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ABSTRACT

Path planning purpose is to find a collision-free path in a defined environment from a
starting point to a target point. It is one of the vital aspects in enhancing an autonomy
of a robot. Current studies have been focused on developing path planning algorithms
to satisty the criteria of path planning namely minimum path length, low computation
time and complete, i.e., it gives positive result if a path is available or negative if
otherwise. There are several existing path planning methods such as Vigibility Graph
(VG), Voronoi Diagram (VD), Potential Fields (PF) and Rapidly-Exploring Random
Tree (RRT). Among those, VG i1s superior in terms of producing a path with the least
length and completeness. However, VG has a drawback due to the fact that its
computation time will increase in obstacle-rich environments. Morcover, as a path
planned by VG is piece-wise linear which has sharp turns at corners, it is infeasible
due to the kinematic constraints of a robot. Kinematic constraints limit the degree of
freedom of the robot. In order to address the high computation time, an improved VG
called Iterative Equilateral Spaces Oriented Visibility Graph (IESOVG) has been
developed by reducing the number of obstacles used for path planning. IESOVG
manipulates the size of the equilateral space to determine the obstacles used in path
planning and consequently produces a free-collision path in considerably shorter time.
On the other hand, to overcome the kinematic constraint of a car-like robot,
Proportional controller, Proportional-Derivative (PD) controller and Bezier curves
have been implemented to ensure that the resulting paths are feasible. As a result of
the proposed methods, computation time of conventional VG has been improved by
97 %. The implementation of PD controller may contribute to path planning software

development for autonomous car industry.
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ABSTRAK

Tujuan perancangan laluan adalah untuk mencari jalan yang bebas dari perlanggaran
di dalam persekitaran, dari titik permulaan ke titik sasaran. lanya adalah salah satu
aspek vang penting dalam meningkatkan autonomi robot. Kajian semasa banvak
memberikan fokus untuk membangunkan “path planning algorithm’ bagi memenuhi
kriteria perancang jalan iaitu menghasilkan jalan vang minimum, memerlukan masa
pengiraan yang rendah dan “algorithm”™ yang lengkap, iaitu, memberikan hasil positif
jika terdapat laluan dan hasil negatif jika tidak. Terdapat beberapa kaedah perancang
laluan seperti “Visibility graph”™ (VQG), “Voronoi Diagram” (VD), “Potential fields”
(PF) dan “Rapidly-Random Tree” (RRT). Di antaranya, VG lebih unggul dari segi
menghasilkan jalan yang minimum dan “algorithm”™ yang lengkap. Namun, VG
mempunyai kelemahan iaitu masa pengiraannya akan meningkat apabila persekitaran
dipenuhi dengan halangan. Selain itu, laluan yang dirancang oleh VG adalah “piece
wise linear” dan mengandungi sudut yang tajam, susah untuk dilalui oleh robot kerana
kekangan kinematik robot. Kekangan kinematik mengehadkan kebebasan robot untuk
bergerak. Untuk mengatasi masa pengiraan vang tinggi, VG yang dipanggil “Iterative
Equilateral Space oriented Visishility Graph™ (IESOVGQG) telah dibangunkan dengan
mengurangkan bilangan halangan yang digunakan untuk merancang laluan. IESOVG
memanipulasi saiz ruang sama untuk menentukan halangan yang digunakan dalam
merancang laluan dan mampu menghasilkan laluan yang bebas dari pelanggaran dalam
masa vang lebih singkat. Malah, untuk mengatasi kekangan kinematik robot seperti
kereta, “Propotional Controller” (P), “Proportional-directives Contoller” (PD) dan
“Bezier Curve” telah diaplikasikan untuk memastikan laluan yang dihasilkan mudah
dilalui. Hasil daripada kaedah yang dicadangkan, masa pengiraan VG konvensional
telah meningkat sebanyak 97%. PD boleh menyumbang kepada pembangunan perisian

perancangan jalur untuk industri kereta autonomi.
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CHAPTER1

INTRODUCTION

This chapter covers the project background, problem statement, objectives and

scopes of projects.

1.1 Project background

Finding a collision-free path in an assigned environment from a predefined starting
point (Sp) to a target point (Ip) is one of the key preconditions for an autonomous
vehicle [1]. This is called path planning, which i1s one of the wvital elements of
autonomous systems. Nowadays, research on autonomous vehicles has been growing
rapidly mainly due to the availability of the enabling technologies such as LIDAR
(Light Detection and Ranging), night vision camera and high speed microprocessor
that can process data in a short amount of time. Among the purposes for an autonomous
vehicle is to assist a tired driver, who drives for a long journey, to manoeuvre the
vehicle safely. As such, path planning plays an important role to ensure that the path
traversed by the autonomous vehicle is collision-free.

There are several famous companies like Audi, Google, Tesla, Mercedes-
Benz, and BMW to name a few which involve in the development of autonomous cars
[2]-[4]. Google has created a functional prototype of a self-driving car [2].
Furthermore, in 2015, Baidu and BMW have launched the first self-driving car on
China road [3]. Tesla has also released a software comprising of self-driving feature

for their customers in 2015 [2].
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Research on path planning, especially for the discovery of an optimal path,
has been a growing interest among researchers in recent years [5]. There are several
methods that have been used for path planning such as Visibility Graph (VG), Cell
Decomposition (CD), Potential Fields (PF), Probabilistic Roadmap (PRM), Voronoi
Diagram (VD), Rapidly-Exploring Random Tree (RRT), Genetic Algorithm (GA),
Ant Colony Optimisation (ACQO), Simulated Annealing (SA) and Particle Swarm
Optimization (PSO). Among the path planning criteria taken into account before
developing a path planning method/algorithm are minimal path length, completeness
of path planning and lower computation time [5]-8].

Path planning can be performed using several available methods and each
method has its own advantages and disadvantages. In Cell Decomposition (CD)
method, firstly the configuration spaces (C-space) will be decomposed into cells. After
that, a connectivity graph will be built and lastly the path from the starting point to the
target point is determined. The main disadvantage of this method is that the resulting
path may not be the shortest one if the size of the cells is relatively large. On the other
hand, if the size is too small, it requires more computation time to find a path [9]-[12].
Rapidly-exploring Random Tree (RRT) is a path planning method that applies
sampling based algorithm. By using the starting point as the foundation, a new branch
will grow until it reaches target point. The drawback of RRT is that it 1s difficult to be
applied in a narrow path [5]. Potential Field (PF) method uses attractive and repulsive
forces for path planning. In a path planning for a vehicle, the target point acts as an
attractive force to attract vehicle, and the obstacle acts as a repulsive forces to avoid
the vehicle colliding with obstacle. The vehicle becomes the point under the influence
of the field generated by PF. The problem of PF is the local minima will occur when
zero potential field is generated which results in the path cannot be found for which
the path planning is incomplete [13], [14]. On the other hand, path planning using
Voronoi Diagram (VD) finds equidistant point from the nearest two or all the
obstacles. In this technique the resulting path is not the optimal one which is
undesirable [9], [14]. Genetic Algorithm (GA)uses a natural selection process to create
a path planning. The drawback of GA is the solution may not be found in a narrow
condition and thus local minima will occur. Besides that, the speed and accuracy of
the algorithm decreases in a bigger environment of search spaces [7], [15]. Visibility
Graph (VG) method uses a line to connect the mutually visible vertices (nodes) of each

obstacle, the starting point, and the target point. This method is capable of producing



a minimum length path and is complete [1], [2]. However, the computation time of
VG increases when the number of obstacle is increased [3], which makes it not
applicable in real time path planning. Considering the advantage of VG method which
is able in finding an optimal path and is complete, in this research, an algorithm called
Equilateral Spaces Oriented Visibility Graph (ESOVG) is proposed. ESOVG creates
equilateral space based, in which a path planning will take place. However, ESOVG
cannot guarantee that the planned path is collision free. Hence, ESOVG is modified to
be iterative and is called Iterative Equilateral Space Oriented Visibility Graph
(IESOVG). IESOVG will find a new path if the previous one is not collision-free until
a safe path is found within the equilateral space by increasing the so-called input angle.
IESOVG is able to generate an optimal path with significantly low computation time
and 1s complete. The algorithm is implemented in a car-like robot.

On the other hand, the kinematic constraint is a factor in path planning that
affects the result of path feasibility. Due to this, an autonomous vehicle is incapable of
tracking the planned path faithfully. A planned path, which is normally piece-wise
linear, typically consists of several sharp turns and this might result in the vehicle fails
to track. There are several techniques that can be used to adjust a planned path to be
feasible such as Bezier curve, Clothoid, and Dubin's curves to name a few. In this
project, Bezier curve has been chosen because it is easy to develop with less
complexity compared to Clothoid [16]. Besides Bezier curve, Proportional (P) and
Proportional-Derivative (PD) controllers have also been implemented to address the
kinematic constraint.

In a nutshell, this project proposes path planning algorithms based on VG method,
which are called ESOVG and IESOVG. After planning a collision-free path with
IESOVG, to tackle the kinematic constraint of car like robot, P-controller, PD-
controller and Bezier Curve are implemented to ensure that the car could track the

planned path faithfully.

1.2 Problem statement

There are a number of existing methods for path planning such as Cell Decomposition
(CD), Voronoi Diagram (VD), Visibility Graph (VG), Potential Fields (PF), Rapidly-
exploring Random Tree (RRT), and Genetic Algorithm (GA). VG is considered one

of the promising methods because it could find an optimal, collision-free path and is
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complete. Despite all the advantages, VG has a major issue which is it relatively slow
in finding an optimal, collision-free path in obstacle-rich environments and therefore
could not be applied in real time path planning [4]-[6]. In a real-time application, a
path planning with low computation time is desirable. Planning and re-planning a path
with long computation time might cause the robot to collide or crash. For instance, an
autonomous car i1s required to re-plan a path because of a pop-up obstacle or any
situation that requires re-planning. Besides computation time, another drawback of VG
is the planned path is piece-wise linear which consists of many sharp turns and it is
difficult to be tracked by an autonomous car because of the kinematic constraints. The
kinematic constraints limit the degree of freedom of an autonomous car. Due to this,

it is challenging for an autonomous car to track a piece-wise linear path.

1.3 Aim and objectives

The aim of this research is to develop algorithms for a car-like robot based on the
visibility graph (VG) method to produce a collision free path. Besides that, this
research also applies several approaches to overcome the kinematic constraints of a
car-like robot.

The objectives of these projects are:

1. To develop a computationally efficient path planning algorithm based on VG

for a car-like robot.

2. To implement P-Controller, PD-Controller and Bezier curve to overcome the

kinematic constraint of a car-like robot.

3. To validate the performance of the developed algorithm.

1.4 Scopes of project



In the project, analysis regarding the computational time of the proposed algorithms

and the conventional VG algorithm is carried out. The limitations of this project are:

1.

1.5

The efficiency of the proposed algorithms and the conventional VG is tested
using Matlab software run on a personal computer with 2.4 GHz processor and
4 GB RAM.

No hardware developed in this project and no experiment is conducted using
hardware.

The C-space is applied to evaluate the IESOVG and conventional VG
algorithm performances and it contains only randomly distributed rectangular-
shaped static obstacles. The initial value tested to determine the optimal value
of pis 10 °until 50 °

The proposed algorithm is designed in two-dimensional (2-D) space.

The kinematic constraint considered in the developed algorithm is the
minimum turning radius of the car-like robot.

To tackle the kinematic constraint of car-like robot, three approaches are used
namely P-Controller, PD-Controller and Bezier curve. All approaches are
applied to reduce the orientation and heading errors during the traversal of the

car-like robot through a planned path.

Thesis structure

This thesis consists of five (5) chapters. Chapter 1 introduces the project with some

background, problem statement, objectives, scope and structure of the thesis. Chapter

2 presents the literature review regarding the topic of the research including the

introduction of path planning and its criteria, the explanation of visibility graphs,

details of graph search algorithm and the description of car-like robot’s kinematic

constraints. Chapter 3 explains the methodology for the proposed algorithm. Chapter

4 presents the proposed algorithms and discusses the findings and approaches used.

Lastly, Chapter 5 concludes this project and provides recommendation for future work.



CHAPTER 2

LITERATURE REVIEW

This chapter discusses the previous related research of the project.

2.1 Introduction to path planning

There are several types of path planning for robots such as combinatorial, bio-inspired,
rapidly-exploring random tree and potential field’s algorithm. Each of them has its
benefits and drawbacks in terms of the resulting path length, computation time and
completeness. A method that can produce path with shortest length is desirable as this
will highly reduce the energy consumed by a robot and saving cost and time to move
from point A to point B [7]-[11]. Besides that, the computation time of path planning
method 1s always a consideration in order to ensure that a collision-free path can be
planned in a short duration time should the environment changes. A path planning
algorithm with low computational time is important so that it can be used in real-time.
Furthermore, it is highly required that a path planning method is complete, which
means that a path could be planned if one exists [12] and gives the negative report if
otherwise. The aforementioned three aspects, i.e., (1) produce shortest (optimal) path,
(i1) low computation time and (ii1) complete, are the criteria of path planning that are
typically taken into account before designing a path planning algorithm. Table 2.1
shows several known conventional path planning algorithms that fulfil some or all the
criteria. Visibility Graphs (VG) is a path planning method which is based on
combinatorial planning. Combinatorial planning builds a path planning by solving

queries along the way.
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VG advantages are it is able to solve path planning problem by finding the
shortest distance without the possibilities local minima occur[5], [7], [13], [14] and it
satisfies two criteria of optimal path planning, i.e. complete path planning and
minimum path generated [7], [8], [13]. Besides that, VG is also easy to be implemented
due to the simplification of equation [5]. The drawback of VG is its computation time
increases when the number of obstacles in C-spaces is increased. C-space is applied so

that the size of the autonomous car can be reduced to a point and the size of obstacle

can be enlarged based on the size of autonomous car [15].

Table 2.1: Summary for path planning methods

Path  planning | - Lower Completeness Minimal  Path
properties Computation Generated
Time
Combinatorial Visibility Graph | No. the | Yes. VG is able | Yes
path planning (VG) computation time | to solve a path
of VG increases | planning without
when the number | the possibility of
of obstacles | local minima
increase. occur.

Voronoi Diagram | Yes Yes Minimum  path
unable to  be
generated

Cell- The computation | Yes Mimimum  path

Decomposition time increases if hard to  be

method the size of cells generated if the

are small. size of the cells
are too large.
Bio-inspired Genetic Yes. since GA 1s | Local  minima | Not guaranteed.
method Algorithm (GA) a meta-heuristic | might occur in
and parallel | narrow
based algorithm. | environments.
Simulated Yes. Since SA is | Yes. The gradual | Hard to
Annealing (SA) a meta-heuristic | probabilistic determine.
based algorithm. | properties allow
this algorithm to
avoid local
minima.
Ant-Colony Yes. Since ACO | Local minima. Cannot be
Algorithm {ACQO) | 1s a  meta- determined
heuristic  based because of the
algorithm. randomly picked

path.




Table 2.1: Summary for path planning methods (continued)

Rapidly- - The computation | Yes. No

exploring time will increase

Random Tree depends on the

size of  tree
generate.

Potential Fields | - Yes Local  Minima | No
might occur
before  reaches
target point.

The Voronoi diagram (VD) has a tendency to augment the separation between the
robot and obstacle in the search space. For every point in the free space, the separation
to the closest obstacle is figured. VD using an equidistant point from two or all the
nearest obstacle [16]. The advantages of the VD is the computation scale is small and
the global optimal solution can be obtained [11] and a complete algorithm, it able to
solve a path without the possibility of local minima occurred. However, the limitation
of the VD is that it is incapable to produce the shortest path [13], thus there is a high
wastage in energy consumption and cost.

Cell-decomposition (CD) method finds a cell that is not occupied by
obstacles. The environment 1s divided into the cell which is discrete and non-
overlapping. A finite graph is built by relegating every cell as a hub. Basically, there
are two types of decomposition method, firstly by exact decomposition and secondly
by approximation decomposition [10]. The advantage of CD is an assurance to find a
collision-free path if one exists and attainable by the robot, thus CD is a complete
algorithm since it can solve the path without the possibility of local minima occurred
[17]. Nevertheless, the drawback of CD are (1) if the cell generated is too coarse, the
minimum path length generated cannot be achieved and (i1) if the cell is too small, the
longer computation time is needed [12], [16], [18]. The cell decomposition method
also does not work really well in a dynamic environment and real-time path planning
[17], [19], [20].

The bio-inspired method is inspired from nature. Genetic algorithm (GA)
using an application of operators to emulate natural selection process. The
disadvantage of GA is that there are possibilities that solution cannot be found in
narrow environments, the local minima conditions might occur. On the other hand, GA
is the algorithm worked in parallel, thus less computation time is used. GA is meta-

heuristics so it does not guarantee the shortest path distance [21]-[23].
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