A SEGMENTED CAPACITANCE TOMOGRAPHY FOR VISUALISING MATERIAL DISTRIBUTIONS IN PIPELINE CONVEYING CRUDE PALM OIL

ELMY JOHANA BINTI MOHAMAD

A thesis submitted in fulfilment of the requirements for the award of the degree of Doctor of Philosophy (Electrical Engineering)

> Faculty of Electrical Engineering Universiti Teknologi Malaysia

> > OCTOBER 2012

To my parents, my dearest husband and beloved children, Omar Mohd Faizan B. Marwah, Muhammad Hafiy Darwis, Muhammad Harris Haikal, Airis Adreana and Dhiya Amanda for their support and understanding

ACKNOWLEDGEMENTS

A multitude thanks to Allah the Almighty for bestowing upon me this opportunity to embark on a journey that I have never done before. Indeed, the lessons learnt have widened my horizons of knowledge and opened me up to new perspectives. In the name of Allah, most benevolent, ever-merciful, all praises be to Allah, Lords of all the worlds. Thank you Allah.

First and foremost, I would like to extend my utmost appreciation to my supervisor Prof. Dr. Ruzairi Bin Abdul Rahim for his enthusiasm, support and endless advice towards my development as a researcher. His guidance and constant encouragement have given me valuable inputs from time to time through out my study. He puts a tremendous amount of effort into providing opportunities for me to learn and to grow. His friendly personality also makes my working experience with him very useful for my future research activities and carrier. I would also like to give my sincerely thanks to Dr Leow Pei Ling as my co-supervisor who have spent her valuable time reviewing few of my research papers and giving his valuable suggestions and constructive critiques. A million thanks to the process tomography instrumentation group members Mohd. Hafiz, Nor Muzakkir, Siti Zarina, Mohd. Fadzli and Muhammad Afiq, and technician Mr. Azrul, for their help, moral and spiritual support toward the completion of this PhD work. Also a million thanks to En Ahmad Jaril, Vice President for Processing and Eng. R&D department of Sime Darby Research Sdn. Bhd. and their staff for sharing their valuable experiences in the palm oil process industry.

My deepest gratitude and appreciation also goes to my beloved father and mother for their blessings, patience and unconditional love. The very special person, my dearest husband Omar Mohd Faizan, who has given me his absolute and endless love, constant encouragement and infinitive support from beginning to the end of this study, always took care of my heart, spirit and who has been greatly supportive, I humbly express my deep sense of gratitude. For my beloved sons and daughter Darwis, Harris, Airis and Dhiya thank you for your great patience and for being my internal support. May this thesis be an inspiration for your future studies and achievements. The same also goes to my sisters and mentoring group ST Richmind Community.

My study would not have been possibly done without the invaluable guidance and help from those experienced people. Their enthusiasm, valuable inputs, suggestion and encouragement have enabled me to go through the ups and downs of this study with confidence. All cooperation from all of you will be highly appreciated. May Allah reward all of you in the hereafter.

ABSTRACT

A segmented electrical capacitance tomography (ECT) imager for palm oil process monitoring system is constructed and presented in this work. The goal of this study is to use the process monitoring system as an instrument to upkeep the local and foreign palm oil mill. This is to ensure that the monitoring of crude palm oil (CPO) in conveying pipeline during extraction of palm oil mill process flow process is efficiently controlled. The system has the capability to visualize the percentage of liquid that exist within the vessel therefore the data can be utilized to design and create better process equipment in mill process. It will also be used to control some processes in order to boost the quality of crude palm oil and the POME (Palm Oil Mill Effluent) treatment process. Most ECT in earlier research were created rapidly and utilized well in multiphase flow measurement in numerous applications such as in oil and gas industries, gas/solids cyclone, milk flows and fluidized beds. Experimentally, this work investigates the capability of using a twin-plane segmented ECT sensor with 16 portable electrodes using two differential excitation potentials transmitted signal in order to recognize the concentration and velocity profile as well as the phase concentration of crude palm oil related multiphase systems (liquid and gas). The attained concentration profile which is received from the capacitance measurements is capable to provide image of the liquid and gas mixture in the pipeline therefore, the separation process (between oil and liquid waste) becomes much easier and the crude palm oil's quality can be dependably monitored. The visualization results deliver information regarding the flow regime, superficial velocity and concentration distribution in two-phase flow-rate measurement system incorporating a liquid flow measuring device. The information obtained is able to help in the process equipment designing, verification of existing computational modeling and simulation techniques. It may also assist in process control and monitoring during the palm oil extraction process.

ABSTRAK

Pengimej kapasitan elektrik bersegmen tomografi (ECT) bagi sistem paparan proses kelapa sawit telah dibina dan dipersembahkan dalam kerja ini. Matlamat sistem ini adalah untuk digunakan sebagai instrumen untuk mengekalkan kualiti minyak sawit tempatan dan asing. Ini adalah untuk memastikan bahawa pemantauan penghantaran aliran proses minyak sawit mentah menerusi saliran ketika proses pengekstrakan minyak sawit dapat dikawal dengan lebih efektif. Sistem paparan ini mempunyai keupayaan untuk memaparkan peratusan cecair yang wujud dalam saliran, dengan itu data tersebut boleh digunakan untuk mereka bentuk dan mencipta peralatan untuk proses yang lebih baik bagi kilang pemprosesan. Ia juga boleh digunakan untuk mengawal beberapa proses untuk meningkatkan kualiti minyak sawit mentah dan proses rawatan POME (Palm Oil Mill Sdn Efluen). Kebanyakan ECT dalam penyelidikan awal telah dicipta dengan pantas dan digunakan dengan baik bagi pengukuran aliran berbilang fasa dalam pelbagai aplikasi seperti industri minyak dan gas, gas / pepejal siklon, aliran susu dan pepejal terbendalir. Kajian penyelidikan ini akan menganalisa keupayaan pengesan ECT satah-berkembar dengan 16 elektrod mudah alih dengan menggunakan dua isyarat pengujaan beza upaya yang berlainan untuk mengenalpasti konsentrasi dan profil halaju serta konsentrasi fasa minyak sawit mentah berbilang fasa dengan yang bersekutu dengannya (cecair dan gas). Profil konsentrasi yang dikenal pasti daripada pengukuran menerusi sistem tersebut mampu untuk memaparkan campuran gas dalam saluran paip. Oleh itu proses pengasingan (minyak berasingan dan sisa cecair) menjadi lebih mudah dan kualiti minyak sawit mentah boleh dipantau. Keputusan visualisasi memaparkan maklumat mengenai aliran, halaju permukaan dan taburan konsentrasi menerusi sistem pengukuran kadar aliran dua fasa yang digabungkan dengan peranti pengukur aliran cecair. Maklumat ini dapat membantu dalam proses mereka bentuk peralatan, pengesahan pemodelan pengiraan sedia ada dan teknik simulasi. Ia juga dapat membantu dalam kawalan proses serta pemantauan sepanjang proses perahan minyak sawit.

TABLE OF CONTENTS

CHAPTER

TITLE

PAGE

	DECLARATION	ii
	DEDICATION	iii
	ACKNOWLEDGEMENTS	iv
	ABSTRACT	v
	ABSTRAK	vi
	TABLE OF CONTENTS	vii
	LIST OF TABLES	xiii
	LIST OF FIGURES	XV
	LIST OF ABBREVIATIONS	xxii
	LIST OF SYMBOLS	xxiv
	LIST OF APPENDICES	xxvi
1	INTRODUCTION	1
	1.1 Introduction of Research Study	1
	1.2 External or Internal ECT Sensors	6
	1.3 Number of electrodes	8
	1.4 Sixteen Segmented ECT Sensor Electrodes	9
	1.5 A Twin Plane ECT	11
	1.6 Cross-correlation velocity measurement	11
	1.7 Background of Research Problem	14
	1.8 Problem Statements	17
	1.9 Research Objectives	18
	1.10Research Scope	19
	1.11Significant research contributions	20

2	LITERATURE REVIEW	22
	2.1 Research Background	22
	2.2 Requirement Placed on Industrial Tomography	23
	2.3 Classification of Tomography Imaging Principles	25
	2.3.1 Hard Field Sensors	26
	2.3.2 Soft Field Sensors	26
	2.3.3 Hard Field vs. Soft Field Sensors	27
	2.4 Sensors Principles for Industrial Tomography Imaging	27
	2.5 Types of Images Reconstruction Algorithm	29
	2.6 Linear Back Projection Reconstruction Algorithm (LBP)	30
	2.7 Types of Projections	30
	2.8 Related Work on ECT	32
	2.9 System Design and Application	35
	2.10Summary	40
2	SECMENTED ECT SENSOD MODELING AND	INAH
3	SEGNENTED ECT SENSOR WODELING AND	41
	3.1 Introduction	41
	3.2 Forward Modeling Development	43
	3.2.1 Forward Modeling Process Using COMSOL	15
	Multiphysics Software	46
	3.2.2 Simulation design process	47
	3.2.3 Preparing for simulations	49
	3.2.4 FEM Meshing	50
	3.2.5 Set electrical properties domain and boundary	
	condition	50
	3.2.6 Preparing of Excitation Electrode	52
	3.2.7 Numerical calculation of the electrical field	54
	3.3 Simulation of Segmented ECT model for Single Excitation	
	Potentials Schemes	56
	3.3.1 Single excitation potentials, single-electrode	
	excitation for 16 sensor electrodes	57
	3.3.2 Permittivity Distribution	59
	3.3.3 Different Mixture of Permittivity Distribution	59

		3.3.4	The effect of increasing the size of permittivity using	
			single excitation potential, single-electrode excitation	
			schemes	61
	3.4	Simul	ation of Segmented ECT model for Two Differential	
		Excita	tion Potentials Schemes	63
		3.4.1	Two differential excitation potentials, single-electrode	
			excitation for 16 sensor electrodes	63
		3.4.2	The analysis of increasing the diameter of the higher	
			dielectric material using two different excitation	
			potentials	65
	3.5	Simula	ative Study on Image Reconstruction Algorithm	66
		3.5.1	Sensitivity Distribution	68
		3.5.2	Sensitivity Map	69
		3.5.3	Forward problem and linearization solution	77
			3.5.3.1 Normalization of capacitance measurements	77
			3.5.3.2 Normalized sensitivity and permittivity	80
			3.5.3.3 Process normalizing	81
		3.5.4	Concentration profile	82
		3.5.5	Linear Back Projection (LBP) Algorithm	84
	3.6	ECT I	mage Reconstruction Simulator	86
	3.7	Simula	ative Velocity Measurement for Twin plane Segmented	
		ECT S	Sensor	93
		3.7.1	Cross-correlation Principle	93
		3.7.2	Simulative Velocity Measurement using Cross	
			Correlation Technique	96
		3.7.3	Mean Correlation	96
		3.7.4	2-D Correlation Coefficient	99
	3.8	Summ	ary	100
4	SE	GMEN	TED ECT HARDWARE AND SOFTWARE	106
	DE	VELO	PMENT	
	4.1	Introd	uction	106
	4.2	ECT S	Segmented Hardware Process Development	107
	4.3	Basic	Principle of ECT system	111

ix

4.4	ECT S	ensor Design Configuration	114
4.5	Electro	ode Sensor Design	116
	4.5.1	Length and Diameter of Sensor Electrodes	116
	4.5.2	Driven Guard Electrodes	118
	4.5.3	Earthed Screens	120
4.6	Electro	ode Connecting Techniques	121
4.7	Grippe	er and Handle Model	123
4.8	Pipelin	nes	124
4.9	Sensor	Measurement Circuit	125
	4.9.1	Switching Circuit	128
	4.9.2	Capacitance Measurement Circuit	129
	4.9.3	AC-to-DC Converter Circuit	131
		4.9.3.1 Absolute Value Circuit	132
		4.9.3.2 Low-Pass Filter	133
	4.9.4	Programmable Gain Amplifier (PGA)	134
	4.9.5	Analog to Digital Converter (ADC)	135
	4.9.6	Microcontroller PIC16F87	136
4.1	0Main C	Controller Unit	138
	4.10.1	Microcontroller PIC18F4550	138
	4.10.2	Function Generator	140
		4.10.2.1 Function Generator	142
	4.10.3	Interfacing between Sensor to Computer	144
		4.10.3.1 Data Retrieving in PC	146
4.1	1ECT S	egmented Software Process Development	147
	4.11.1	Sensing Modules Firmware	148
	4.11.2	Main Control Unit Firmware	150
4.1	2Graphi	cal User Interface (GUI)	152
	4.12.1	Bar Graph Analysis for Liquid Level Concentration	155
	4.12.2	Bar Graph Cross Correlation for Superficial Liquid	
		Velocity	156
4.1	3ECT N	leasurement Programming Modules	157
4.1	4ECT S	ystem Concentration Measurement	157
4.1	5Error N	Measurement in ECT System	158
4.1	6Summ	ary	159

5	EXPERIMENTAL SETUP, RESULT AND ANALYSIS	164
	5.1 Research Background	164
	5.2 Experimental setup for standing capacitance	
	measurement	165
	5.2.1 Comparisons of standing capacitance	
	measurements of different types of dielectric	
	materials (air, CPO, sludge, and water)	166
	5.2.2 Standing capacitance measurements of different	
	phantom sizes (flow regime)	170
	5.3 Experiments performed to compare the distribution of	
	potentials	171
	5.3.1 Single excitation potential technique	171
	5.3.2 Two differential excitation potential techniques	173
	5.4 Signal-to-noise ratio	175
	5.5 System calibration	178
	5.6 Core sensitivity analysis	183
	5.7 Two Phase Flow Visualization Analysis	190
	5.8 Dispersions flows of oil -water	192
	5.9 Dispersions flows of oil-sludge	196
	5.10Repeatability of Image Concentration Measurement for	
	ECT System	199
	5.11Velocity Profile Experimental Arrangement	201
	5.11.1 Velocity profile observation for horizontal flow	
	measurement	205
	5.11.2 Velocity profile observation for horizontal	
	downward inclined flow (declined) 20° and 30°	209
	5.11.3 Velocity profile observation for horizontal upward	ł
	inclined flow (inclined) 20° and 30°	212
	5.12Velocity Profile Measurement Result Analysis	215
	5.13Summary	217
6	CONCLUSIONS AND SUGGESTIONS FOR FUTURE	220
	WORK	
	6.1 Conclusions	220

6.2 Significant Contributions towards Process Tomography	223
6.3 Recommendations for Future Work	224
REFERENCES	226
Appendices A – D	235-264

LIST OF TABLES

TABLE NO	D. TITLE	PAGE	
1.1	The Relationship between Total of Electrodes used and Total		
	of Independent Measurements from Existing ECT Systems	8	
2.1	Sensor for industrial tomography imaging.	29	
2.2	Existing ECT System in Industrial Application	33	
3.1	Physical Sensor Parameter	48	
4.1	Digital data transferred to the PC for image reconstruction	146	
5.1	Standing capacitances of air, CPO, sludge, and water	168	
5.2	Standing capacitance (pF) caused by the different sizes (mm)		
	of dielectric materials	171	
5.3	Lowest limit voltage sensor reading when the sensor was		
	filled with gas during calibration	181	
5.4	Highest limit voltage sensor reading when the sensor was filled		
	with water during calibration	181	
5.5	Comparison of actual and measured readings for the		
	concentration measurement (C.K. Seong, 2008)	183	
5.6	Actual and measured readings for the proposed	185	
5.7	Actual concentration measurements	188	
5.8	Reconstructed image of horizontal oil-water flow concentration	194	
5.9	Reconstructed image of the horizontal oil-sludge flow		
	concentration	197	
5.10	ANOVA and Gage R&R	199	
5.11	Horizontal velocity profile measurement	206	
5.12	Declined 20° velocity profile measurement	211	
5.13	Declined 30° velocity profile measurement	211	

5.14	Inclined 20° velocity profile measurement	213
5.15	Inclined 30° velocity profile measurement	214

LIST OF FIGURES

TIDEN

FIGURE N	O. TITLE	PAGE
1.0	A schematic diagram of an ECT system	5
1.1	Flow velocity measurement using cross-correlation	13
1.2	Biological ponding system of Palm Oil Milling, Sime Darby	
	Research Sdn. Bhd. Carey Island, Banting Selangor, Malaysia,	
	2011.	15
1.3	(a) Flow Diagram of Palm Oil Milling and (b) Crude Palm	
	Oil Process -Sime Darby Research Sdn Bhd, Carey Island,	
	Banting Selangor, Malaysia, 2011.	16
1.4	Clarifier Tank	16
2.1	Various form of projections through a cross-section of	
	conveyor, pipe-line or_vessel	31
3.0	(a) Schematic representation of the measurement principle of	
	an ECT system (b) electric field lines that exist between any	
	two electrodes	45
3.1	Illustration of sixteen sectors of portable ECT	48
3.2	a) 2D segmented geometry of portable ECT sensor b) 3D	
	geometry of portable ECT sensor	49
3.3	FEM Meshing; (a) initial mesh (b) finer mesh	50
3.4	Allocate the boundary and subdomain settings in COMSOL	51
3.5	(a) Potential Distribution and (b) Electrical filed for single	
	excited electrode. The electrical potential and electrical field is	
	encoded with the color	53
3.6	Potential lines for single excited electrode. The electrical field	
	lines are calculated for electrode 1	56

3.7	16 segmented sensor arrangement	57
3.8	Simulation result shows the electric field lines are deflected	
	depending on material distribution, when one electrode was	
	excited	58
3.9	Results from (a) 2D and (b) 3D simulation, respectively. Blue	
	area is sensing region represent air ($\varepsilon_{air} = 1$), and red area	
	represents water ($\varepsilon_{water} = 80$).	59
3.10	Permittivity distribution for different types of dielectric (a)-(f)	60
3.11	Image simulations when increasing the diameter of dielectric	
	materials using single potentials/voltage source.	61
3.12	Simulated capacitances due to increasing the size of permittivity	
	of the dielectric material, \mathcal{E}_r =80, using single potentials/	
	voltage source schemes	62
3.13	Electrical field distribution for 2D when half of electrode pairs	
	was excited with low voltage source and another half with	
	higher voltage source injected	64
3.14	Images simulation when increasing the diameter of dielectric	
	material using two different potentials/voltage sources.	65
3.15	Simulated capacitances due to increasing of the permittivity	
	size of the dielectric material, $\epsilon = 80$, using two different	
	potentials/voltage source schemes.	66
3.16	Back projecting an image 66	67
3.17	The sensitivity matrix of capacitance measured between	
	electrodes	69
3.18	32x32 square sensitivity matrix	70
3.19	Generation of sensitivity map in (a) 2D and (b) 3D.	71
3.20	Sensitivity maps for 16 projections (a)-(c)	72
3.20	Sensitivity maps for 16 projections (d)-(f)	73
3.20	Sensitivity maps for 16 projections (g)-(i)	74
3.20	Sensitivity maps for 16 projections (j)-(l)	75
3.20	Sensitivity maps for 16 projections (m)-(n)	76
3.21	ECT sensors with a high permittivity material in the air	79
3.22	Series capacitance model in ECT	79
3.23	Graphical user interfaces for measurement process simulation	87

xvi

3.24	Image reconstruction simulation with single excitation	
	potential for one liquid droplet in the center area (a) before	
	normalized and (b)after normalized	88
3.25	(a) Image reconstruction simulation for stratified flow	
	(b) comparison of image concentration percentage (%) with	
	basic LBP and after normalized	89
3.26	(a) Sensitivity distribution of single excitation potential and	
	(b) normalized sensitivity distribution	90
3.27	Simulation result of image reconstruction for different types	
	of flow regimes and permittivity distribution.	92
3.28	The principle of velocity measurement using cross correlation	
	technique	94
3.29	The movement of the flow through upstream sensing area	97
3.30	The movement of the flow across at downstream sensing area	98
3.31	Mean values plotted for each frame recorded at upstream	
	sensing area	98
3.32	Mean values plotted for each frame recorded at downstream	
	sensing area	98
3.33	Cross-correlation signals between upstream and downstream	99
3.34	Signal cross-correlation between upstream and downstream	
	using 2-D Correlation Coefficient	100
4.0 FR	A twin-plane arrangement of segmented ECT sensor electrodes	107
4.1	Portable segmented electrode sensor arrangement mounted	
	symmetrically on the pipe wall	108
4.2	Overview of the system	109
4.3	Topology of the segmented ECT System	110
4.4	Capacitance measurement principle	111
4.5	Cross-sectional view of a typical ECT sensor with 12 electrodes	113
4.6	Cross-sectional view of the ECT sensor with 16-segmented	
	portable electrodes	115
4.7	Dimensions of the electrode: (a) previous design measured at	
	100mm and (b) new design measured at 120mm in length of	
	the sensor area	118

xvii

4.8	(a) ECT sensors with end guard and axial guard, (b) ECT	
	sensors with driven guard	119
4.9	The earthed screen is placed at the top layer of the electrode	121
4.10	Electrode plates with mounted PCB sockets	122
4.11	Sensing module	122
4.12	Customized design of the gripper model	123
4.13	Hardware design of the sensor jig of the ECT system	124
4.14	Block diagram of the signal conditioning module	126
4.15	Signal conditioning circuit module	126
4.16	Complete portable electrode sensor module	127
4.17	Portable electrodes interconnected by a 26-way IDC cable	127
4.18	The circuit arrangement of four switches for electrode	
	selection	128
4.19	Detector and AC amplifier circuits	130
4.20	The absolute value circuit	132
4.21	Application of the low-pass filter on the absolute value circuit	133
4.22	Programmable gain instrumentation amplifier (PGA)	135
4.23	ADC10461 provided by National Semiconductor	136
4.24	Microcontroller PIC16F876 circuit diagram	137
4.25	Microcontroller PIC18F4550 circuit diagram	139
4.26	The main control unit for twin plane segmented ECT	139
4.27 ER	Connection of XR2206	141
4.28	Op-Amp TL081 to produce two different waveforms 24Vp-p	
	and 4Vp-p	142
4.29	Transmitted signal from the signal generator with single	
	excitation potentials/voltage source	143
4.30	Sequentially transmitted signal from the signal generator with	
	two difference potentials/voltage sources	144
4.31	Output waveform from the Function Generator	144
4.32	Features in a PIC18F4550	147
4.33	Flowchart programming for the sensing modules	149
4.35	ECT system main GUI	152
4.36	Liquid level and cross correlation online monitoring system	153

4.37	Bar graph for displaying liquid level concentration and	
	superficial liquid velocity	154
4.38	Basic flow chart for the GUI ECT system	155
4.39	Cross correlation for liquid velocity	156
5.0	Digital capacitance meter (MODEL 3000)	165
5.1	Inter-electrode capacitance reading using the digital capacitance	
	meter monitoring system of GLK INSTRUMENTS	166
5.2	Pipeline was filled with (a) water (b) sludge and (c) CPO	167
5.3	Comparisons of the standing capacitances of air, CPO, sludge,	
	and water	169
5.4	Portable segmented ECT with bottle and test tube used to create	
	phantoms inside the ECT sensor. The bottle and test tube were	
	filled with water, creating a phantom of annular water flow	170
5.5	Transmitted signal from the signal generator using a single	
	excitation potential/voltage source	172
5.6	Potential distribution (Vpp) for the low permittivity (phantom	
	was empty) and high permittivity (phantom was filled with	
	water) in the pipeline using a single potential excitation	172
5.7	Transmitted signal from the signal generator with two different	
	potential /voltage sources sequential	174
5.8	Potential distribution (binary number) after normalization for	
	the low permittivity (phantom was empty) and high permittivity	
	(phantom was filled with water) in the pipeline using two	
	differential excitation potentials.	174
5.9	New ECT design approach with a 120mm long sensor area	
	(a) voltage output reading for low permittivity (phantom was	
	empty) and (b) for high permittivity (phantom was filled with	
	water) in the pipeline using two differential excitation	
	potentials	176
5.10	Previous ECT design with a 100 mm long sensor area	
	(a) voltage output reading for low permittivity (phantom was	
	empty) and (b) for high permittivity (phantom was filled with	
	water) in the pipeline using a single excitation potential	177

5.11	Comparisons of the reconstructed images and liquid levels	
	using the two differential and single excitation techniques	178
5.12	A test section for calibrating the sensor prior to measurements	180
5.13	Reconstructed image for both planes (Planes 1 and 2) during	
	calibration when the sensor was filled with (a) gas (low-	
	permittivity material) and (b) water (high-permittivity material)	182
5.14	Core measurements (a)–(f) (C.K. Seong, 2008)	184
5.15	Reconstructed images from the containers of different sizes	187
5.16	Comparisons of the actual and measured data collected for	
	(a) water and (b) gas concentrations.	189
5.17	Phase distribution in a pipe cross-section for mixture with	
	input oil fraction 70% at different angles of inclination taken	
	from N.M. Hasan <i>et al.</i> (2007)	191
5.18	Horizontal oil-water/sludge flow rigs	192
5.19	Horizontal oil–water flows	192
5.20	Horizontal oil-sludge flows	196
5.21	(a)-(d) Gage R&R For ECT Image Concentration Measurement	200
5.22	Liquid-gas flow rig system	203
5.23	A twin-plane segmented ECT mounted onto the acrylic pipe	
	of the test section	203
5.24	Distance between the sensing planes	204
5.25 ER	Axial View of sensor structure taken from Hayes, D.G., et al.,	
	(1995)	205
5.26	Measurement using liquid-gas flow rig system in horizontal	206
5.27	Velocity profile observation for horizontal flow measurement	207
5.28	Reconstructed image tomogram for liquid volumes of (a) 15	
	LPM and (b) 25 LPM	208
5.29	The measurement using liquid-gas flow rig system in	
	downward inclined flow (a) 20° and (b) 30°	210
5.30	Velocity profile observation for horizontal downward inclined	
	flow (declined) in 20° and 30°	211
5.31	The measurement using liquid-gas flow rig system in upward	
	inclined flow (a) 20° and (b) 30°	213

5.32	Velocity profile observation for horizontal upward inclined		
	flow(inclined) in 20° and 30°	214	
5.33	Capability analysis data for velocity measurement	216	

LIST OF ABBREVIATIONS

-	degree
-	Alternative-Current
-	analog to digital converter
-	Analysis of variance
-	complementary metal oxide semiconductor
-	Process capability
-	digital to analog converter
-	Data acquisition system
-	Electrical Capacitance Tomography
-	Electrical Erasable Programmable Read Only Memory
-	Electrical Impedance Tomography
	electrostatic discharge
202	frame per second
-	Graphical user interface
-	Gauge of repeatability and reproducibility
-	Hertz
-	Input / Output
-	insulation displacement contact
-	input and output control
-	Industrial Process Tomography
-	Industry Standard Architecture
-	kilo-ohm
-	kilobit per second
-	kilohertz
-	Linear Back Projection

LED	-	light emitting diode
MATLAB	-	Matrix Laboratory
Max.	-	Maximum
Mbps	-	Megabit per second
MHz	-	MegaHertz
mm	-	millimetres
MOR	-	Model Based Reconstruction
MRI	-	magnetic resonance imaging
ms	-	millisecond
MSIRT	-	Multiplicative simultaneous iterative reconstruction technique
NMR	-	Nuclear Magnetic Resonance
NMRT	-	Nuclear Magnetic Resonance Tomography
OIOR	-	Offline iteration and online reconstruction
op-amp	-	operational amplifier
PC	-	Personal Computer
PCB	-	Printed Circuit Board
PET	-	Positron Emission Tomography
PSNR	-	peak signal-to-noise ratio
РТ	-	Process Tomography
PTL	-	Process Tomography Limited
RAM	- 9	Random Access Memory
RMSE	<u>10</u>	root mean square error
SNR	-	Signal to Noise Ratio
SPI	-	Serial Peripheral Interface
SW	-	Switch
USB	-	Universal Serial Bus
V_{p-p}	-	Voltage peak-to-peak

LIST OF SYMBOLS

xxiv

A	-	Total gain of measurement system
A/D	-	Analog to digital
С	-	Matrix of inter-electrode capacitance
C _H	-	Capacitance measured at higher permittivity
C _L	-	Capacitance measured at lower permittivity
C _M	-	Measured capacitance
C_N	-	Normalized capacitance
C _{oil}	-	Relative capacitance of oil
Cr	-	Relative capacitance
C_{s1}	-	Stray capacitance of connecting lead
C_{s2}	-	Stray capacitance at Op-Amp feedback point
Cwater	-	Relative capacitance of water
C_x	p-U	unknown standing capacitance
d PEK	-	Distance of 2 parallel plate
D	-	Sensor diameter
3	-	Effective permittivity
ε ₀	-	Permittivity of free space
εο	-	Relative permittivity of oil
ε _r	-	Relative permittivity
ε _w	-	Relative permittivity of water
f	-	Frequency
funitygain	-	Unity gain frequency
K	-	Matrix of permittivity
K _e	-	Effective pixel permittivity
K _{en}	-	Normalized effective pixel permittivity
K _{en}	-	Normalized effective pixel permittivity

K _H	-	Pixel permittivity at lower permittivity
K _L	-	Pixel permittivity at higher permittivity
L	-	Length of electrode
m	-	Number of individual standing capacitance
М	-	Total number of pixels
n	-	Total number of pixels
Ν	-	Number of measuring electrodes
Q	-	Unknown matrix
S	-	Sensitivity matrix
S ⁻¹	-	Inverse sensitivity matrix
SNR	-	Signal to Noise Ratio
$\mathbf{S}^{\mathbf{T}}$	-	Transpose sensitivity matrix
V_i	-	Input voltage
V_o	-	Output voltage
VR	-	Volume ratio
W	-	Width of electrode
х	-	Volume ratio
ΔC	-	Error capacitance matrix
ΔΚ	-	Error pixel matrix
ω_o	-	Corner frequency

REFERENCES

- A Novel Tomographic Method of Measuring Flowrates of Mixtures in Pipes Copyright (2002) Tomoflow ltd. http://www.tomoflow.com/tech.htm.
- Olmos, A. M. (2008). Development of an Electrical Capacitance Tomography system using four rotating electrodes. *Journal Sensors and Actuators A: Physical*, Elsevier. Vol 148, 366-375.
- Olmos, A. M. and Maroon, F. (2007). Simulation design of electrical capacitance tomography sensors. *IET Sci. Meas. Technology*. 1(4), 216, 216-223.
- A.L. Ahmad and C.Y Chan, (2009). Sustainability of palm oil Industries: An Innovative Treatment via Membrane Technology. *Journal of Applied Sciences*. 9 (17), 3074-3079.
- A.J. Asis (2011). *Processing & Engineering, Palm Oil Milling and Palm Kernel* processing. Sime Darby Research Sdn. Bhd. Carey Island, Banting Selangor.
- A.W.S. Chia (2005). Poly-β-Hydroxybutyrate (PHB) Production From PalmOil Mill
 Effluent (POME) Using Mixed Cultures Under Dynamically Transient Fed-Batch System. Degree Thesis. Universiti Teknologi Malaysia, Skudai Johor.
- Beck, M.S. and Plaskowski, A. (1987). Cross Correlation Flowmeters: Their Design and Application.(Bristol: Adam Hilger).
- C.K. Seong (2008). Electrical Capacitance Tomography (ECT) System with Mobile Sensor for the liquid measurement. Master Thesis, Universiti Teknologi Malaysia, Skudai Johor.
- C.K. San (2002). *Real time image reconstruction for fan beam optical tomography system*. Master Thesis. Universiti Teknologi Malaysia, Skudai Johor.
- C.G. Xie, S.M. Huang, B.S. Hoyle, R. Thorn, C.P. Lenn, D. Snowden and Beck, M.S. (1992). Electrical capacitance tomography for flow imaging: System for

development of image-reconstruction algorithms and design of primary sensors. *IEE Proc.* G 139, 89–98.

- D. Xie, Z. Huang, H. Ji, and H. Li. (2006). An Online Flow Pattern Identification System for Gas–Oil Two-Phase Flow Using ElectricalCapacitance Tomography. *IEEE Transaction On Instrumentation and Measurement*. Vol. 55, No. 5, 1833-1838.
- E. Johana, R. Abdul Rahim, M.H. Fazalul Rahiman and S.Z. Mohd. Muji. (2012). Design of Portable ECT for Crude Palm Oil Quality Monitoring System. *International Journal of Innovative Computing, Information and Control.* ISSN 1349-4198, Vol.8, No.1 (B).
- E. Johana and R. Abdul Rahim. (2010). Multiphase Flow Reconstruction in Oil Pipelines by Portable Capacitance Tomography. *Proceedings of IEEE Sensors, IEEE Sensors 2010 Conference*. 1-4 November. Hawaii, USA, 273-278.
- Dickin, F.J., Hoyle, B.S., Hunt, A. and S.M. Huang. (1992). Tomographic imaging of industrial process equipment: techniques and applications. *IEEE Proc.* G 139, No.1.
- Kuhn, .T., Schouten J.C., Mudde R.F., C.M van den Bleek. and Scarlett, B. (1996).
 Analysis of chaos in fluidization using electrical capacitance tomography.
 Meas .Sci. Technol, Institute of Physics Publishing. Vol.7,361–368.
- F. Wang, Q. Marashdeh, L.S. Fan and Williams R.A. (2009). Electrical Capacitance, Electrical Resistance, and Positron Emission Tomography Techniques and Their Applications in Multi-Phase Flow Systems. *International Journal of Advances in Chemical Engineering*, Science Direct. Vol.37, 179–222.
- Chaplin G., Pugsley T., Lani van der Lee, Kantzasand A. and Winters C. (2005). The dynamic calibration of an electrical capacitance tomography sensor applied to the fluidized bed drying of pharmaceutical granule. *Meas. Sci. Technol.* Institute of Physics Publishing. Vol.16, 1281–1290.
- Golder Associates (2006). Technology Overview-Palm Oil Waste Management. 05-1113-244.

- G.B. Zheng, N.D. Jin, X.H. Jia, P. July and X.B Liu (2008). Gas–liquid two phase flow measurement method based on combination instrument of turbine flowmeter and conductance sensor. *International Journal of Multiphase Flow*, Science Direct. Vol.34, 1031–1047.
- H. Li and Z. Huang (2000). Special Measurement Technology and Application. Zhejiang University Press. Hangzhou.
- H.G. Wang, T. Dyakowski, P. Senior, R.S. Raghavan and W.Q. Yang (2006). Modelling of batch fluidised bed drying of pharmaceutical granules.", *Chemical Engineering Science*, Vol. 62, 1524 – 1535. Elsevier.
- Eren, H. and Sandor, L.D. (2005). Fringe-Effect Capacitive Proximity Sensors for Tamper Proof Enclosures. Sensors for Industry Conference.8-10 February. Houston, Texas, USA,.
- Halow, J.S., Fasching, G.E. and Nicoletti, P.(1990). Preliminary capacitance imaging experiments of a fluidized bed. Advances in Fluidization Engineering, AIChE Symposium Series. 276, Vol. 86, 41-50.
- Hayes D.G. (1994). Tomographic flow measurement by combining component distribution and velocity profile measurements in 2-phase oil/gas flows.PhD Thesis. UMIST, UK.
- H. Yan, F. Shao and S. Wang (1999), Simulation Study Of Capacitance Tomography Sensors. 1st World Congress on Industrial Tomography, 14-17 April. Buxton, Greater Manchester.
- I. Ismail, Gamio, J.C., S.F. Ahmed Bukhari and W.Q.Yang (2005). Tomography for multi-phase flow measurement in the oil industry. *Flow Measurement and Instrumentation*. Elsevier. Vol.16, 145-155.
- Jaworski, J. and Dyakowski T. (2001). Application of electrical capacitance tomography for measurement of gas-solids flow characteristics in a pneumatic conveying system. *Meas .Sci. Technology*. Institute of Physics Publishing.Vol. 12, 1109-1119.
- Gamio, J.C. (2002). Acomparative analysis of single- and multiple-electrode excitation methods in electrical capacitance tomography. *Meas.Sci.Technology*. Vol.13,1799–1809. Institute of Physics Publishing.

- Gamio, J.C., Castro, J., Rivera, L., Alamilla, J., Garcia-Nocetti, F. And Aguila, L. (2005). Visualisation of gas–oil two-phase flows in pressurised pipes using electrical capacitance tomography.*Flow Measurement and Instrumentation*. Elsevier.Vol 16, 129–134.
- Mirkowski, J. and Smolik, W.T. (2008). New Forward-Problem Solver Based on a Capacitor-Mesh Model for Electrical Capacitance Tomography.*IEEE Transactions On Instrumentation And Measurements*. Vol. 57, No. 5.
- J. Frounchi, A.R. Bazzazi, K. Ebnabbasi and K. Hosseini (2003).High Speed Capacitance Measuring System for Process Tomography.3rd World Congress on Industrial Process Tomography. Banff, Canada.
- Alme, K.J. and Mylvaganam, S. (2006). Analyzing 3D and Conductivity Effects in Electrical Tomography System Using COMSOL Multiphysics EM Module. *Proceedings of the Nordic COMSOL Conference*.
- L.Y. Lang (2007). Treatability of Palm Oil Mill Efflueant (POME) using Black Liquor in an Anaerobic Treatment Process.Msc.Thesis.Malaysia.
- Loh W.W. (1998). Real-time monitoring of drilling cuttings transport using electrical resistance tomography.PhD Thesis.UMIST
- Beck, M.S. Bayars, M. and Dyakowski, T. (1997). Principles and industrial applications of electrical capacitance tomography. *Measurement & Control*. 30 (7), 97–200.
- M. Ahmed (2009). The Use of Microfillter Recovered Palm Oil Mill Enffluent (POME) Sludge as Fish Feed Ingredient.Msc. Thesis. Malaysia.
- Byars, M. (2001). Developments in Electrical Capacitance Tomography. *Process Tomography Limited*. Cheshire, United Kingdom.
- Flores, N., Gamio J.C., Alemán, C.O. and Damián E. (2005). Sensor Modeling for an Electrical Capacitance Tomography System Applied to Oil Industry. *Proceedings of the COMSOL Multiphysics User's Conference*. Boston.
- N.Mohd. Hasan and Azzopardi, B. J. (2007). Imaging stratifying liquid–liquid flow by capacitance tomography. *Flow Measurement and Instrumentation*. Elsevier. Vol 18, 241–246.

- Patterson, R.P. and Z. Jie. (2003). Evaluation of an EIT reconstruction algorithm using finite difference human thorax models as phantoms. *Physiological Measurement*, Vol. 24, No. 2, 467.
- P. Xue and L. Peng, (2010). A 36 Electrode Electrical Capacitance Tomography Systems Using Asymmetric Electrode Strategy. World Congresson Industrial Process Tomography (WCIPT6), 6-9 September. Beijing, China.
- Process Tomography Limited (2000). Calculation of Normalized Capacitances. Application Note AN 5 Issue 1, *Process Tomography Limited*, Cheshire, United Kingdom.
- Process Tomography Limited (2001). Generation of ECT Images from Capacitance Measurements. Application Note AN 1 Issue 3, March 2001, Process Tomography Limited, Cheshire, United Kingdom.
- Process Tomography Limited (2009). Fundamental Of ECT. Electrical Capacitance Tomography System Operating Manual, Issue 1, *Process Tomography Limited*, Cheshire, United Kingdom, December.
- Waterfall, R. C., He, R., White, N.B. and Beck, C. M. (1995). Combustion imaging from electrical impedance measurements. *Meas .Sci. Technol.*, Vol.7, 369– 374.
- White, R.B. and A. Zakhari. (1999). Internal Structures in Fluid Beds of Different Scales: An Application of Electrical Capacitance Tomography. *1st World Congress on Industrial Process Tomography*. April 14-17. Buxton, Greater Manchester,
- Martin, R., Alemán C.O. and Castellanos A.R. (2005). Multiphase flow reconstruction in oil pipelines by capacitance tomography using simulated annealing. *GeofísicaInternacional*, Vol. 44, Num. 3, 241-250.
- Williams, R.A. and Beck M.S. (1995). Introduction to process tomography: in Frontiers in industrial process tomography, David M. Scott Eds., 1-7, Butterworth-Heinemann Ltd.: Oxford.
- R. Abdul Rahim, M.H. Fazalul Rahiman., Chan, K.S., Nawawi and S.W. (2007).Non-invasiveimaging of liquid/gas flow using ultrasonic transmission-

model tomography. *Sensors & Actuators: A. Physical.* Elsevier. Vol. 135, 337-345.

- S. Ibrahim, (2000). Measurement of gas bubles in a vertical water column using optical tomography. Thesis of Doctor of philosophy Degree in Sheffield Hallam University, United Kingdom.
- S. Liu, Q.Chen, H.G.Wang, F.Jiang, I.Ismail and W.Q.Yang, (2005). Electrical capacitance tomography for gas-solids flow measurement for circulating fluidized beds. *Flow Measurement and Instrumentation*. Elsevier.Vol.16, 135–144.
- S.M Huang, M., Liu, C. and Shen, L. C. (1995). Monitoring the contamination of soils by measuring their conductivity in the laboratory using a contactless probe. *Geophysical Prospecting*, Vol. 43, 759-778.
- S.M Huang, Thorn, R., C.G Xie, Snowden, D. and Beck, M.S (1992). Design of sensor electronics for electrical capacitance tomography.*IEE Proc. G*, *Electron. Circuits & Sys*.139,(1),pp. 83-88.
- Salkeld, J.A. (1991). Process Tomography for the measurement and analysis of twophase oil-based flows.PhD Thesis, University of Manchester Institute of Science and Technology (UMIST), UK.
- Donthi, S.S. (2004). Capacitance based Tomography for Industrial Applications.M. Tech. credit seminar report, Electronic Systems Group, EE Dept. IIT Bombay.
- Shepp, L.A., and Logan, B.F.(1974). The Fourier reconstruction of a head section. *IEEE Trans. Nucl. Sci.*, Vol. 21, 21-43.
- S.M. Huang, Plaskowski, A.B, C.G. Xie and Beck, M.S.(1989). Tomographic imaging of two component flow using capacitance sensors. *Journal of Physics E: Scientific Instruments*, 22, 173–177.
- S.F. Ahmed Bukhari and W.Q. Yang (2006). Multi-interface Level Sensors and New Development in Monitoring and Control of Oil Separators. *Sensor Journal*, MDPI, ISSN 1424-8220.

- T.C. Wei (2003). Measurement of Two-Phase Imaging (Water/Gas Bubbles) By Using Electrical Capacitance Tomography (ECT). Thesis of Degree. Universiti Teknologi Malaysia, Skudai, Johor.
- T.C. Tat (2003). *Water/Oil Flowing Imaging of Electrical Capacitance Tomography System.* Thesis of Degree . Universiti Teknologi Malaysia, Skudai, Johor.
- Thorn, R., S.M. Huang,, C.G., Xie, Salkeld, J.A., Hunt, A., and Beck, M.S.(1990).Flow imaging for multi-component flow measurement. *Flow Measurement and Instrumentation*. Elsevier. Vol.2, (2).
- Dyakowski, T., York, T., Mikos, M., Vlaev, D. Mann, R., Follows G., Boxman, A. and Wilson, M. (2000). Imaging nylon polymerisation processes by applying electrical tomography. *Chemical Engineering Journal*. Elsevier. Vol.77, 105– 109.
- Dyakowski T. (2000). Application of electrical tomography for gas-solids and liquidsolids flows- a review.*Powder Technology*, Vol. 112,174-192. Elsevier.
- York T. (2001). Status of electrical tomography in industrial applications. J. *Electron. Imaging*, Vol. 10, no. 3, 608–619.
- W. Q. Yang and York, T. A., (1999). New AC-based capacitance tomography system. *IEE Proc.- Sci. Meas. Technol.*, 146 (1), 47-53.
- W. Q. Yang, Stott, A.L., Beck, M. S. and C. G. Xie, (1995b). Development of capacitance tomographic imaging systems foroil pipeline measurements. *Rev. Sci. Instrum.*, 66 (8), 4326-4332.
- W.Q Yang (2010). Design of electrical capacitance tomography sensors. *Meas .Sci. Technol.* Process Tomography Group, UMIST, Vol.21, 13.
- W.Q Yang and L. Peng (2003). Image reconstruction algorithms forelectrical capacitance tomography. *Meas. Sci. Technol.* Process Tomography Group, UMIST Vol. 14 / R1–R13.
- W.Q Yang and S. Liu (2000). Role of tomography in gas/solids flow measurement.*Flow Measurement and Instrumentation*, Elsevier .Vol. 1, 237– 244..

- W.Q Yang (1995a). Hardware Design of Electrical Capacitance Tomograohy System. *Meas . Sci. Technol.*, Institute of Physics Publishing. Vol.7, 225-232.
- W.Q Yang, (2007). Tomographic Imaging based on Capacitance Measurement and Industrial Applications. *IEEE International Workshop on Imaging,Systems* and Techniques - IST 2007, May 4-5, Krakow, Poland.
- W.Q. Yang, Chondronasios, A., Nattrass, S., Nguyen, V.T., Betting, M., I. Ismail and McCann, H. (2004).Adaptive calibration of a capacitance tomography system for imaging water droplet distribution.*Flow Measurement and Instrumentation*, Elsevier.Vol.15, 249–258.
- W. Warsito and L.S. Fan (2001). Measurement of real-time flow structures in gasliquid and gas-liquid-solid flow systems using electrical capacitancetomography (ECT). *Chemical Engineering Science*, Pergamon.Vol 56, no 22, 6455–6462.
- Wiegand, F., Hoyle and B.S.(1989). Simulations for parallel processing of ultrasoundreflection-mode tomography with applications to two-phase flow measurement. *IEEE Trans. Ultrason.Ferroelectr. Freq. Control*, Vol. 36, 652-60.
- Y. Daoye, Z. Bin, X. Chuanlong, T. Guanghua and W. Shimin, (2009). Effect of pipeline thickness on electrical capacitance tomography. *Journal of Physics: Conference Series 147, 012030.*
- L. Yang, Azzopardi, B.J., Baker, G., Belghazi, A. and Giddings, D. (2003). The approach to stratification of a dispersed liquid–liquid flow at a sudden expansion. *41st European two-phase flow group meeting*.
- W.Q.Yang, Spink, D.M., York, T.A. and McCann, H. (1999). An Image ReconstructionAlgorithm Based on Landweber's Iteration Method for Electrical Capacitance Tomography. *Meas. Sci. Technol.* Vol.10, 1065-1069.
- Z. Cao, L. Xu and H. Wang, (2009). Image reconstruction technique of electrical capacitance tomography for low-contrast dielectrics using Calderon's method. *Measurement Science and Technology*, Vol.20, 104012-104027.

- Z. Huang, B. Wang and H. Li,(2003). Application of electrical capacitance tomography to the void fraction measurement of two-phase flow. *IEEE Transactions on Instrumentation and Measurement*,52 (1), 7–12.
- Z. Lin (2003). Gas–liquid Two-phase Flow and Boiling Heat Transfer. Xi'an JiaotongUniversity Press, Xi'an, China.
- Z.Y. Huang, D. Xie, H. Zhang and H. Li.(2005). Gas-oil two-phase measurement using an electrical capacitance tomography system and a Venturimeter. *Flow Measurement and Instrumentation*, Elsevier.Vol.16, 177-182.