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ABSTRACT 

 

 

 

 

In recent years, finite element methods (FEM) have become widely used in research 

and industrial applications because of the advancements in computational efficiency 

and speed. FEM is a useful tool for the analysis of metal cutting process where this 

method provide better prediction of process variables whereas interaction of the tool 

and the chip can also be examined. Much cutting force models have been developed 

to predict the machining parameter. Most focus mainly on dry conditions even 

though coolants are widely used in practical machining. Research for modeling of 

minimal quantity lubricant (MQL) conditions is scarce and not really established. 

The use of coolants in machining makes it very difficult to determine the friction 

coefficient at the tool-chip interface. Hence, a better understanding of friction 

modeling is required in order to produce more realistic finite element models of 

machining process. In this study, a rigorous investigation on the role played by the 

implemented friction model within a 2D simulation was carried out. The simulation 

tool used for the purpose of this study is DEFORM2D. DEFORM 2D can simulate 

large deformation accompanied by elastic, plastic, thermal and friction effects. The 

simulation results on cutting forces and temperature were compared with 

experimental measurement in order to verify wether it is possible to identify the best 

friction model and indicate the consistency and accuracy of the results when 

conducting the comparison. From the result, it shows that friction models affect 

predicted result for both cutting force and temperature in dry and MQL conditions. 
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ABSTRAK 

 

 

 

 

Beberapa tahun kebelakangan ini, kaedah unsur terhingga (FEM) telah digunakan 

secara meluas dalam bidang penyelidikan dan perindustrian disebabkan oleh 

kemajuan dan kecekapan dalam pengiraan. FEM adalah kaedah yang berguna untuk 

analisis proses pemotongan logam di mana kaedah ini menyediakan ramalan yang 

lebih baik bagi pembolehubah proses manakala interaksi antara mata alat dan tatal 

juga boleh diperiksa. Banyak model daya pemotongan telah dibangunkan untuk 

meramal parameter pemesinan. Tumpuan paling utama adalah pada keadaan kering 

walaupun bahan penyejuk digunakan secara meluas dalam proses pemesinan yang 

praktikal. Penyelidikan untuk pemodelan bagi keadaan kuantiti minima pelincir 

(MQL) adalah terhad dan tidak benar-benar dibuktikan. Penggunaan bahan penyejuk 

dalam proses pemesinan menyukarkan pekali geseran untuk ditentukan. Oleh itu, 

pemahaman yang baik bagi model geseran diperlukan untuk menghasilkan model 

unsur terhingga yang lebih realistik dalam proses pemesinan. Dalam kajian ini, 

penyiasatan yang rapi mengenai peranan yang dimainkan oleh model geseran telah 

dijalankan menggunakan simulasi 2D. Perisian FEM yang digunakan untuk tujuan 

kajian ini adalah DEFORM 2D. DEFORM 2D mampu menjalankan simulasi bagi 

ubah bentuk yang besar yang disertai oleh elastik, plastik, kesan haba dan geseran. 

Keputusan simulasi daya pemotongan dan suhu dibandingkan dengan pengukuran 

eksperimen untuk mengesahkan jika ia adalah mungkin untuk mengenalpasti model 

geseran terbaik dan menunjukkan ketepatan keputusan semasa perbandingan 

dilakukan. Keputusan menunjukkan bahawa model geseran mempengaruhi hasil 

yang diramal untuk daya pemotongan dan suhu dalam keadaan MQL dan kering. 
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CHAPTER 1 

 

 

 

INTRODUCTION 

 

1.1 Introduction 

 

Metal cutting is a process in which, by action of a cutting edge (or edges) of a tool, 

unnecessary material is removed. It is one of the most common manufacturing 

processes for producing parts and obtaining specified geometrical dimensions and 

surface finish. Many studies and experiments were performed since beginning of the 

20th century. One of the widely used machining processes is turning process. 

Turning is a process of removing excess material from the work piece to produce an 

asymmetric surface, in which the work piece rotates in a spindle and the tool moves 

in a plane perpendicular to the surface velocity of the job at the tool-job operation. 

Turning operations are performed on a machined tool called lathe and the process is 

shown in Figure 1.1. PTTA
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Figure 1.1: Turning Process 

 

The performance of a turning operation is greatly influenced by the 

application of cutting fluid, and, in this regard, turning operations can be classified 

into dry turning, turning with minimum quantity lubrication (MQL), flood turning, 

and cryogenic turning. Of these, flood turning is the most traditional technique and 

by far the most widely used in industry. The two major functions of cutting fluids are 

(i) to increase tool life and (ii) to improve the surface finish of manufactured parts. 

However, with the advent of various new tool materials and their deposition 

techniques, the tool lives of modern tools have increased significantly. Dry turning is 

characterised by the absence of any cutting fluid, and unlike MQL and cryogenic 

turning does not require any additional delivery system [1] .Consequently, dry 

turning has gained renewed interest for its potential environmental and economic 

benefits. Nevertheless, in spite of all its economic and environmental benefits, the 

dimensional accuracy and surface finish of component parts produced by dry turning 

should not be sacrificed [2]. In minimal quantity lubrication (MQL), a very small 

lubricant flow (ml/h instead of l/min) is used. In this case, the lubricant is directly 

sprayed on the cutting area. It guarantees a good level of lubrication, but the cooling 

action is very small and the chip removal mechanism is obtained by the air flow used 

to spread the lubricant [3].  
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1.2 Problem Statement 

 

In recent years, finite element methods (FEM) have become widely used in research 

and industrial applications because of the advancements in computational efficiency 

and speed. FEM is a useful tool for the analysis of metal cutting process where this 

method provide better prediction of process variables whereas interaction of the tool 

and the chip can also be examined.  

The understanding of interactions during the cutting process is a fundamental 

task where this knowledge enables tool makers to evaluate the performance of the 

cutting tool design. Besides, it also enables the users of cutting tools to evaluate the 

effects of the working conditions on tool life and on the quality of the final part. 

Many experimental observations with trial and error are needed for the optimization 

of cutting conditions. Furthermore, repeating the experiment to achieved desired 

optimized cutting condition will be expensive and time consuming. Hence, FEM is 

an effective method as it would decrease experimentation and reduce cost. 

In addition, much cutting force models have been developed to predict the 

machining parameter. Most focus mainly on dry conditions even though coolants are 

widely used in practical machining. Beside, research for modeling of MQL 

conditions is scarce and not really established. As for FEM simulation of machining, 

the main problem is to determine the boundary conditions at the tool-chip interface. 

The use of coolants in machining makes it very difficult to determine the friction 

coefficient at the tool-chip interface. Hence, a better understanding of friction 

modeling is required in order to produce more realistic finite element models of 

machining process. The contact behavior between the chip and the tool is critical due 

to its effect on the tool performance. Furthermore, the coolant method will not only 

affect the friction coefficient but also the heat transfer coefficient between the tool 

and workpiece combination. 

This study includes the effect of dry and MQL conditions on cutting force 

and temperature. It is expected that at the end of this project, a good agreement is 

obtained between simulation and experiment data to indicate that the simulation is 

capable of predicting cutting force and temperature. 
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1.3 Objective of study 

 

The objectives of the proposed project are; 

 

i. To study effect of various friction models, in order to predict the tool 

temperature and cutting force using FEM in two different conditions; dry 

and MQL. 

ii. To investigate the effect of various heat transfer coefficient for MQL 

conditions. 

iii. To validate the simulations results by comparing with experimental result 

for dry and MQL conditions. 

iv. To propose the best possible friction model involved in dry and MQL 

turning process. 

 

1.4 Scope of Study 

 

The scopes of this study are: 

 

i. Deform 2D version 9.0 software 

ii. Simulation is performed in two conditions; dry and MQL  

iii. Cemented carbide is used as cutting tool. 

iv. Workpiece material is AISI 1045 

v. Experiment are running in fixed condition; Cutting speed, Vc= 160 

m/min, feed, fr =0.15 mm/rev, depth of cut, d= 0.30 mm 

vi. Friction model used are Coulomb, Shear, and Coulomb-Shear. 

 

1.5 Rationale 

 

The rationales of the present research are: 

 

i. Finite element analysis give better prediction of turning variables such as 

cutting forces, workpiece and tool temperature which is essential to the 

optimization of cutting tool design and cutting conditions such that 

product quality, productivity, and tool life are maximized. 
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ii. FEM proved to be an efficient tool to optimize several industrial metal 

machining processes. The use of FEM in modeling of machining allows 

for considering process details that analytical models cannot handle and 

for predicting variables. 

 

1.6 Overview 

 

This study concentrates on finite element method used to simulate machining 

process. Simulations are running using the commercial software DEFORM 2D 

developed by Scientific Forming Technologies Corporation (STFC). Effects of 

machining parameters on cutting forces and temperature distribution are studied. 

In Chapter 2, earlier experimental studies, results, and analyses reported in 

the literature on the topic are presented. General well known theories in metal cutting 

being discussed to well understand the mechanics of metal cutting.  Literature on 

finite element analysis of machining also reviewed and discussed. Constitutive 

material model, material properties for these models, friction model are some of the 

important issues in the FEM simulation of metal cutting. Work reported in the 

literature addressing these issues is presented.  

The experimental test procedure and the modelling of metal cutting are 

mentioned in Chapter 3. All results, both from experiments and simulations are given 

in Chapter 4. Simulations results are compared with the experimental results of this 

work. This work is discussed and concluded in Chapter 5. Some recommendations 

for future work are given in that chapter as well. 
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CHAPTER 2 

 

 

 

LITERATURE REVIEW 

 

2.1 Introduction 

 

This chapter presents a review of literature related to experimental and numerical 

procedures, finite element method (FEM) in turning operation.  Since finite element 

simulation is nowadays assuming a large relevance, many studies on this topic have 

been published. The present chapter starts with mechanics of metal cutting. Early 

attempts from the previous researchers considering development of FEM method are 

also being discussed. 
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2.2 Mechanics of Metal Cutting 

 

Metal cutting is the process of removing unwanted material from the workpiece to 

obtain a part with high quality surfaces and accurate dimensions with acceptable 

tolerances. This process has represented a very large segment in industry since last 

century. It is estimated that 15 percent of the value of all mechanical components 

manufactured worldwide is derived from machining operations [4]. The metal cutting 

process includes different forms of machining process such as grinding, turning, 

milling, sawing, etc. For all these types of machining, the productions of chips have 

different forms and each process has unique chip morphology. Therefore, it is 

important to understand the mechanism of chip formation in order to understand the 

machining process. 

In the middle of the 19th century, the old (trial and error) experimental 

method was the earliest way to develop models of the metal cutting process. The 

simplified models were also presented and used based on the shear zone theory [5]. 

The chip formation was assumed to take place as the result of shear actions in the 

shear zone. Later, finite element analysis was utilized, trying to optimize metal 

cutting processes. This opened a new way to investigate the state of stresses, strains, 

temperatures, and feed and cutting forces in the deformation zones. These models 

provide a better understanding of metal cutting and provided ways to do detailed 

studies of the effect of different parameters where the magnitude of some parameters 

such as the temperature cannot be easily measured experimentally. 

 

2.2.1 Orthogonal Cutting 

 

Metal cutting process can be divided into two basic categories; orthogonal and 

oblique metal cutting. In orthogonal metal cutting, the cutting edge is perpendicular 

to the relative cutting velocity and also normal to the feed direction, as shown in 

Figure 2.1. However in oblique cutting, the cutting edge is inclined at an acute angle 

to the direction of the cutting velocity as shown in Figure 2.2. During the machining, 

the tool will be given a certain position to obtain the amount of feed that will be 

removed from the workpiece. In general, the cutting edge of the tool will engage into 

the workpiece; therefore, high pressure and high temperature will occur at the front 

of the tool. 
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Figure 2.1: Orthogonal cutting geometry [6] 

 

 

 

 

Figure 2.2: Oblique cutting geometry [6] 

 

The easiest way to present the fundamentals of the orthogonal metal cutting 

process is by the two dimensional metal cutting geometry a shown in Figure 2.3. As 

the workpiece start moving, the cutting edge penetrates into the workpiece and forces 

the chip to grow up so that the chip will be formed and moved along the rake face of 

the tool. This process causes high pressure and plastic deformation is expected to 

take place in the front of the cutting edge. The shape of the formed chip will be 

affected by the cutting conditions (cutting speed, feed and depth of cut), tool 

geometry and material properties. 
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Figure 2.3: Schematic illustration of two-dimensional orthogonal cutting [7] 

 

The uncut chip thickness (t0) is known as the feed while the deformed chip 

has a different chip thickness (tc). The tool will be defined by rake angle (α) and 

relief or clearance angle (β). The rake angle is defined to be positive on the right side 

(clockwise from vertical) and negative on the left side (counter clockwise).  The 

contact length (lc) is defined as the distance from the tip of the tool to the point where 

the chip loses contact with the tool on the rake face. The friction between the chip 

and the tool plays a significant role in the cutting process because of the heat energy 

that is transferred into the workpiece. It may be reduced by optimized tool geometry, 

tool material, cutting speed, rake angle, and cutting fluid. Because of the high 

pressure and temperature, a built up edge (BUE) may exist near the tool tip. 

In orthogonal machining the shearing action takes place along the shear plane 

so the chip will start to flow over the rake face. The shearing zone has been modelled 

using either one of two assumptions. Merchant developed an orthogonal cutting 

model by assuming the shear zone to be thin as shown in Figure 2.4. 
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Figure 2.4: Thin shear plane model [6] 

 

Once the material approaches the shear plane, the plastic deformations 

begins. A thin shear zone is usually created at high cutting speeds. Some researchers 

had different assumptions where the shear zone would be thick as shown in Figure 

2.5. This kind of shear zone is more complicated and normally seen when using low 

cutting speeds. 

 

 

 

 

Figure 2.5: Thick shear plane model [6] 

 

 Both models have been used to analyze metal cutting processes where the 

thin shear zone relates to the shear plane angle, cutting condition, material properties, 

and friction behaviour, while the thick shear zone model is based on the slip-line 

theory [5]. 

 

PTTA
PERP

UST
AKA
AN 
TUN
KU T

UN 
AMI
NAH



11 

2.2.2 Cutting Force in Turning 

 

Knowing the forces that are acting in metal cutting is important for many reasons 

such as for the power requirement. Some parameters including the cutting speed, 

feed, and depth of cut influence the forces. Most likely, the forces can be reduced to 

two main forces in 2-D instead of three forces in 3-D. 

In orthogonal cutting the resultant force (Fr) applied to the chip by the tool 

lies in a plane normal to the tool cutting edge (Figure 2.6). This force is usually 

determined, in experimental work, from the measurement of two orthogonal 

components: one in the direction of cutting (known as cutting force Fc), the other 

normal to the direction of cutting (known as thrust force Ft). The cutting or tangential 

force (Fc), acts downward on the tool tip allowing deflection of the workpiece 

upward. It supplies energy required for the cutting operation. The thrust force (Ft) 

acts in the longitudinal direction. It is also called the feed force because it is in the 

feed direction of the tool. This force tends to push the tool away from the chuck. 

 

 

 

 

Figure 2.6: Cutting (Fc) and thrust (Ft) force components of resultant  

tool force (Fr)[6] 
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Many researchers have correlated the measured cutting force components 

acting on a tool with tool wear [8] relates the wear of the cutting tool to the 

temperatures and measured forces acting on the tool. Force is also considered by [9] 

in the determination of the temperature of a machine surface. He successfully shows 

that the forces acting on the flank face, even with sharp tool, have been shown to be 

the most significant contributor to the temperatures in the workpiece. 

Force modeling in metal cutting is important for thermal analysis, tool life 

estimation, chatter prediction, and tool condition monitoring purposes. Significant 

efforts have been devoted to understanding the force profiles in metal cutting. Along 

with a laborious experimental approach, several numerical and analytical approaches 

have been proposed to model the chip formation process and the associated cutting 

forces. Finite element method (FEM) has been applied to simulate the machining 

process since the early 1970s. Since then, FEM with different derivatives has 

received widespread attention in numerical modelling of machining processes [10]. 

 Although some successes have been gained in modelling the chip formation 

forces in metal cutting by FEM, it is not yet ready to be applied due to the fact that it 

is laborious and not very easily extended to practical 3-D turning cases. 

 

2.2.3 Cutting Temperature in Turning 

 

The total work done by the cutting tool in removing metal can be determined from 

the values of the forces components on the cutting tool. Approximately all of this 

work or energy is converted into heat, which is dissipated into the tool and workpiece 

material; the higher the forces on the tool, the more work is needed in material 

removal, which in turn affects temperature. At high temperature, the cutting tool if 

not enough hot hard may lose their stability quickly or wear out rapidly resulting in 

increased cutting forces, dimensional inaccuracy of the product and shorter tool life. 

The magnitude of this cutting temperature increases, though in different 

degree, with the increase in cutting velocity, feed and depth of cut, as a result, high 

production machining is constrained by rise in temperature. This problem increases 

further with the increase in strength and hardness of the work material. Knowledge 

of the cutting temperature rise in cutting is important because increases in 

temperature will adversely affect the strength, hardness and wear resistance of the 

cutting tool, cause dimensional changes in the part being machined, making control 
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of dimensional accuracy difficult and can induce thermal damage to the machined 

surface, adversely affecting its properties and service life. 

Three regions of heat generation can be distinguished in turning; the shear 

zone, the chip-tool interface and the tool-workpiece interface (Figure 2.7). The 

primary shear zones temperatures affect the mechanical properties of the workpiece-

chip material and temperatures at the tool-chip interfaces influence tool wear. 

 

 

 

 

Figure 2.7: Region of heat generation in turning [11] 

 

 Much research has been undertaken into measuring the temperatures 

generated during cutting operations. The main techniques used to evaluate the 

temperature during machining (tool-chip thermocouple, embedded thermocouple, 

and thermal radiation method) have been reviewed by [12] and are discussed below. 

Thermocouples have always been a popular transducer used in temperature 

measurement. Thermocouples are very rugged and inexpensive can operate over a 

wide temperature range. A thermocouple is created whenever two dissimilar metals 

touch and the contact produces a small open-circuit voltage as a function of 

temperature. If these two dissimilar materials are the cutting tool and the workpiece 

material, then this thermocouple is called a tool-chip or tool-work thermocouple. 

The tool-work thermocouple technique is used to measure the cutting 

temperatures at the interface between the tool and the chip. This technique is easy to 

apply but only measures the mean temperature over the entire contact area [13].High 

local of flash temperatures which may occur for a short period of time cannot be 
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