ratio. As shown in Figure 1-1, the difference between the original image 

and compressed image with 10:1 ratio cannot be easily identified by the human eye, but 

can be measured using computer software. Lossy compressions use less storage area 

and also reduce communication bandwidth. Thus, its applications are many, such as 

commercial and consumer electronics applications. Whereas, lossless compression is 

often use in critical applications such as medical imaging systems, surveillance or 

security systems, and satellite communications. 
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(a) 

(c) 

Figure 1-1: Compression of an image (a) original image, (b) 10:1 compression ratio, (c) 

45:1 compression ratio (Smith. 1997) 

The growth of image compression techniques as well as its applications is supported by 

the introduction of international standards such as the Joint Photographic Experts Group 

(JPEG), MPEG-I, MPEG-II. MPEG-III by Moving Picture Experts Group (MPEG), and 

PI.261. H.263 by International Telecommunication Union (ITU-T). On the basis of its 

wide applications range from consumer devices to medical equipment, the search for 

better methods is still an opportunity open for researchers. 
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The demand of better image compression techniques is growing rapidly due to its wide 

applications particularly for communications devices such as mobile devices and 

broadcasting services. It has become a concern for many researches to find better 

techniques for communication systems developments. The introduction of new 

standards accelerate these developments as research work focused on complying the 

standards as well as enhance practical implementations (Alam et al., 2005), (Kyeounsoo 

and Jong-Seog, 1999), (Cote et al., 1998), (Madisetti and Willson, 1995), (Scopa et al.. 

1995), (Jutand et al., 1991). 

Discrete Cosine Transform (DCT) is a lossy compression technique, first introduced by 

Ahmed (Ahmed et al., 1974) which has been developed via the Discrete Fourier 

Transform (DFT). Since the introduction, many researchers proposed better algorithms 

to compute fast DCTs. DCT has many advantages compare with other compression 

techniques and therefore it is employed in the international standard such as JPEG, 

MPEG, H.261, H.263, and DOLBY. DCT techniques use only the cosine element from 

the DFT and this reduces the number of coefficients needed to be calculated. This is 

because a DFT comprises complex numbers containing cosine and sine elements which 

transform the image or video into the much more complex frequency domain. However, 

using a DCT which has real inputs with the DFT cosine element, the transformation is 

simpler and thus has many benefits in terms of less arithmetic and faster speed over the 

DFT. DCT is very close to the optimal discrete time Karhunen-Loeve transform (KLT). 

It is an optimal transformation from the perspective of energy compaction since it 

compacts much energy into a few coefficients. However, KLT is signal dependence and 

requires extensive computation due to the complex basis calculations. DCT, on the other 

hand, is a much better transform in practice because of signal independence, linear 

phase, real coefficients, and faster algorithm. DCT has been used in many digital image 
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and video processing applications due to its advantages over other compression methods 

(Shabiul Islam et al., 2006, Habibi, 1974, Ahmed et al., 1975, Natarajan and Ahmed. 

1977, Wen-Hsiung and Smith, 1977, Madisetti and Willson, 1995). Video and image 

compression using DCT have become essential technology in today's multimedia 

applications. However, there is still room for enhancement of the DCT computation for 

better practical applications. 

1.2 Problem Statements 

Without image processing techniques, all the mentioned applications are impossible to 

be practically used in today's society. As many new applications have been developed 

as well as new devices and equipment introduced, the problems of power consumption 

become significant particularly for mobile devices. The needs for as low as possible 

power consumption is important such that many applications can be fully exploited 

particularly targeting mobile devices. 

Multimedia applications often use complex processing which results in considerably 

high power consumption. Today's multimedia applications as well as electronic devices 

require low power consumption to support longer functional operations and broad range 

of applications. For example, video recording in mobile phone uses a lot of power while 

the source is limited, thus it cannot be used efficiently. The needs for low power 

consumption image compression techniques are gaining attention of the designers. 

This project focuses on low power implementation with regard to the arithmetic 

operations on architectural level. The dynamic power consumption of add and multiply 

operations using integers and floating-point numbers is shown in Figure 1-2. This power 

consumption is based on signed numbers for integers and single precision IEEE 754 

15 

PTTA
PERPUS

TAKAAN
 TUNKU

 TUN A
MINAH



standard for floating-point arithmetic and it simulated with the same test vectors. It was 

estimated using XPower tool from Xilinx ISE 9.2i for a Spartan-3 XC3S200 FPGA 

device. It shows that floating-point arithmetic uses more power than integer arithmetic 

for multiplication and addition. The power consumption will be much higher if complex 

arithmetic operations are involved. On the basis of this problem, this project explores 

the hardware implementation with the aim to reduce power consumption of FPGA-

based DSP application which involves intensive arithmetic operations. 

Dynamic power consumpt ion f o r a d d and multiply operat ions 

100 

90 

80 

f 70 
E, 
c 60 
o 
Q. 50 
E 13 01 40 c 
o o 30 
<D 
S o 20 
D. 

10 

0 

35:58 
25.26 

85.99 81.41 

Integer multiplication Integer addition (9 bit) Floating-point Floating-point addition 
(9 bit) multiplication (32 bit) (32 bit) 

Figure 1-2: Power consumption of addition and multiplication using integers and 

floating-point numbers 

1.3 Project Overview 

In this project, the design and implementation of image compression techniques, namely 

BinDCT, is investigated such that low power consumption can be achieved. The choice 

of algorithm and hardware devices is discussed further in chapter 2 which includes 

recent work related to the development proposed. 
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In this project, Verilog 2001 has been used for the design. Once the design is completed, 

it is compared with the result from MATLAB software such that the functionality is 

verified. After the function is successfully simulated, testing was performed with 

several images and the results analyzed by measuring performance and accuracy 

parameters. Detailed methodology and results are discussed in chapters 3 and 4. 

The project ran from February 2008 until September 2008 as shown in Appendix A and 

was completed on time. As this project involves hardware implementation, many 

difficulties were faced and thus the project planning has been revised several times. 

1.4 Objectives 

The objectives of this project are: 

1. To design and implement a 8 x 8 block two-Dimensional (2-D) forward BinDCT 

on FPGA 

2. To analyze the accuracy of the BinDCT implementation over a software 

implementation 

3. To design and implement a low power VLSI architecture based on BinDCT 

algorithm 

4. To analyze and compare the speed-up implementation of BinDCT over floating-

point DCT 

These objectives were achieved with some limitations as it involved hardware 

implementation and several other constraints. 
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1.5 Limitations of the Work 

In this project, the design and implementation of 2-D forward BinDCT algorithm is 

considered to due to time constraints rather than a complete forward and inverse 

transformation. However, an inverse transform can be realized by reversing the forward 

transform as it is orthogonal transform. It would still require a significant amount of 

times to design and debug. In order to analyze the accuracy, the BinDCT 

implementation is compared with a floating-point DCT implementation. Speed-up 

implementation is a measure of how much effort is required for each particular 

implementation. The aim was to design an architecture that is simple such that the 

implementation requires less effort. Once the design was complete, testing was 

performed with various benchmark images such that the performance and other 

parameters of the design can be analyzed. 

This design also focused on FPGA hardware types rather than ASIC or dedicated DSP 

processor due to several reasons discussed in chapter 2. The device, from Xilinx is used 

for the implementation together with the design tools provided from the same vendor. 

The Spartan-3 XC3S200 FPGA device has been chosen for the target hardware 

platform. This first generation of FPGA from 90 nanometres process technology has 

built in power saving features which save device power automatically with the 

techniques employed using Xilinx ISE design tools. In addition, routing capacitance can 

be reduced during power optimisation mode. This device also provides external 

components power reduction by integrating and saving the power draw of buffers and 

line drivers. 
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As specified in the objectives, the main target of this work is to explore low power 

hardware implementation. While other important parameters such as speed and area also 

need to be considered in the design, the priority is to find as low as possible power 

consumption. It is shown there is trade-off between a few parameters for high 

performance implementation. By achieving low power implementation, other 

parameters such as chip area, speed, and throughput are also measured. 

Low power implementation is explored from the perspective of hardware architecture 

and not from an algorithm point of views. It can be achieved through pipeline 

architecture and parallel processing. On the basis of higher computation produces more 

power consumption, the implementation of low power BinDCT is considering these two 

techniques. The implementation of 2-D BinDCT is based on row-column method. The 

2's complement numbering system is used with fixed-point format of signed numbers. 

For wordlength, the inputs have 9 bit width signed numbers, while the outputs have 17 

bit width signed numbers. Detailed architecture is explained in chapter 3. The image use 

the grey-scale system where each pixel has the value from 0-255 of 8 bit each, where 0 

is the darkest and 255 is the brightest. 

1.6 Thesis Organisation 

The thesis is organized as follows; chapter 1 explained the overview of the project 

including problem statements, project objectives and limitations. The reason of low 

power implementation for image compression method is also discussed. 
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Chapter 2 discusses the overview of DCT and its fast algorithms. The motivations 

behind low power hardware implementation and previous related work that has been 

proposed for fast DCT algorithms and implementations are explored. Several design 

platforms and target hardware are also covered. Among the proposed fast DCT 

algorithm, the choice of BinDCT algorithm for hardware realization in this project is 

explained in detail. 

Chapter 3 presents the methodology adopted in this project. It includes the choice of 

algorithm used for the implementation and its hardware architecture using parallel and 

pipeline techniques. The design and implementation of 2-D forward BinDCT with low 

power consumption is described in detail. The 2-D forward BinDCT was constructed 

based on row-column decomposition where two units of one-dimensional (1-D) 

BinDCT was used for row-wise and column-wise computation with a transposition 

matrix between these two units. 

Chapter 4 presents the testing that have been performed and evaluation of the design. 

The result of BinDCT implementation is compared with the MATLAB program such 

that the correct implementation and its accuracy is verified. Once verified, the 

performance of the design such as throughput, hardware utilisation and speed was 

measured and evaluated. The speed-up implementation of the design is compared with 

true DCT implementation and power consumption is compared with other previous 

workers. 

Lastly, in chapter 5, conclusions are summarized for this project. Future work 

suggestions to explore further finally explained. 
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CHAPTER 2 

MOTIVATION AND RELATED WORK 

Image compression is widely used in digital electronic applications. As communication 

technology continues to growth, the need for improvement in the image compression 

techniques has become a major concern. The techniques, particularly dealing with 

power consumption and performance gain much attention from researchers. Audio 

bandwidth requires 20 kHz and digital data rate is about 1.4 megabytes per second for 

high quality stereo sound. For broadcast with high quality video, it requires 10 

megabytes per second, while HDTV signals requires 100 megabytes per second. Thus, 

the role of image compressions is important and become even more significant as the 

progress of communication technology grows faster. DCT is' the dominant algorithms 

behind many applications that use image compression. 

2.1 Discrete Cosine Transform (DCT) 

It is first introduced by Ahmed (Ahmed et al., 1974) which was developed via DFT. 

DCT is a part (cosine) of DFT (cosine and sine) where it has only real value. DCT also 

transforms a signal more accurately than DFT. On the basis on these characteristics. 

DCT has gained much attention among the researchers as well as in industry (Blinn. 

1993). Since the introduction, a lot of work has been presented with the target of fast 

DCT calculation for high performance. 

DCT has many advantages compared with other compression techniques where it has 

been used in the international standard such as JPEG. MPEG, and DOLBY. As 

mentioned in the previous section, DCT compression technique uses only the cosine 

element from DFT and this reduces the number of coefficients needed to be calculated 
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during transformation. For example, for an 8-point DFT, 16 coefficients are used (for 

real and imaginary numbers) rather than 8 coefficients only (for real numbers) in DCT. 

This is because DFT is a complex transform where the image or video is transformed 

into the constituent frequency domain which comprises of magnitude and phase 

information. The DFT has less arithmetic operations compared with the DCT. For 

instance, an 8 x 8 matrix DFT, the arithmetic operations involve only simple numbers 

such as 0, 1, -1, and a coefficient which can be realized through fewer multiplications. 

Whereas in DCT, 64 multiplications are needed to compute all possible products of its 

coefficients and the inputs for the same matrix size (Blinn, 1993). The advantage of 

DCT comes from the fact it uses a smaller number of coefficients to get a good 

approximation while DFT uses more coefficients for a typical signal. 

DCT also manipulates the use of human eye characteristics which can only differentiate 

the colour different known as chrominance. However, it is difficult to distinguish the 

difference in brightness of an image or picture, which is luminance. On the basis of this, 

DCT exploits these human visual characteristic in its transformation properties, which 

focus more on luminance properties of an image. The human eye is more sensitive to 

low frequency components and overall brightness of an image. Therefore, in DCT, low 

frequency elements contain more bits than high frequency elements introducing 

possibilities for high compression, which are one of the reasons for its wide usage in 

today's multimedia applications. 

In theory, KLT is the optimal transformation and DCT is a very close approximation to 

the KLT compare with other methods. DCT has higher energy compaction and it is very 

close to the KLT energy characteristic. This is because most of the information of a 

signal is concentrated in a few components of DCT in the low frequency coefficients. A 
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few coefficients of the DCT transform are used to represent the majority of energy in a 

signal, which means high energy compaction. These characteristics reduce the bits used 

to reconstruct the image without significant quality degradation. In consequence, it 

reduces the storage requirements and transmission bandwidths in network 

communications for large images. DCT is divided into several types as explained in the 

next section. 

2.1.1 Types of DCT 

There are four types of DCT; DCT-I, DCT-II, DCT-III and DCT-IY. These types are 

different in terms of their basis functions but all are still orthogonal transforms, meaning 

that the inverse transform is just reverse of the forward transform. Among them DCT-II 

is the most popular and widely used. For that reason, only this of type of DCT will be 

explained here. The basis functions for each DCT type are: 

71 
DCT -1: cos — jk 

N 

DCT -II: cos — (2 / + \)k 
2N 

DCT -III :cos — j(2k +1) 
2N 

DCT - IV : cos — ( / + 1)(A +1) 
AN 

where, 

j,k = 0,...,N-\ 

N = number of points 

(2.1) 
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The 2-D forward DCT-II is given by the equation below (Ahmed et al., 1974); 

W \ 1 ^ / / ^ (2x + \)mt {2y + \)m> 
X(u,v) = — C(z/)C(v)^ t = Q 2_,y=0 p(x, y) cos — cos — (2.2) 

where, 

C ( 0 ) = 7 f 

C{k) = \ for k = \,2,-1 

p(x,y)= input image 

The basis function of 1-D 8 x 1 block DCT-II is shown in Figure 2-1 for 1-D 8 x 1 

block transform and Figure 2-2 for 2-D 8 x 8 block DCT transform. The top left side of 

the basis function is the DC coefficient where it is the lowest frequency and contains the 

average data of all the coefficients (Go in Figure 2-1 (a)). Moving away from the top left 

side, the frequency is increasing where the highest is at the bottom right side of the basis 

function. This is where less information about the data is contained and therefore can be 

ignored without significantly reducing the image quality. 

There are several international standards related to image compression. These standards 

drive the development in the field of computing, communication and broadcasting 

services (Ang et al., 1991). These standards provide the requirements where it can be 

used as a guideline for the designers to comply with the standards. 
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