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ABSTRACT 
 
 

Monitoring and diagnosis of mean shifts in manufacturing processes become 

more challenging when involving two or more correlated variables.  Unfortunately, 

most of the existing multivariate statistical process control schemes are only effective 

in rapid detection but suffer high false alarm. This is referred to as imbalanced 

performance monitoring. The problem becomes more complicated when dealing with 

small mean shift particularly in identifying the causable variables. In this research, a 

scheme to enable balanced monitoring and accurate diagnosis was investigated in 

order to improve such limitations. Design considerations involved extensive 

simulation experiments to select input representation based on raw data and statistical 

features, recognizer design structure based on individual and synergistic models, and 

monitoring-diagnosis approach based on single stage and two stages techniques. The 

study focuses on correlated process mean shifts for cross correlation function, ρ = 0.1 

~ 0.9 and mean shift, μ = ± 0.75 ~ 3.00 standard deviations. Among the investigated 

designs, an Integrated Multivariate Exponentially Weighted Moving Average with 

Artificial Neural Network scheme gave superior performance, namely, average run 

lengths, ARL1 = 3.18 ~ 16.75 (for out-of-control process) and ARL0 = 452.13 (for in-

control process), and recognition accuracy, RA = 89.5 ~ 98.5%. The proposed 

scheme was validated using an industrial case study from machining process of 

audio-video device component. This research has provided a new perspective in 

realizing balanced monitoring and accurate diagnosis of correlated process mean 

shifts.  
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ABSTRAK 
 
 

Pemantauan dan diagnosis ke atas anjakan purata dalam proses pembuatan 

menjadi semakin mencabar apabila melibatkan dua atau lebih pembolehubah 

terkorelasi. Walau bagaimanapun, skema kawalan proses statistik pembolehubah 

berbilang yang sedia ada hanya berkesan bagi pemantauan secara deras tetapi 

memberikan amaran palsu yang tinggi. Ini merujuk kepada keupayaan pemantauan 

yang tidak seimbang. Masalah menjadi lebih rumit apabila melibatkan anjakan purata 

yang kecil terutama dalam mengenalpasti pembolehubah penyebab variasi. Dalam 

kajian ini, skema untuk membolehkan pemantauan seimbang dan diagnosis tepat 

telah dikaji bagi memperbaiki kelemahan tersebut. Pertimbangan rekabentuk 

melibatkan ujikaji simulasi yang mendalam bagi memilih perwakilan masuk 

berasaskan kepada data mentah dan sifat-sifat statistik, rekabentuk struktur pengecam 

berasaskan kepada model-model individu dan tergabung, serta pendekatan 

pemantauan-diagnosis berasaskan kepada teknik-teknik satu peringkat dan dua 

peringkat. Kajian ditumpukan ke atas anjakan purata proses terkorelasi pada fungsi 

korelasi rentas, ρ = 0.1 ~ 0.9 dan anjakan purata proses, μ = ± 0.75 ~ 3.00 sisihan 

piawai. Di antara rekabentuk-rekabentuk yang dikaji, skema tersepadu Purata 

Bergerak Pemberat Exponen Pembolehubah Berbilang bersama Rangkaian Neural 

Tiruan telah menghasilkan keputusan yang terbaik, iaitu, purata panjang larian, ARL1 

= 3.18 ~ 16.75 (bagi proses luar kawalan) dan ARL0 = 452.13 (bagi proses dalam 

kawalan) serta ketepatan pengecaman, RA = 89.5 ~ 98.5%. Skema yang dicadangkan 

telah diuji sah menggunakan kajian kes perindustrian di dalam proses pemesinan 

komponen peralatan audio-video. Kajian ini telah memberikan perspektif baru dalam 

merealisasikan pemantauan seimbang dan diagnosis tepat ke atas anjakan purata 

proses terkorelasi.           
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CHAPTER 1 
 
 
 
 

INTRODUCTION 
 
 
 
 
1.1 Background of the Research 
 
 

The American Society for Quality Control defines quality as the totality of 

features and characteristics of a product or service that bears on its ability to satisfy 

stated or implied needs (Johnson and Winchell, 1990). Recently, customer demand 

towards quality products has increased thoroughly in line with advances in 

communication and information technologies. Their expectation and satisfaction 

level have become more dynamic, diversifies and complex. 

 

Figure 1.1 illustrates the scenario leading to the current research issue. Based 

on engineering point of view, advances in manufacturing technology and growth in 

customer demand has become the push-pull factors that motivate manufacturers to 

focus on product miniaturization. Continuous quality improvement is implemented 

towards manufacturing smaller scale (compact), higher capability and cost effective 

products for various applications such as computer, television, hand phone, audio-

video, video-camera, among others. Production is moving towards precision 

(minimum variation, tight tolerance), minimum cost (minimum waste, rework, fault) 

and systematic decision making (computerized, intelligence system).    
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Current issue: 
The existing MSPC charting schemes mainly show: 
“imbalanced monitoring” and “lack of diagnosis” 

• Imbalanced monitoring: rapid detection of mean 
shifts but inadequate to minimize false alarms 

• Lack of diagnosis: Inaccurate identification of 
variables causing the variation for small shifts. 

Challenge:  
Joint monitoring and diagnosis for bivariate (correlated) 
process variation 

Process Requirement 

 Precision machines. 
 Advanced processing 

method. 

 Automated 
inspection. 

 Automation and 
robotics 

 

Process variation impairs 
quality characteristics 

SPC charting to monitor and diagnose the sources of variation  

Customer Demand 

 Higher expectation and satisfaction level. 
 Higher quality, lower price, timely delivery. 
 Good service.  

Product Miniaturization 

 Smaller scale 
 Higher capability 
 Various models 

Advances in Manufacturing Technology 

 Precision – tight tolerance, minimum variation. 
 Minimum cost – no waste, rework, and fault. 
 Systematic decision making – computerized and intelligence system 
 Ready for correlated variables. 

Continuous 
quality 
improvement 

Pull

Push

Figure 1.1 : Scenario leading to the current research issue 

 

Advances in manufacturing technology such as processing machines, 

material handling system, and measuring and inspection system have enabled 

automation to be applied into product manufacturing and quality control. Despite 

such advances, unnatural process variation that is unavoidable has become a major 

source of poor quality products. Process variation can be caused by tool wear and 

tear, vibration, machine breakdown, inconsistent material, and lack of experienced 

operators, among others.  
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 3

Variation in manufacturing process environment causes no parts or products 

can be produced in exactly the same size and properties. Process variation as shown 

in Figure 1.2 can be influenced from chance causes (random error) and/or assignable 

causes (systematic errors). The figure shows that from initial time t0 to period t1, 

process mean (μ0) and standard deviation (σ0) are in-control. Disturbance due to 

assignable causes can be indicated in three situations. Firstly, at time t1, an 

assignable cause may shift the process mean (μ1 > μ0) but maintain the dispersion 

(σ0). Secondly, at time t2, it may change the dispersion (σ2 > σ0) but maintain the 

mean (μ0). Thirdly, at time t3, other assignable cause may effects both process mean 

and dispersion to be out-of-control, μ3 < μ0 and σ3 > σ0. Grant and Leavenworh 

(1996) stated that lack of control usually cause the changes in process mean, while 

cause no or little changes in process dispersion.  

 

 
Figure 1.2 : Process variation (Montgomery, 2005) 

 

In order to maintain and improve the quality, effort towards minimizing 

process variation in manufacturing environment has become an important issue in 

quality control. Statistical quality engineering (SQE) tools have been developed for 

systematically reducing variability in the key process variables or quality 

characteristics of the product (Montgomery, 2005). Statistical process control (SPC) 
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 4

charting is one of the SQE tools that useful for monitoring and diagnosing process 

variation. Researches in design of SPC charting schemes focused on heuristic, 

smaller shift detection, process pattern identification and automated pattern 

recognition. Besides minimizing process variation, such advances are ultimately aim 

to minimize human intervention through computerized decision making. 

 

In the related study, many manufacturing processes involve two or more 

dependent variables, whereby an appropriate scheme is required to monitor and 

diagnose such variables jointly. In contrast, attempting to monitor such variables 

separately using univariate SPC charting scheme would increase false alarms and 

leading to wrong decision making. This joint monitoring-diagnosis concept is called 

multivariate quality control (MQC). The main challenge in MQC is the need for an 

effective MSPC charting scheme for monitoring and diagnosing of bivariate process 

variation in mean shifts. In recent years, the artificial neural network-based pattern 

recognition schemes have been developed for this purpose. Such advanced schemes 

are generally more effective in detecting process mean shifts rapidly compared to the 

traditional MSPC charting schemes such as T2, multivariate cumulative sum 

(MCUSUM) and multivariate exponentially weighted moving average (MEWMA) 

control charts. Unfortunately, it showed a limited capability to avoid false alarm 

(average run length of in-control process, ARL0 ≈ 200) as compared to the de facto 

level for univariate SPC charting schemes (ARL0 ≥ 370). In this research, this 

scenario is called “imbalanced monitoring” as illustrated in Figure 1.3. In diagnosis 

aspect, the existing schemes are also inadequate to accurately identify the sources of 

variation, particularly in dealing with small mean shifts. These situations have 

resulted in poor decision making and lead to unnecessary troubleshooting. In order to 

improve these limitations, it is necessary to investigate improved scheme towards 

“balanced monitoring” and “accurate diagnosis”. The intended scheme should be 

able to detect process mean shifts rapidly (average run length of out-of-control 

process, ARL1 ⇒ 1) with minimum false alarm (ARL0 ≥ 370) and correctly identify 

the sources of variation (recognition accuracy, RA ≥ 95%).  
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Ideal state 

Perfect balanced: able to detect process mean shifts as soon as possible (ARL1 = 1) 

without triggering any false alarm (ARL0 = ∞)  

Sensitivity in mean shift detection 
Shorter ARL1 represents faster 

detection of process mean shifts

Current state 

Imbalanced monitoring: able to detect process mean shifts rapidly (ARL1 ⇒ 1) 

but inadequate to minimize false alarm to the de facto level (ARL0 ≈ 200 << 370)  

Desired state (for this research) 

Balanced monitoring (reasonable for current practice): able to detect process mean 

shifts rapidly (ARL1 ⇒ 1) and maintain minimum false alarm to the de facto level 

(ARL0 ≥ 370)  

ARL0 ≥ 370 ARL1 ⇒ 1 

ARL1 ⇒ 1 

ARL1 = 1 ARL0 = ∞

ARL0 ≈ 200 << 370 

Capability in false alarm avoidance 
Longer ARL0 represents smaller 
false alarm 

Figure 1.3 : Current state and desired state towards balanced monitoring 
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1.2 Statement of the Problem 
 

In manufacturing industries, monitoring and diagnosis of process variation is 

necessary towards continuous quality improvement. It will be more challenging 

when involving two or more dependent variables (multivariate), whereby an 

appropriate scheme is required to perform joint monitoring and diagnosis. It is 

important that the multivariate process variation be rapidly and correctly identified 

with minimum false alarm. Failure to avoid false alarm and incorrect diagnosis 

could lead to wrong decision making. The existing multivariate pattern recognition 

schemes are mainly inadequate to fulfill these requirements. Such schemes mainly 

show imbalanced monitoring, which is only effective to detect mean shifts rapidly 

but inadequate to maintain minimum false alarm to the de facto level as for 

univariate SPC (ARL0 ≥ 370). Additionally, they are also lacking to accurately 

identify the sources of variation particularly when dealing with small mean shifts. In 

order to improve these limitations, it is necessary to investigate a scheme for 

enabling “balanced monitoring and accurate diagnosis”. 

 
 
 
 
1.3 Purpose of the Research 

 

The purpose of this research is to design, develop and test runs a scheme for 

enabling balanced monitoring and accurate diagnosis of bivariate process mean 

shifts. The desirable characteristics for the intended scheme are applicable for (i) 

bivariate process (correlated data streams) and (ii) on-line situation (dynamic data 

streams). The desirable monitoring-diagnosis performances are capable to: (i) rapidly 

detect process mean shifts (ARL1 ⇒ 1), (ii) minimize false alarms to the de facto 

level for univariate SPC charting schemes (ARL0 ≥ 370), and (iii) accurately identify 

the sources of variation in mean shifts (recognition accuracy, RA > 95%).  
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