VOLTAGE TRACKING OF A DC-DC BUCK CONVERTER USING NEURAL NETWORK CONTROL

MOHAMAD ADHAR BIN MOHAMAD NARSARDIN

A project report submitted in partial fulfillment of the requirement for the award of the Master of Electrical Engineering

> Faculty of Electrical and Electronic Engineering Universiti Tun Hussein Onn Malaysia

> > JULY, 2012

For my beloved mother, father, wife, son and daughter

ACKNOWLEDGEMENT

First and foremost, I would like to thank the almighty God (ALLAH) for blessing and guiding me through all the difficult stages of my life until to this point. Without this guidance I would never to complete my master's project successfully.

I am deeply indebted to my supervisor Dr. Wahyu Mulyo Utomo for guiding me and encouraging me throughout the project. With such fully of knowledge's, experience and dedication, he provided the very good direction, opinion and committed which led me on the right position. I am very grateful to have such a kindness and supportive supervisor during the process to complete these studies.

My sincere thanks also goes to my father Mohamad Narsardin Bin Salim and my mother Rohani Binti Jawahir. I owe my loving thank to my wife Razaidah Binti Razali for being a very understanding wife, and patience to support me all the time. Without their encouragement and advice, it would be quite tough for me to complete this work.

To all my beloved sons and daughter, Muhamad Luqmanul Hakim, Nur Ainul Mardiah and Muhamad Mujahid for making my life so enjoyable and meaningful. Without their encouragement and support, it would be quite tough for me to complete this thesis.

I warmly thank to all friend for a valuable advice, constructive comments and being a wonderful friend throughout this work.

Finally, I also wish to thank all postgraduate member, all staff in Faculty of Electrical Engineering and Postgraduate Centre for their support, cooperation and contribution all the way. Universiti Tun Hussein Onn Malaysia (UTHM) is gratefully acknowledged.

Thank you so much.

ABSTRACT

This master report presents a voltage tracking of a neural network for dc-dc buck converter. The mathematical model of Buck converter and artificial neural network algorithm is derived. The dc-dc Buck converter is designed to tracking the output voltage with three variation. This master report consists open loop control, closed loop control and neural network control. The Buck converter has some advantages compare to the others type of dc converter. However the nonlinearity of the dc-dc Buck converter characteristics, cause it is difficult to handle by using conventional method such as open loop control system and close loop control system like proportional-integral-differential (PID) controller. In order to overcome this main problem, a neural network controller with online learning technique based on back propagation algorithm is developed. The effectiveness of the proposed method is verified by develop simulation model in MATLAB-Simulink program. The simulation results show that the proposed neural network controller (NNC) produce significant improvement control performance compare to the PID controller for both condition for voltage tracking output for dc-dc Buck converter.

ABSTRAK

Kertas ini membentangkan kaedah mengesan voltan keluaran menggunakan kaedah jaringan saraf (NNC). Model untuk matematik bagi penukar arus terus (AT-AT) jenis Buck dan jaringan saraf tiruan (ANN) algoritma diterbitkan. Penukar Buck direka untuk mengesan voltan keluaran dalam 3 variasi. Kertas ini merangkumi rekabentuk penukar Buck jenis kawalan gelung buka, gelung tertutup dan jaringan saraf (ANN). Penukar Buck mempunyai banyak kelebihan berbanding berbanding dengan penukar arus terus yang lain. Walau bagaimanapun, ciri-ciri ketidaklelurusan atau tidak linear penukar Buck arus terus terlalu sukar untuk dikawal, dan menyebabkan ia sukar untuk ditangani dengan menggunakan pembezaan penting berkadar konvensional (PID) pengawal. Untuk mengatasi masalah utama ini, pengawal jaringan saraf dengan teknik pembelajaran dalam talian berdasarkan algoritma penyebaran belakang dibangunkan. Keberkesanan cara yang disarankan ini terbukti dengan membangunkan model simulasi dalam program MATLAB-Simulink. Keputusan simulasi menunjukkan bahawa pengawal jaringan saraf pembelajaran yang dicadangkan itu (NNC) menghasilkan peningkatan prestasi kawalan yang sejajar dibandingkan dengan pengawal PID untuk mengesan voltan keluaran pengawal penukar Buck arus terus.

CONTENTS

	TIT	LE	i
	DEC	CLARATION	ii
	DEL	DICATION	iii
	ACH	KNOWLEDGEMENT	iv
	ABS	STRACT	AMVIN
	CON	NTENTS	vii
	LIST	T OF TABLES	ix
	LIST	Г OF FIGURES	X
	LIST	Г OF SYMBOLS AND ABBREVIATIONS	xii
	LIST	Γ OF APPENDICES	xiv
CHAPTER 1	INTI	RODUCTION	
	1.1	Motivation	1
	1.2	Project Background	2
	1.3	Problem Statements	3
	1.4	Project Objectives	4
	1.5	Project Scopes	4
	1.6	Thesis Overview	4

2.1	Technology Development	5
2.2	Switch-Mode DC-DC Converters	6
2.3	The Operation of Buck Converter	6
2.4	The Dc-dc Buck Converter	11
2.5	Modes of Operation of Dc-dc Buck Converter	13
	2.5.1 Continuous Conduction Mode (CCM)	13
	2.5.2 Discontinuous Coduction Mode (DCM)	14
2.6	Critical Component Values	14
	2.6.1 Inductor Calculation	17
	2.6.2 Capacitor Calculation	18
2.7	Artificial Neural Network (ANN)	18
METI	HODOLOGY	
3.1	Researh Design	20

CHAPTER 3

METHODOLOGY

3.1	Researh Design		20
3.2	Mathematical Modeling of Buck Converter		
	3.2.1	State-Space Representations	21
	3.2.2	Average State-Space Representation	23
	3.3.3	Linearization of Buck Converter Representation	24
3.3	The Pr	roposed of Neural Network for Voltage	25
	Tracki	ng of Buck Converter	
3.4	Archit	ecture of the Neural Network Controller	26
3.5	Neural Network Controller (NNC) 2		26
3.6	Back Propogation Neural Network Flow Chart		27

CHAPTER 4 RESULT & ANALYSIS

4.1	Buck Converter Using Open Loop	30
	4.11 Pulse Width Modulation (PWM)	31
	4.12 Duty Cycle, $D = 0.2$	32
	4.13 Duty Cycle, $D = 0.4$	33
	4.14 Duty Cycle, D = 0.6	34
	4.15 Duty Cycle, D = 0.8	35
	4.16 Duty Cycle, D = 1.0	36
	4.17 Comparison between Duty Cycle	37
4.2	Buck Converter Using PID Closed Loop	38
	4.21 Negative Feedback	39
	4.22 Duty Cycle, D = 0.2	40
	4.23 Duty Cycle, D = 0.4	41
	4.24 Duty Cycle, D = 0.6	42
	4.25 Duty Cycle, D = 0.8	43
	4.26 Duty Cycle, D = 1.0	44
	4.27 Comparison between Duty Cycle	45
4.3	Voltage Tracking of Buck Converter Using Neural Network	45
4.4	Buck Converter Subsystem	46
4.5	Neural Network Circuit	47
	4.5.1 Voltage Reference (Vref) : Amplitude [12 12 12]	47
	4.5.2 Voltage Reference (Vref) : Amplitude [10 10 10]	48
	4.5.3 Voltage Reference (Vref) : Amplitude [8 8 8]	49
	4.5.4 Voltage Reference (Vref) : Amplitude [6 6 6]	50
	4.5.5 Voltage Reference (Vref) : Amplitude [4 4 4]	51
	4.5.6 Voltage Reference (Vref) : Amplitude [2 2 2]	52

4.6	Voltage Tracking of Buck Converter Using PID	50
4.7	PID Circuit	51
	4.7.1 Look Under Mask Buck Converter	51
	4.7.2 Voltage Reference (Vref) : Amplitude [12 2 12]	52
	4.7.3 Voltage Reference (Vref) : Amplitude [10 2 10]	52
	4.7.4 Voltage Reference (Vref) : Amplitude [8 2 8]	53
	4.7.5 Voltage Reference (Vref) : Amplitude [6 2 6]	53
	4.7.6 Voltage Reference (Vref) : Amplitude [4 2 4]	54
	4.7.7 Voltage Reference (Vref) : Amplitude [2 2 2]	54
4.8	Comparison Voltage Tracking of Buck Converter Using	55
	Neural Network vs PID	
	4.8.1 Neural Network Circuit	55
	4.8.2 PID Circuit	56
	4.8.3 Voltage Reference (Vref) : Amplitude [12 2 12]	56
	4.8.4 Voltage Reference (Vref) : Amplitude [10 2 10]	57
	4.8.5 Voltage Reference (Vref) : Amplitude [8 2 8]	57
	4.8.6 Voltage Reference (Vref) : Amplitude [6 2 6]	58
	4.8.7 Voltage Reference (Vref) : Amplitude [4 2 4]	58
	4.8.8 Voltage Reference (Vref) : Amplitude [2 2 2]	59

CHAPTER 5 CONCLUSIONS AND FUTURE WORKS

5.1	Conclusion	60
5.2	Future Works	61

REFERENCES

х

62

LIST OF TABLE

4.1	Comparison between	Duty Cycle for	Open Loop Buck Converter	37
	1	5 5	1 1	

4.2 Comparison between Duty Cycle for Close Loop Buck Converter 45

LIST OF FIGURE

2.1	Buck Converter Circuit	7
2.2	PWM signal to control the switches in the DC-DC Converter	7
2.3	Equivalent circuit of buck converter when the switch is closed	8
2.4	Equivalent circuit of buck converter when the switch is closed	8
2.5	Ideal switch used to reduce the voltage dc component	9
2.6	Output voltage waveform	9
2.7	Output voltage dc component y the switching period	10
2.8	Insertion of low-pass filter, to remove switching harmonics and	11
	pass only the dc component of $v_{S}(t)$ to the output.	
2.9	Buck converter dc output the voltage V vs. duty cycle D.	11
2.10	Dc-dc buck converter topology	11
2.11	Buck converter circuit when switch: (a) turns on (b) turns off	12
2.12	Inductor current waveform of PWM converter	14
2.13	A perceptron network with three layer	19
3.1	Block diagram of the proposed NNC of Buck Converter	20
3.2 P	(a) Mode 1, (b) Mode 2	28
3.3	A proposed neural network structure	29
3.4	Flow chart for BP neural network process	29
4.1	Open Loop Buck Converter Circuit	30
4.2	Pulse_dc Schematic Model Design	31
4.3	Output waveform for PWM Generator and Pulse_dc	32
4.4	Output waveform from Scope 1	32
4.5	Output waveform for PWM Generator and Pulse_dc	33
4.6	Output waveform from Scope 1	33

4.7	Output waveform for PWM Generator and Pulse_dc	34
4.8	Output waveform from Scope 1	34
4.9	Output waveform for PWM Generator and Pulse_dc	35
4.10	Output waveform from Scope 1	35
4.11	Output waveform for PWM Generator and Pulse_dc	36
4.12	Output waveform from Scope 1	36
4.13	Close Loop Buck Converter Circuit with PID	38
4.14	Controlled Buck Converter/Pulse dc circuit	38
4.15	Controlled Buck Converter/PID circuit.	39
4.16	Output waveform for PWM Generator and Pulse_dc	40
4.17	Output waveform from Scope 3	40
4.18	Output waveform for PWM Generator and Pulse_dc	41
4.19	Output waveform from Scope 3	41
4.20	Output waveform for PWM Generator and Pulse_dc	42
4.21	Output waveform from Scope 3	42
4.22	Output waveform for PWM Generator and Pulse_dc	43
4.23	Output waveform from Scope 3	43
4.24	Output waveform for PWM Generator and Pulse_dc	44
4.25	Output waveform from Scope 3	44
4.26	Block Diagram of Buck Converter Using Neural Network	45
4.27	Buck Converter Circuit for Look Under Mask	46
4.28	Block Diagram of Look Under Mask For Buck Converter	46
4.29	Block Diagram of Neural Network Circuit	47
4.30	Output 1 Neural Network for Buck Converter	47

4.31	Output 2 Neural Network for Buck Converter	48
4.32	Output 3 Neural Network for Buck Converter	48
4.33	Output 4 Neural Network for Buck Converter	49
4.34	Output 5 Neural Network for Buck Converter	49
4.35	Output 6 Neural Network for Buck Converter	50
4.36	Block Diagram of PID for Buck Converter	50
4.37	Block Diagram of PID Circuit	51
4.38	Block Diagram of Look Under Mask For Buck Converter	51
4.39	Output 1 PID for Buck Converter	52
4.40	Output 2 PID for Buck Converter	52
4.41	Output 3 PID for Buck Converter	53
4.42	Output 4 PID for Buck Converter	53
4.43	Output 5 PID for Buck Converter	54
4.44	Output 6 PID for Buck Converter	54
4.45	Block Diagram of Buck Converter Using Neural Network/PID	55
4.46	Block Diagram of Neural Network Circuit	55
4.47	Block Diagram of PID Circuit	56
4.48	Output 1 for Neural Network/PID for Buck Converter	56
4.49	Output 2 for Neural Network/PID for Buck Converter	57
4.50	Output 3 for Neural Network/PID for Buck Converter	57
4.51	Output 4 for Neural Network/PID for Buck Converter	58
4.52	Output 5 for Neural Network/PID for Buck Converter	58

LIST OF SYMBOLS AND ABBREVIATIONS

Symbol	
x	State vector
f	Function vector with n-dimension
и	Discontinuous control input
S	Sliding surface (manifold)
$f^{\scriptscriptstyle +}\!,f^{\scriptscriptstyle -}$	State velocity vector
$f_{\scriptscriptstyle N}^{+}$, $f_{\scriptscriptstyle N}^{-}$	Normal vectors
∇S	Gradient of sliding surface
e^+, e^-	Representative points
φ	Constant value
v ₀	Output voltage
V _{con}	Control voltage
V _{ref} PEKI	Reference voltage
k_p, k_I	Proportional gain and integral gain of P-I controller
<i>k</i> ₁	Voltage reduction factor
V _{ramp}	Sawtooth or Ramp voltage
V_U, V_L	Upper and Lower threshold voltages
q	Switching signal
h	Switching hypersurface
i _{ref}	Reference current

R_f	Proportionality factor
<i>x</i> ₁	Voltage error
<i>x</i> ₂	Voltage error dynamics
$\lambda_1 \lambda_2$	Line equations in phase plane
Δ	Small constant value
D	Diode
f_s	Switching frequency
T_s	Time period of external clock pulse
SMPS	Switched Mode Power Supply
ССМ	Continuous Conduction Mode
DCM	Discontinuous Conduction Mode
SM	Sliding Mode
VSC	Variable Structure Control
VSS	Variable Structure System
PC	Proportional Control
PD	Proportional derivative Control
PID	Proportional integral derivative Control
EMI	Electromagnetic Interference
HM	Hysteresis Modulation
PWM	Pulse Width Modulation
GPI	Generalized proportional integral
РССМ	Pseudo continuous conduction mode
RP	Representative Point

CHAPTER 1

INTRODUCTION

1.1 Motivation

The switched mode dc-dc converters are some of the simplest power electronic circuits which convert one level of electrical voltage into another level by switching action. These converters have received an increasing deal of interest in many areas. This is due to their wide applications like power supplies for personal computers, office equipments, appliance control, telecommunication equipments, DC motor drives, automotive, aircraft, etc.

The commonly used control methods for dc-dc converters are pulse width modulated (PWM) voltage mode control, PWM current mode control with proportional (P), proportional integral (PI), and proportional integral derivative (PID) controller. These conventional control methods like P, PI, and PID are unable to perform satisfactorily under large parameter or load variation.

Therefore, the motivation of this thesis is to improve the voltage tracking performance of a dc-dc buck converter through neural network control (NNC). Hence, this thesis focused open loop circuit, closed loop circuit using proportional integral derivative (PID) and neural network control (NNC) for dc-dc buck converter circuit. The circuit is design with the equation and the comparison of voltage tracking is shown in this report.

1.2 Project Background

With rapid development in power electronic technology, power semiconductor technology, modern control theory for dc to dc converter such as buck converter and manufacturing technology for step down voltage in industry, buck converter have been widely used in many fields. Step down buck converter are integral to modern electronic [6]. Step down converter transfer small packets of energy using a switch, diode, an inductor and several application. Through subtantially larger and noisier than their linear regulater counterparts, buck converters offer higher effiency in most cases.

On the other hand, DC power supplies are often utilized to provide electric power supply not only for portable electronic devices such as notebook computers, but also for electric vehicle and aerospace applications. To provide the DC voltage source level requirements of the load to the DC power supply, the DC-DC converter widely used.

Moreover the DC-DC converter is also important in application such as power conditioning of the alternative electrical energy in photovoltaic, wind generator and full cell system. For these reason, DC-DC converter applications will become more potential market in the future.

Basically, the DC-DC converter consists of power semiconductor devices which are operated as electronic swtches. Operation of the switching devices causes the inherently nonlinear characteristic of DC-DC converter including one known as the Buck converter. Consequently, this converter requires are controller with a high degree of dynamic response. Proportional-Integral-Differential (PID) controllers have been usually applied to the converter because of their simplicity.

However implementations of this control method to the nonlinear plants such as the power converters will suffer from the dynamics response of the converter output voltage regulation. In the general, PID controller produces long rise time when the overshoot in output voltage decrease [9].

The study about neural network quickly developed in the past few decade in the control system has made great progress. Neural network reacted as an adaptive controller that has an ability to understand structure and parameters of controlled object and give the required control low without the accurate model of controlled object.

Therefore, neural network control method has good regulating capacity and robustness compared to Proportional-Integral-Differential (PID) control method [9].

To solve the problem, we can use intelligent controls, based on their ability to update the internal controller parameters, the nueral network control [NNC] are suitable for nonlinear system. Implementation of the NNC for DC-DC converter in computer simulation has been proposed. The develop online NNC has the ability to learn instantaneosly and adapt it own controller parameters based on external disturbance and internal variation of the converter with minimum steady state error, overshoot and rise time of the output voltage [1].

The back propogation (BP) neural network are capable to solve nonlinear control system and hence it can overcomes the problem that the conventional PID controller faced on difficulty to determine the parameters on line moment and effectively voltage tracking of buck converter, and it has a high value of practical application in the present neural network control.

1.2 Problem Statement

Most of the DC-DC converters such as Buck converter which is capable to step-down the output voltage produce higher current ripple. This will influenced and decreased the output voltage regulation and efficiency of the converter. This weaknesses can be overcomed by Buck converter which exhibit low input and output current ripple. Thus the efficiency of the converter will be increased. These factors also contribute to minimise the RFI, smaller size and weight.

The switching technique of the Buck converter causes the converter system to be nonlinear system. Nonlinear system requires a controller with higher degree of dynamic response. Proportional-Integral-Differential (PID) controllers has an advantages in term of simple structure and low cost.

However, PID controllers unable to adapt to the external disturbances and internal variations parameters and suffer from dynamic response of the system. PID controllers will produce higher overshoot, longer rise time and settling time which in turn will decreased the output voltage regulation of the Buck converter [7].

1.3 **Project Objectives**

The objectives of this project are:-

- i. To show the voltage tracking of Buck converter using open loop control
- ii. To improve the performance of Buck converter using PID controller (such as reduce overshoot, rise time and steady state error).
- iii. To develop simulation of voltage tracking Buck converter using Neural Network Control (NNC) method.
- iv. To compare the analysis for PID controller and Neural Network Control.

1.4 **Project Scopes**

The scopes of this project is to simulate the proposed method of voltage tracking Buck converter by using Neural Network Controller (NNC) with MATLAB Simulink software. The Neural Network Controller (NNC) learning developed in this project will use three layers with one neurons at input layer, three neurons at the hidden layer KAAN TUNK followed with an output layer.

1.5 **Thesis Overview**

Chapter 1 describes about motivation, project background, problem statement, project objectives and project scope for dc-dc buck converter. In chapter 2, a detailed explanation and classification of techniques for switched mode power supplies have been given. The chapter also defined and summarized, with the aid of mathematical equations for dc-dc buck converter.

The information about the different modes of operations that are continuous conduction mode (CCM), discontinuous conduction mode (DCM) has been given. Chapter 3 gives a detail study of methodology to build a Neural Network circuit for dcdc buck converters. Chapter 4 shows the analysis for open loop, closed loop using pid and neural network using buck converter circuit. Lastly, a conclusion for this research is mention in chapter 5.

CHAPTER 2

LITERATURE REVIEW

2.1 Technology Development

Switch mode DC-DC converters efficiently convert an unregulated DC input voltage into a regulated DC output voltage. Compared to linear power supplies, switching power supplies provide much more efficiency and power density. Switching power supplies employ solid-state devices such as transistors and diodes to operate as a switch either completely on or completely off [4].

Energy storage elements including capacitors and inductors, are used for energy transfer and work as a low-pass filter. The buck converter and the boost converter are the two fundamental topologies of switch mode DC-DC converters. Most of the other topologies are either buck-derived or boost-derived converters, because their topologies are equivalent to the buck or the boost converters [2].

Traditionally, the control methodology for DC-DC converters has been analog control. In the recent years, technology advances in very-large-scale integration (VLSI) have made digital control of DC-DC converters with microcontrollers and digital signal processors (DSP) possible.

The major advantages of digital control over analog control are higher immunity to environmental changes such as temperature and changing of components, increased flexibility by changing the software, more advanced control techniques and shorter design cycles.

2.2 Switch-Mode DC-DC Converters

Switch-mode DC-DC converters are used to convert the unregulated DC input to a controlled DC output at a desired voltage level. Switch-mode DC-DC converters include buck converters, boost converters, buck-boost converters, Cuk converters and full-bridge converters, etc. Among these converters, the buck converter and the boost converter are the basic topologies. Both the buck-boost and Cuk converters are combinations of the two basic topologies. The full-bridge converter is derived from the buck converter [12].

The dc-dc switching converters are the widely used circuits in electronics systems. They are usually used to obtain a stabilized output voltage from a given input DC voltage which is lower (buck) from that input voltage, or higher (boost) or generic (buck–boost) [1]. Most used technique to control switching power supplies is Pulse-width Modulation (PWM) [2]. The conventional PWM controlled power electronics circuits are modeled based on averaging technique and the system being controlled operates optimally only for a specific condition [3]-[4]. The linear controllers like P, PI, and PID do not offer a good large-signal transient (i.e. large-signal operating conditions) [4]-[5]

There are usually two modes of operation for DC-DC converters: continuous and discontinuous. The current flowing through the inductor never falls to zero in the continuous mode. In the discontinuous mode, the inductor current falls to zero during the time the switch is turned off. Only operation in the continuous mode is considered in this dissertation. Therefore, research has been performed for investigating voltage tracking of dc-dc buck converter.

2.3 Theory of Operation Buck Converter

The operation of the buck converter is fairly simple, with an inductor and two switches (usually a transistor and a diode) that control the inductor. It alternates between connecting the inductor to source voltage to store energy in the inductor and discharging the inductor into the load. The buck converter, shown in Figure 2.1, converts the unregulated source voltage Vin into a lower output voltage Vout. The NPN transistor shown in Figure 1 works as a switch. The ratio of the ON time (*ton*) when the switch is closed to the entire switching period (T) is defined as the duty cycle $D = t_0/T$. The corresponding PWM signal is shown in Figure 2.2 [10].

Figure 2.2: PWM signal to control the switches in the DC-DC converter

The equivalent circuit in Figure 2.3 is valid when the switch is closed. The diode is reverse biased, and the input voltage supplies energy to the inductor, capacitor and the load. When the switch is open as shown in Figure 2.4, the diode conducts, the capacitor supplies energy to the load, and the inductor current flows through the capacitor and the diode [2]. The output voltage is controlled by varying the duty cycle. On steady state, the ratio of output voltage over input voltage is D, given by *Vout/ Vin*.

Figure 2.3: Equivalent circuit of the buck converter when the switch is closed

Figure 2.4: Equivalent circuit of the buck converter when the switch is open

A buck converter is a step-down DC to DC converter. Its design is similar to the step-up boost converter, and like the boost converter it is a switched-mode power supply that uses two switches (a transistor and a diode), an inductor and a capacitor.

The buck converter reducing the dc voltage, using only nondissipative switches, inductors, and capacitors. The switch produces a rectangular waveform $v_s(t)$ as illustrated in Figure 2.5. The voltage $v_s(t)$ is equal to the dc input voltage V_g when the switch is in position 1, and is equal to zero when the switch is in position 2.

In practice, the switch is realized using power semiconductor devices, such as transistors and diodes, which are controlled to turn on and off as required to perform the function of the ideal equal to the inverse of the switching period T_s , generally lies in the range of switching speed of the semiconductor devices.

The duty ratio D is the fraction of time which the switch spends in position I, and is a number between zero and one. The complement of the duty ratio, D', is defined as (1-D) [2].

Figure 2.5: Ideal switch, (a) used to reduce the voltage dc component

Figure 2. 6:(b) its output voltage waveform $v_s(t)$.

The switch reduces the dc component of the voltage: the switch output voltage $v_s(t)$ has a dc component which is less than the converter dc input voltage V_g . From Fourier analysis, we know that the dc component of $v_s(t)$ is given by its average value $\langle v_s \rangle$, or

$$\langle Vs \rangle = \frac{1}{Ts} \int_0^T Vs(t) dt \tag{2.1}$$

As illustrated in Figure 2.7, the integral is given by the area under the curve, or DT_sV_g . The average value is therefore

$$\langle Vs \rangle = \frac{1}{Ts} (DTsVg) = DVg$$
 (2.2)

REFERENCES

[1] W.M.Utomo, T Taufik, R.Heriansyah "Online Learning Neural Network Control of Buck Boost Converter", 8th International Conference on Information Technology: New Generations, 2011 ,pp 485-489

[2] Y. S. Lee, *Computer-Aided Analysis and Design of Switch-Mode Power Supplies*, Marcel Dekker, Inc., New York, Basel, Hong Kong, 1993.

[3] J. Arias, A. Arias, S. Gomariz and F. Guinjoan, "Generating design rules for buck converter-based fuzzy controllers", 1996 IEEE International Symposium on Circuits and Systems, Vol. 1, pp. 585 – 588, May 1996.

[4] T. Gupta, R. R. Boudreaux, R. M. Nelms and J. Y. Hung, "Implementation of a Fuzzy Controller for DC-DC Converters Using an Inexpensive 8-b Microcontroller", IEEE Trans on Industrial Electronics, Vol. 44. pp. 661-669, October 1997.

[6] Mohan, Underland, Robbins "Power Electronics converters applications and design" John Wiley & sons, inc. 2003 pp- 231-303.

[7] A. Perry, G. Feng, Y. Liu and P. C. Sen, "A new design method for PI-like fuzzy logic controllers for DC-DC converters", 35th Annual IEEE Power Electronics Specialists Conference, Aachen, Germany, pp. 3751-3757, 2004.

[8] M. Ahmed, M. Kuisma, K. Tolsa and P. Silventoinen, "Implementing Sliding Mode
 Control for Buck Converter", 2003 IEEE 34th Annual Power Electronics
 Specialist Conference, Vol. 2, pp. 634-637, June 2003.

[9] L. Guo, J. Y. Hung, and R. M. Nelms, "PID controller modifications to improve steady-state performance of digital controllers for buck and boost converters", Conference Proceedings of IEEE Applied Power Electronics Conference and Exposition, pp. 381 – 388, Feb 2002.

[10] Jean Paulo Rodrigues, Samir Ahmad Musa, "Three-Level ZVS Active Clamping PWM fo the DC-DC Buck Converter", IEEE Transaction On Power Electronic, Vol 24, pp. 2249-2257, Oct 2009

[11] Xiong Du, Luowei Zhou, "Double Frequency Buck Converter", IEEE TransactionsOn Industrial Electronic, Vol 56, pp 1690-1698, May 2009

[12] L.Premalatha, P.Vanajaranjan "Spectral Analysis of DC-DC Buck Converter with Chatic Dynamics", IEEE Indicon Conference Chennai India, pp. 605-608, Dec 2005

 [13] F. H. Wang and C. Q. Lee, "Comparison of Fuzzy Logic and Current-Mode Control Techniques in Buck, Boost and Buck/Boost Converters", 1995 IEEE 26th Annual Power Electronics Specialists Conference, Vol. 2, pp. 1079 – 1085, June 1995.

[14] Su, J.H.; Chen, J.J.; Wu, D.S.; "Learning feedback controller design of switching converters via Matlab/Simulink" Education, IEEE Transactions on, Volume: 45
Issue: 4, Nov. 2002 Page(s): 307 -315

[15] Huang, W.; A new control for multi-phase Buck converter with fast transient response, ON Semiconductor (2001).

[16] I. Campo and J. M. Tarela, "Consequences of the Digitization on the Performance of a Fuzzy Logic Controller", IEEE Transaction on Fuzzy Systems, Vol. 7, No. 1, pp. 85-92, Feb 1999. [17] T. Gupta, R. R. Boudreaux, R. M. Nelms and J. Y. Hung, "Implementation of a Fuzzy Controller for DC-DC Converters Using an Inexpensive 8-b Microcontroller", IEEE Trans on Industrial Electronics, Vol. 44. pp. 661-669, October 1997.

[18] W. C. So, C. K. Tse and Y. S. Lee, "Development of a Fuzzy Logic Controller for DC/DC Converters: Design, Computer Simulation, and Experimental Evaluation", IEEE Transaction on Power Electronics, Vol. 11. pp. 24-32, January 1996.

[19] M. Smyej, M. Saneba and A. Cheriti, "A Fuzzy Controller for a DC to DC Converter Using a Digital Integrator", Canadian Conference on Electrical and Computer Engineering, Vol. 1, pp. 7-10, 2000.

[20] J. Y. Hung, W. Gao and J. C. Hung, "Variable Structure Control: A Survey", IEEE Transaction on Industrial Electronics, Vol. 40, No. 1, pp. 2-22, Feb 1993.

[21] J. Mahdavi, A. Emadi and H. A. Toliyat, "Application of State Space Averaging Method to Sliding Mode Control of PWM DC/DC Converters", 32nd IEEE Industry Applications Society Annual Meeting, pp. 820-827, Oct 1997.

[22] D. Cortes, J. Alvarez and J. Alvarez, "Robust Sliding Mode Control for the Boost Converter", VIII IEEE International Power Electronics Congress, pp. 208-212, Oct 2002.

[23] E. Vidal-Idiarte, L. Martinez-Salamero, F. Guinjoan, J. Calvente and S. Gomariz, "Sliding and Fuzzy Control of a Boost Converter using an 8-bit Microcontroller", IEE Proceedings of Electric Power Applications, Vol. 151, pp. 5-11, Jan 2004.

[24] R. Orosco, N. Vazquez, "Discrete Sliding Mode Control for DC/DC Converters", VII IEEE International Power Electronics Congress, pp. 231-236, Oct 2000.
[25] Y. Shi and P. C. Sen, "Application of Variable Sturcture Fuzzy Logic Controller for DC-DC Converters", The 27th Annual conference of the IEEE Industrial Electronics Society, pp. 2026-2031, Nov 2001.

[26] M. Ahmed, M. Kuisma, K. Tolsa and P. Silventoinen, "Implementing Sliding Mode Control for Buck Converter", 2003 IEEE 34th Annual Power Electronics Specialist Conference, Vol. 2, pp. 634-637, June 2003.

[27] G. Venkataramanan and D. Divan, "Discrete Time Integral Sliding Mode Control for Discrete Pulse Modulated Converters", 21st Annual IEEE Power Electronics Specialist Conference, pp. 67-73, June 1990.

[28] Q. Hu, Z. Liang, H, Yu, G. Xia and X. Yang, "Application of Sliding Mode Control in Control of Power Electronic Converters", Proceedings of the Fifth International Conference on Electrical Machines and Systems, Vol. 1, pp. 608-611, Aug 2001.

[29] W. Gao, Y. Wang and A. Homaifa, "Discrete-Time Variable Structure Control Systems", IEEE Transactions on Industrial Electronics, Vol. 42, No. 2, pp. 117 – 122, April 1995.

[30] J. Matas, L. G. Vicuna, O. Lopez, M. Lopez and M. Castilla, "Discrete Sliding Mode Control of a Boost Converter for Output Voltage Tracking", 8th International Conference on Power Electronics and Variable Speed Drives, pp. 351-354, Sep 2000.

[31] P. Mattavelli, L. Rosseto and G. Spiazzi, "General-purpose Sliding-Mode Controller for DC/DC Converter Applications", 24th Annual IEEE Power Electronics Specialists Conference, pp. 609-615, June 1993.

