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ABSTRACT 

Dynamic symbol size modulation is a type modulation which could provide a fast 

transmission speed by removing the redundant symbol as compare to fixed symbol 

size modulation. The dynamic nature of the symbol created an additional problem in 

hardware design as the size of symbol needed to be defined clearly and it cannot be 

change and altered once the design has been generated. Thus, to address the issue, this 

research investigated the best implementation method and performance study of fixed 

and dynamic symbol size digital baseband modulation for optical communication 

system in FPGA hardware design. KCU105 FPGA development board and Vivado 

software were chosen as the main platform to implement the design. A new 

architecture to implement dynamic symbol size baseband modulation in FPGA is 

presented in this thesis. Clock control (CC) is used as the research’s based design to 

create two new architectures which use multiple parallel in serial out (M-PISO) and 

dynamic parallel in serial out (D-PISO). Next, by using D-PISO architecture, dynamic 

symbol size modulation namely 8-reverse dual header pulse interval modulation         

(8-RDHPIM), 8-digital pulse interval modulation (8-DPIM) and fixed symbol size 

modulation 8-pulse position modulation (8-PPM) were fully implemented in the 

FPGA which has a transmitter and receiver module. An experimental comparative 

study was then carried out for each modulation technique. The main parameters 

investigated were data timing analysis, hardware utilization, power utilization as well 

as bit error rate performance. From the results, it can be concluded that for power 

limited system, 8-PPM could be selected as it can maintain a small number of symbol 

error rate (SER) even during low power transmission which is around -6 dBm. On the 

other hand, the 8-DPIM and 8-RDHPIM that achieved the transmission speed of      

33.3 Mbps and 27.27 Mbps are suitable for systems that require high data speed and 

minimal clock synchronization. 
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ABSTRAK 

Modulasi simbol saiz dinamik adalah modulasi yang berkebolehan untuk menghasikan 

transmisi data yang pantas iaitu dengan mengurangkan simbol berlebihan seperti yang 

ada pada modulasi simbol size tetap. Namun begitu, simbol saiz dinamik sukar 

dilaksanakan dalam rekabentuk fizikal kerana saiz simbol harus dinyatakan dengan 

jelas dan tidak boleh diubah selepas dihasilkan. Oleh itu, penyelidikan ini mengkaji 

berkenaan pelaksanaan dan prestasi modulasi digital jalur asal yang mempunyai saiz 

simbol yang tetap dan dinamik bagi sistem komunikasi optik. FPGA KCU105 dan 

perisian Vivado dipilih sebagai platform utama dalam kajian ini.  Reka bentuk baru 

untuk melaksanakan modulasi dinamik saiz simbol jalur asal ke dalam FPGA telah 

dibentangkan dalam tesis ini. Dengan menggunakan kawalan jam (CC) sebagai reka 

bentuk asas, dua bentuk rekaan menggunakan pelbagai masukan selarian - keluaran 

siri (M-PISO) dan dinamik masukan selarian - keluaran siri (D-PISO) telah dikaji. 

Seterusnya, menggunakan reka bentuk D-PISO, modulasi dinamik saiz simbol seperti 

modulasi   8-tajuk dwi terbalik selang denyut digital (8-RDHPIM), modulasi 8-selang 

denyut digital (8-DPIM) dan modulasi 8-kedudukan denyut (8-PPM) dilaksanakan 

sepenuhnya pada FPGA tersebut dimana terdiri dari modul pemancar dan penerima. 

Kajian perbandingan eksperimen kemudian dijalankan bagi setiap teknik modulasi. 

Parameter utama kajian adalah analisis data masa, penggunaan perkakasan, 

penggunaan kuasa serta prestasi kadar ralat. Daripada hasil dapatan kajian, kami dapat 

menyimpulkan bahawa untuk sistem kuasa terhad, 8-PPM boleh digunakan kerana ia 

dapat mengekalkan jumlah kadar ralat yang kecil walaupun pada pancaran kuasa 

rendah iaitu dalam lingkungan -6 dBm. Dalam pada itu, 8-DPIM dan 8-RDHPIM pula 

mecatat kelajuan transmisi sebanyak 33.3 Mbps and 27.27 Mbps yang mana sesuai 

digunakan untuk sistem yang memerlukan kelajuan data lebih tinggi dan 

penyeragaman jam yang minima.  
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1 CHAPTER 1 

INTRODUCTION 

In recent years, digital modulation with dynamic symbol size has been investigated 

especially regarding pulse time modulation [1]–[3]. Dynamic symbol size is the term 

used to define modulated signal symbol that changes depending on the input data 

which are usually found in pulse time modulation technique [4],[5]. Table 1.1 shows 

the comparison of symbol size for 8-pulse position modulation (PPM), 8-digital pulse 

interval modulation (DPIM) and 8-reverse dual header- pulse interval modulation 

(RDHPIM) with respect to 3 bit on-off keying (OOK) input.  

 

Table 1.1: Baseband modulation data symbol [3], [5], [7] 

OOK 8-PPM 8-DPIM 8-RDHPIM 

000 10000000 10 011 

001 01000000 100 0111 

010 00100000 1000 01111 

011 00010000 10000 011111 

100 00001000 100000 001111 

101 00000100 1000000 00111 

110 00000010 10000000 0011 

111 00000001 100000000 001 

 

PPM is the modulation that changes transmitted data by changing a single bit 

1 (pulse) position within transmission period (T). A fixed 2n time slots is created during 

the transmission period which directly dependents on the number of input bit size (n). 

This is repeated every T seconds and as such that the transmitted bit rate is calculated 

in M/T bits per second. The 8-PPM requires a fixed eight (8) bit symbol size to 

represent the three (3) input bit [6]. On the other hand, PIM is the modulation that 

changes the interval and symbol size according to the input data. The 8-DPIM for 
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instance, increases the symbol size by adding bit 0 as the input sequence increases [2]. 

In this particular example, a symbol size between 2-9 bit is required to represent the 

input data. The 8-RDHPIM further reduces the symbol size to 3-6 bits by introducing 

a two (2) bit header to the initial symbol structure. The header is used as a starting bit 

as well as a symbol indicator for each symbol. It helps to remove the dependency for 

a synchronous clock between a transmitter and receiver system which eases the 

implementation of a design especially for independent system [4]. With these 

modulation refinements, higher data rates and bandwidth efficiency could be achieved. 

Theoretically, any modulation with dynamic symbol size such as PIM could provide a 

major improvement to the PPM system. However, it is difficult for the system to be 

implemented in a hardware design as the platform does not support a dynamic array 

register unlike if it is done in a software design.  

An optical transmission system usually contains the hardware components as 

shown in Figure 1.1. The components are pseudorandom binary sequence (PRBS), 

modulator, laser, medium channel, demodulator, and symbol error rate (SER).  PRBS 

is used to generate input bit to be transmitted [8]–[10]. A modulator is used to modulate 

the raw data into modulated signal. Laser then converts the modulated signal into 

optical signal. A medium is the channel used to transmit the optical signal. A         

photo-detector is used to revert the optical signal into electrical signal. Sampling is 

used to sample the electrical signal into raw data. A demodulator is used to interpret 

the sample data to actual data. SER is then used to compare the transmitted data with 

received data to determine the error rate. In an actual experiment, each component has 

to be set up using a particular hardware. PRBS is created using PRBS generator 

module. Modulator, sampling, demodulator and SER are created using a modular 

circuit.  laser module as light source and light sensor as photo detector is used to 

support transmission channel using fibre or free space. This set up requires a lengthy 

step and some spaces to keep the hardware. This method is also inflexible especially 

for electrical components that are used for a pre made circuit.  

 

Tx PRBS 

Generator
Modulator Channel Demodulator

Rx PRBS 

Generator

Delay

Comparator

Symbol 

Error 

Counter

 

Figure 1.1: Basic transmission structure [11-12] 
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The developments in semiconductor and computing field have made it possible 

to simplify the optical communication system by transforming all the electrical 

components in a single chip implementation [11]–[13]. Contemporary field-

programmable gate arrays (FPGAs) have large resources of logic gates and RAM 

blocks to implement complex digital computations [11]. As FPGA designs employ 

very fast I/O rates and bidirectional data buses, it becomes a challenge to verify a 

correct timing of valid data within setup time and hold time [14]. Floor planning 

enables resource allocation within FPGAs to meet these time constraints. FPGAs can 

be used to implement any logical function that an ASIC could perform [15]. The ability 

to update the functionality after shipping, partial re-configuration of a portion of the 

design and the low non-recurring engineering costs relative to an ASIC design offer 

advantages for many applications [16]. 

1.1 Problem Statement 

The dynamic symbol size modulation is a relatively old concept. However, dynamic 

symbol size modulation digital baseband transmission such as PIM has not been 

extensively addressed in hardware design and experimental works. Most of the 

research found are in mathematical and simulation stages. A key challenge for this 

type of modulation is to implement the dynamic symbol size into the system 

efficiently. Time is a major concern in creating a robust communication system [7]. 

All modulations need some sorts of synchronisation to achieve successful 

transmissions [17]. Although software-based implementation is promising , it is not a 

feasible platform for a physical layer such as optical transmission system [11]. The 

problem originates from the architecture of the processor itself that is totally dependent 

on coding/instruction-driven implementation which supports only one instruction that 

can be executed in a single clock cycle [18]. Depending on the instruction style and 

size, an unwanted delay within the system emerges during the implementation. The 

delay causes the transmission system in experiencing instability during data flow and 

this could potentially create massive data loss during transmission [12]. A hardware 

based implementation using FPGA is chosen to implement the design since the timing 

and synchronization issues can be solved using this platform. The FPGA however, 

creates another challenge as it does not directly support dynamic array unlike during 
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software-based implementation [15]-[19]. In this research, a new architecture is 

created to implement the dynamic modulation efficiently in the FPGA hardware 

design. Based on the new architecture, an experimental study is then carried out as a 

proof of concept to compare between the fixed and dynamic modulations. The finding 

of this research would permit further implementations of dynamic modulation in future 

applications. 

1.2 Research Objectives 

In order to achieve the purpose of this study, which is to investigate the performance 

of digital implementation in FPGA, the researcher embarks on the following 

objectives: 

i) To design a new multiple-parallel input serial output (M-PISO) and dynamic- 

parallel input serial output (D-PISO) architecture that could support a dynamic 

array which in turn can support a dynamic symbol size digital baseband 

modulations for FPGA hardware design using Vivado software in Verilog 

language. 

ii) To implement the fixed and dynamic symbol size modulation hardware 

architecture which includes the transmitter and receiver modules into the 

FPGA platform. 

iii) To analyse the performance of the implemented modulations on a FPGA board 

in terms of data rates, hardware utilisation, power analysis, timing summary, 

and symbol error rate.  

1.3 Research Scopes  

The research scopes are presented as follow: 

i) The maximum M-level of modulation is limited only to 8. As the research work 

only focuses to verify the new architecture, 8 level modulation is sufficient for 

the task. 

ii) Real hardware implementation of the proposed architectures are deployed on 

the Xilinx KCU105 FPGA. It is notable that the proposed designs and 
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implementations are platform independent, and can be implemented easily on 

the most recent FPGAs. Moreover, by using the resources available on the 

recent platforms, a better performance can be achieved. However, due to time 

and funding limitations, real implementations on these platforms are unable to 

be carried out. 

1.4 Limitation of Existing Work and Research Opportunity 

There are still remains a huge gap for further research in exploiting the dynamic 

symbol size implementation. 

Three major limitation of the existing work can be identified as follows: 

i) Dynamic symbol size modulation digital baseband transmission such as PIM 

has not been extensively addressed in experimental work as shown in timeline 

in Figure 1.2. For the past years, most of the studies have focused on different 

variants of dynamic symbol size modulation technique equation and software 

simulation which aim for higher speed and lower power consumption. 

ii) Dynamic symbol size modulation technique is still cannot be implemented 

efficiently especially in FPGA hardware design. Although there are DPIM 

designs that have been successfully implemented in FPGA, they are not 

suitable to be used for other variants of application. From the review, a very 

limited FPGA-based implementation has been found that is related to dynamic 

modulation, and interestingly there has been only 1 discussion reported for the 

implementation using dynamic symbol size modulation. Therefore, the design 

and implementation of dynamic modulation algorithm and architecture create 

a strategic and very promising opportunity. 

iii) New architecture for implementing Dynamic symbol size modulation in FPGA 

is required to be created. As HDL such as VHDL and Verilog do not support 

any dynamic array declaration during run time, a different method is needed to 

implement the modulation that uses single clock based architecture to 

synchronise all data flow within the design. 
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Figure 1.2: Timeline summary for dynamic symbol size modulation previous 

research [134-137] 

 

Based on the existing work limitations, the objectives of the research works presented 

in this thesis can be summarized as follows: 

i) Design and implement a new architecture for dynamic symbol size baseband 

modulator using a series of algorithms that are implemented in Verilog; 

1. Create the appropriate formulation for M-PISO and D-PISO to be used 

in Verilog HDL. 

2. Evaluate both architectures and select the best method for further 

development. 

ii) Design and implement the fixed and dynamic modulation hardware 

architecture which includes the transmitter and receiver module into the FPGA 

platform. 

1. Create the appropriate formulation for fixed modulation (PPM) based 

current architecture and dynamic modulation (DPIM and RDHPIM) 

based on the selected architecture which consists of transmitter and 

receiver modules to be used in Verilog HDL. 

2. Evaluate and compare the architectures implemented in FPGA in terms 

of timing and power consumption. 

iii) Experimental works of the implemented architectures with free space optical 

communication using laser and photo detector as the transmission medium. 

1. Create a formulation for Verilog testbed for performance analysis that 

consists of comparator and symbol error rate (SER) module. 

2. Design the free space optical system medium using laser and photo 

detector 

N.M. Aldibbiat et. al.
2001

2012

M.H.G. Ayagh et. 
al.

Y. Liu et. al.
2014

2016
X.Mi et. al.

Proposed design
2018
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3. Evaluate the performance of symbol error rate (SER) for all 

modulations in terms of power transmission and data speed. 

1.5 Research Contributions 

Figure 1.3 shows the overall research strategies and contributions that have been 

achieved in this research.  Firstly, two architectures called multiple - parallel input 

serial output (M-PISO) and dynamic- parallel input serial output (D-PISO) with clock 

control algorithms to support dynamic symbol size modulation is presented. Secondly, 

using D-PISO based algorithms, Pulse Position Modulation (PPM), Digital Pulse 

Interval Modulation (DPIM) and Reverse Dual Header Pulse Interval Modulation 

(RDHPIM) modulator and demodulator algorithm is implemented in FPGA. Finally, 

the experimental work is carried out for all modulations.  The algorithm performances 

are then compared to exhibit another noteworthy analysis and discussion in terms of 

Symbol Error Rate (SER), clock synchronisation as well as the hardware 

implementation design. 

1.6 Thesis Organisation 

The structure of the remaining thesis is as follow. Chapter 2 takes a closer look at the 

most recent architectures and systems for digital modulation implementation in 

FPGAs as well as recent development in optical communication research. Next, 

Chapter 3 covers the methodology in term of design, implementation and performance 

study of new algorithms that implement a dynamic symbol size modulation in FPGAs. 

In Chapter 4, It covers the results of behavioral and timing of the algorithms. Last but 

not least, Chapter 5 provides the concluding remarks and possible improvements of 

the current research are highlighted. Finally, possible future research directions in the 

design and implementations of dynamic symbol size modulation are presented
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