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ABSTRACT 

The Back Propagation algorithm or its variation on Multilayered Feedforward 

Networks is widely used in many applications. However, this algorithm is 

well-known to have difficulties with local minima problem particularly caused by 

neuron saturation in the hidden layer. Most existing approaches modify the learning 

model in order to add a random factor to the model, which overcomes the tendency 

to sink into local minima. However, the random perturbations of the search direction 

and various kinds of stochastic adjustment to the current set of weights are not 

effective in enabling a network to escape from local minima which cause the network 

fail to converge to a global minimum within a reasonable number of iterations. Thus, 

this research proposed a new method known as Back Propagation Gradient Descent 

with Adaptive Gain, Adaptive Momentum and Adaptive Learning Rate 

(BPGD-AGAMAL) which modifies the existing Back Propagation Gradient Descent 

algorithm by adaptively changing the gain, momentum coefficient and learning rate. 

In this method, each training pattern has its own activation functions of neurons in 

the hidden layer. The activation functions are adjusted by the adaptation of gain 

parameters together with adaptive momentum and learning rate value during the 

learning process. The efficiency of the proposed algorithm is compared with 

conventional Back Propagation Gradient Descent and Back Propagation Gradient 

Descent with Adaptive Gain by means of simulation on six benchmark problems 

namely breast cancer, card, glass, iris, soybean, and thyroid. The results show that 

the proposed algorithm extensively improves the learning process of conventional 

Back Propagation algorithm. 
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ABSTRAK 

Algoritma Back Propagation atau variasinya pada Multilayered Feedforward 

Networks digunakan secara meluas dalam pelbagai aplikasi. Walau bagaimanapun, 

algoritma ini terkenal dengan masalah local minima yang disebabkan oleh neuron 

saturation dalam hidden layer. Kebanyakan pendekatan sedia ada, mengubahsuai 

model pembelajaran dengan menambah faktor rawak pada model tersebut untuk 

mengatasi masalah terperangkap pada local minima. Walau bagaimanapun, arah 

pencarian random perturbations dan pelbagai jenis stochastic adjustment bagi set 

pemberat semasa tidak efektif untuk menghindari masalah local minima yang 

menyebabkan model tersebut gagal dalam proses pembelajaran pada iterasi tertentu. 

Justeru itu, kajian ini mencadangkan satu kaedah baru dikenali sebagai Back 

Propagation Gradient Descent with Adaptive Gain, Adaptive Momentum and 

Adaptive Learning Rate (BPGD-AGAMAL) yang mengubahsuai algoritma Back 

Propagation Gradient Descent sedia ada dengan menukar gain, momentum dan 

learning rate secara adaptif. Dalam kaedah ini, setiap corak latihan mempunyai 

activation function tersendiri pada neuron dalam hidden layer. Activation function 

dilaraskan dengan penyesuaian parameter gain di samping mengubah nilai 

momentum dan learning rate semasa proses pembelajaran. Keberkesanan algoritma 

yang dicadangkan dibandingkan dengan Back Propagation Gradient Descent yang 

konvensional dan Back Propagation Gradient Descent with Adaptive Gain dan 

disahkan secara simulasi pada enam jenis masalah iaitu breast cancer, card, glass, 

iris, soybean, and thyroid. Hasil keputusan jelas menunjukkan bahawa algoritma 

yang dicadangkan berkeupayaan meningkatkan proses pembelajaran jika 

dibandingkan dengan algoritma Back Propagation yang konvensional. 
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1CHAPTER 1 

INTRODUCTION 

1.1 An Overview 

The Artificial Neural Network (ANN) is an Artificial Intelligence (AI) methodology 

using computational models with architecture and operations is inspired by human 

knowledge on biological nervous systems, particularly the brain, to process 

information. This distribution of knowledge provides a property of fault tolerance 

and potential for massive parallel implementation (Haykin, 2009). 

Over the years, the acceptance level in the applications of ANN has been 

growing because it is proficient in capturing process information in a black box 

mode. Due to its ability to solve problems with relative ease of use, robustness to 

noisy input data and execution speed, and due its ability to analyse complicated 

systems without accurate modelling in advance, ANN has successfully been 

implemented across an extraordinary range of problem domains, in areas as diverse 

as pattern recognition and classification (Nazri et al., 2010b), signal and image 

processing (Sabeti et al., 2010), robot control (Subudhi & Morris, 2009), weather 

prediction (Mandal et al., 2009), financial forecasting (Yu et al., 2009), and medical 

diagnosis (Nazri et al., 2010a).  

The Multilayer Perceptron (MLP) is a well-known and the most frequently 

used type of ANN (Popescu et al., 2009). It is suitable for a large variety of 

applications (Fung et al., 2005). A standard MLP consists of an input layer, one or 

more hidden layer(s), and an output layer. Every node in a layer, it is connected to 

other node in the adjacent forward layer where each connection has a weight 

associated with it. 
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 2 

Learning is a basic and essential characteristic of MLP. Learning refers to the 

ability to learn from experience through network examples, to generalise the 

captured knowledge for expectation solutions, and to self-update in order to improve 

its performance. During the learning phase, the network learns by adjusting the 

weights so it is able to predict the correct class of the input samples (Han & Kamber, 

2006). 

The ANN uses Back Propagation (BP) algorithm to perform parallel training 

to improve the efficiency of MLP’s network. The BP algorithm is the most popular, 

effective, and easiest algorithm to produce a model for MLP’s complex network. 

This algorithm has produced a large class of network types with many diverse 

topologies and training methods. The BP algorithm is a supervised learning method 

that involves backward error correction of the network weights. This algorithm uses 

a gradient descent (GD) method that attempts to minimise the error of the network by 

moving down the gradient of the error curve (Alsmadi et al., 2009). The weights of 

the network are adjusted by the algorithm. Consequently, the error is reduced along a 

descent direction.  

Although BP algorithm has been successfully applied to a wide range of 

practical problems (Haofei et al., 2007; Lee et al., 2005), it has some limitations. 

Since BP algorithm uses GD method, the problems include slow learning 

convergence and easy to get trapped at local minima (Bi et al., 2005; Otair & 

Salameh, 2005). Moreover, the convergence behaviour of the BP algorithm depends 

on the selection of network topology, initial weights and biases, learning rate, 

momentum coefficient, activation function, and value for the gain in the activation 

function. 

In the last decade, a significant number of methods have been produced to 

improve the efficiency and convergence rate (Kathirvalavakumar & Thangavel, 

2006; Naimin et al., 2006; Nazri et al., 2010b; Nazri et al., 2008; Otair & Salameh, 

2005). Those studies showed that the BP performance was affected by many factors, 

for instances learning structure, initial weight, learning rate, momentum coefficient, 

and activation function.  
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 3 

1.2 Problem Statements 

The BP algorithm is well-known for its extraordinary ability to derive meaning from 

complicated or imprecise data that are too complex to be noticed by either humans or 

other computer techniques. In some practical applications of BP, fast response to 

external events within an extremely short time are highly insisted and expected.  

However, the extensively used GD method clearly cannot satisfy large scale 

applications and when higher learning performances are required. Furthermore, this 

type of algorithm has the uncertainty in finding the global minimum of the error 

criterion functions. To overcome those problems, a research has been done to 

improve the training efficiency of conventional BP algorithm by introducing 

adaptive gain variation of activation function known as Back Propagation Gradient 

Descent With Adaptive Gain (BPGD-AG) proposed by Nazri et al. (2008). It has 

been proven that the performances of the proposed method (BPGD-AG) are better 

than the conventional BP.  

Although the analysis results shown by Nazri et al. (2008) demonstrated that 

the method significantly increased the learning speed and outperformed the standard 

algorithm with constant gain in learning the target function, however during the 

training, it was noticed that the method only updated weights, bias and gain update 

expressions adaptively whereas the learning rate and momentum term were keep 

constant until the end of the training. The challenge of this research was to prove by 

simulations, that the adaptive momentum and adaptive learning rate also have the 

significant effects in improving the current working BPGD-AG algorithm on some 

classification problems. 
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