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Abstract

In part 1 we study a class of cellular automata associated with the Kirillov-Reshetikhin

crystal Bn,1 of type D
(1)
n . They have a commuting family of time evolutions and

solitons of length l are labeled by Uq(A
(1)
n−1)-crystal B2,l

A . The scattering rule of two

solitons of lengths l1 and l2 (l1 > l2) including the phase shift is identified with the

combinatorial R-matrix for the Uq(A
(1)
n−1)-crystal B2,l2

A ⊗ B2,l1
A . In part 2 we consider

the Kirrilov-Reshetikhin crystal B6,1 for the exceptional affine type E
(1)
6 . We will

give a conjecture on a statistic-preserving bijection between the highest weight paths

consisting of B6,1 and the corresponding rigged configuration. The algorithm only uses

the structure of the crystal graph, hence could also be applied for other exceptional

types. Our B6,1 has a different algorithm compared our B1,1 because we must consider

the element �, unique element in the highest weight crystal of weight 0, in the crystal

graph. We will give many examples supporting the conjecture.
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Part I

Scattering Rules in Soliton Cellular

Automata Associated with

Uq(D
(1)
n )-Crystal Bn,1

1
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1 Introduction

The box-ball system [33, 32] well-known as soliton cellular automata is a dynamical sys-

tem of balls in a one dimensional array of boxes. The discrete KdV equation through a

limiting procedure called ultradiscretization [36] was used to show the solitonic charac-

ter like the KdV solitons. The rules for soliton interactions and factorization property

of scattering matrices (Yang-Baxter equation) are justified by means of inverse ultra-

discretization [35]. In [35] it is shown that the dynamical systems of soliton cellular

automaton is described by an ultra-discrete equation obtained from extended Toda

molecule equation. Later it was studied by [3] that the scattering of two solitons in-

cluding the phase shift is described by isomorphism from the tensor product of two

affine crystals for the quantum enveloping algebra Uq(A
(1)
n−1) to the other order of the

tensor product. The object they used is called combinatorial R-matrix [13]. The com-

binatorial R-matrix has an amazing property: it satisfies the Yang-Baxter equation,

which assures that the scattering of three solitions does not depend on the order of

scattering of the two solitons.

The new soliton cellular automata were constructed in [8] corresponding to Uq(gn)

where gn = A
(2)
2n−1, A

(2)
2n , B

(1)
n , C

(1)
n , D

(1)
n , D

(2)
n+1 and their internal degree of freedom

was labeled by crystals of the smaller algebra Uq(gn−1). Then [7] studied the scatter-

ing rule of two solitons when they collide each other. They found that the scattering

rule for affine crystals corresponding to Uq(gn) can be described by combinatorial R-

matrix of the smaller algebra Uq(gn−1). The affine crystal they used is called Kirillov-

Reshetikhin (KR) crystal denoted by B1,1. (The KR crystal is parameterized by two

integers. The first index corresponds to a node of the Dynkin diagram of the affine

algebra except 0 and the second a positive integer.) A generalization to the KR crystal

Bk,1 for g = A
(1)
n−1 was studied in [37] and their internal degree of freedom is given

by the product of Uq(A
(1)
k−1)-crystal Bk−1,l and Uq(A

(1)
n−k−1)-crystal B1,l. A case for

the exceptional algebra g = D
(3)
4 was also treated in [38]. In[38], it is shown that

the scattering rule for the crystal type Uq(D
(3)
4 ) is identified with the combinatorial

R-matrix for Uq(A
(1)
1 )-crystals and phase shifts are given by 3-times of those in the

well-known box ball system.

These results can be summarized and one might find the following conjectural

properties for the solitons and their scatterings of the soliton cellular automaton con-

structed from the KR crystal Bk,1 of the quantum affine algebra Uq(g). Let G be the

Dynkin diagram of the corresponding finite-dimensional simple Lie algebra of g. Let

Ǧ be the Dynkin diagram obtained by removing the node k from G and let j be the

node of Ǧ that is connected to k in G. Let ǧ be the corresponding affine algebra.
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∙ The internal degree of freedom of soliton of length l is described by the Uq(ǧ)-

crystal Bj,l.

∙ The exchange of the internal degree of freedom by the scattering of solitons of length

l1 and l2 (l1 > l2) is given by the crystal isomorphism Bj,l1 ⊗Bj,l2→̃Bj,l2 ⊗Bj,l1 .

∙ The phase shift of the scattering is described by the corresponding H function.

This property allows us to calculate the combinatorial R matrix for Bj,l1 ⊗ Bj,l2
just by observing the scattering of solitons in the corresponding cellular automaton.

If Ǧ is not connected, then one needs to consider the tensor product as seen in [37].

Although this conjecture seems reasonable, the rigorous proof is yet to be given.

The purpose of this paper is to add another affirmative example to this conjecture.

We take g = D
(1)
n , k = n. The corresponding node is a spin node and the KR crystal

is Bn,1. According to the above conjecture, we have ǧ = A
(1)
n−1, j = n − 2. In the

crystal theory, there is a notion of the dual crystal. The dual B∨ of a crystal B is

defined by setting (eib)
∨ = fib

∨, (fib)
∨ = eib

∨. Since we know (B1⊗B2)∨ = B∨2 ⊗B∨1
and (Bj,l)∨ = Bn−j,l for the KR crystal of type A

(1)
n−1, we can expect the following

property on our soliton cellular automaton.

∙ The internal degree of freedom of a soliton of length l is described by the Uq(A
(1)
n−1)-

crystal B2,l
A .

∙ The exchange of the internal degree of freedom by the scattering of solitons of length

l1 and l2 (l1 > l2) is given by the crystal isomorphism B2,l2
A ⊗B2,l1

A →̃B
2,l1
A ⊗B2,l2

A .

∙ The phase shift of the scattering is described by the corresponding H function.

We check these properties in this paper, thereby obtain our main theorem (Theo-

rem 3.16).

The paper is organized as follows. In Sec. 2, we recapitulate necessary facts from

the crystal theory. In Sec. 3, we construct conserved quantities. The main theorem is

given in Sec. 3, where the scattering of solitons is studied.

2 Preliminaries

In this section we review some basic definitions and facts about crystals for the

U ′q(D
(1)
n )-crystal Bn,l in Section 2.1. In order to describe the crystal graphs for

the finite-dimensional modules of quantum groups of classical type, Kashiwara and

Nakashima introduced the analogue of semi-standard tableaux, called Kashiwara-

Nakashima (KN) tableaux [16].
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2.1 Crystal Bn,1

Crystal theory was introduced by Kashiwara [12] which provides a combinatorial way to

study the representation theory of the quantum algebra Uq(g). In this paper g = D
(1)
n

is the corresponding quantum algebra. Let P be the weight lattice, {�i}0≤i≤n the sim-

ple roots, and {Λi}0≤i≤n the fundamental weights of D
(1)
n . Let Λ̄i denote the classical

part of Λi. The crystal B is a finite set with weight decomposition B = ⊔�∈PB�. The

Kashiwara operators ei, fi (i = 0, 1, ⋅ ⋅ ⋅ , n) act on B as

ei : B� −→ B�+�i
⊔ {0}, fi : B� −→ B�−�i

⊔ {0}.

These operators are nilpotent. By definition, we have fib = b′ if and only if b = eib
′.

Drawing b
i→ b′ in such case, B is endowed with the structure of colored oriented graph

called crystal grapℎ.

Let {�1, �2, ..., �n} orthonormal basis of the weight space of Dn. The simple roots

and classical parts of fundamental weights for D
(1)
n are expressed as

�0 = � − �1 − �2, �n = �n−1 + �n, �i = �i − �i+1, for i = 1, 2, ..., n− 1,

Λ̄n−1 = 1
2 (�1 + ⋅ ⋅ ⋅+ �n−1 − �n), Λ̄n = 1

2 (�1 + ⋅ ⋅ ⋅+ �n−1 + �n).

Λ̄i = �1 + �2 + ⋅ ⋅ ⋅+ �i for i = 1, 2, ..., n− 2,

We explain the Kirillov-Reshetikhin crystal Bn,l, l ∈ ℤ>0 . We set

A = {1, 2, ⋅ ⋅ ⋅ , n− 1, n, n̄, n− 1, ⋅ ⋅ ⋅ , 2̄, 1̄}. The set of letters order on

A : 1 ≺ 2 ≺ ⋅ ⋅ ⋅ ≺ n− 1 ≺ n

n̄
≺ n− 1 ≺ ⋅ ⋅ ⋅ ≺ 2̄ ≺ 1̄.

where there is no order between n and n̄. Then the crystal Bn,l is given by

Bn,1 =

⎧⎨⎩
in
...

i2

i1

∣
ip ∈ A, i1 ≺ i2 ≺ ⋅ ⋅ ⋅ ≺ in,
a, ā does not coexist for any a = 1, 2, ..., n.

There are even number of barred letters.

⎫⎬⎭ , (2.1)
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Bn,l =

⎧⎨⎩
c1 c2 ⋅ ⋅ ⋅ cl ∣ cj ∈ Bn,1, and setting cj =

cjn
...

cj2

cj1

,

where cjp ⪯ cj+1,p

for 1 ≤ p ≤ n,
1 ≤ j < l

⎫⎬⎭ .

(2.2)

The weight of b ∈ Bn,1 is given by wt b = 1
2

∑n
j=1 �j�j where

�j =

⎧⎨⎩
+1 if j exist in b,

−1 if j̄ exist in b

and that of b =
c1 c2 ⋅ ⋅ ⋅ cl ∈ Bn,l is given by wt b =

∑l
j=1 wt cj .

2.2 Crystal structure on Bn,1

For i = 0, 1, ..., n

eib =

⎧⎨⎩
b′ if wt b′ = wt b+ �i(mod ℤ�),

0 if such b′ does not exist in Bn,1,

fib =

⎧⎨⎩
b′′ if wt b′′ = wt b− �i(mod ℤ�),

0 if such b′′ does not exist in Bn,1.

Bn,1 is the crystal base [12] of the spin representation of the quantum affine algebra

U ′q(D
(1)
n ).

Example 2.1 When n = 4, the crystal graph of B4,1 is depicted as follows.
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4 3̄ 2̄ 2̄
3 4̄ 4̄ 3̄
2 2 3 4
1 1 1 1

1̄ 1̄ 1̄ 1̄
2̄ 2̄ 3̄ 4̄
3̄ 4 4 3
4̄ 3 2 2

4 2 3

1

1

324

0

0

The crystal graph of B1,1 is the same as above by interchanging the colors as 1↔ 4.

Example 2.2 When n = 5, the crystal graph of B5,1 is depicted as follows.

1

2

3 4 5

6 7 8

9 10 11

12 13 14

15

16

5

3

2 1

4 4 4

3 3

2 1

1 2

5 5 5

3

4

1 2

0

0

0

0

We give the correspondence between the numbers in the crystal graph with our rep-

resentation of crystal elements.

1 =

5

4

3

2

1

, 2 =

4̄

5̄

3

2

1

, 3 =

3̄

5̄

4

2

1

, 4 =

2̄

5̄

4

3

1

, 5 =

1̄

5̄

4

3

2

, 6 =

3̄

4̄

5

2

1

,
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7 =

2̄

4̄

5

3

1

, 8 =

1̄

4̄

5

3

2

, 9 =

2̄

3̄

5

4

1

, 10 =

1̄

3̄

5

4

2

, 11 =

1̄

2̄

5

4

3

, 12 =

2̄

3̄

4̄

5̄

1

,

13 =

1̄

3̄

4̄

5̄

2

, 14 =

1̄

2̄

4̄

5̄

3

, 15 =

1̄

2̄

3̄

5̄

4

, 16 =

1̄

2̄

3̄

4̄

5

.

Example 2.3 When n = 6, the crystal graph of B6,1 is depicted as follows.

1 2 3 4 5 6

7 8 9 10

11 12 13

32 14 15 16 17 18

19 20

21

31 22 23 24

25 26

28 27

30 29

6 4 3 2 1

5 5 5 5

3 2 1

4 4 4

2 1

6 6 6
3

3

2 1

3 3
6

6 2

1

4

4
2

61

5
5

2

2

5
3

1

4

6

3

5

0

0

0

0

4

0

0

0

0

We give the correspondence between the numbers in the crystal graph with our rep-

resentation of crystal elements.
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1 =

6

5

4

3

2

1

, 2 =

5̄

6̄

4

3

2

1

, 3 =

4̄

6̄

5

3

2

1

, 4 =

3̄

6̄

5

4

2

1

, 5 =

2̄

6̄

5

4

3

1

, 6 =

1̄

6̄

5

4

3

2

,

7 =

4̄

5̄

6

3

2

1

, 8 =

3̄

5̄

6

4

2

1

, 9 =

2̄

5̄

6

4

3

1

, 10 =

1̄

5̄

6

4

3

2

, 11 =

3̄

4̄

6

5

2

1

, 12 =

2̄

4̄

6

5

3

1

,

13 =

1̄

4̄

6

5

3

2

, 14 =

3̄

4̄

5̄

6̄

2

1

, 15 =

2̄

4̄

5̄

6̄

3

1

, 16 =

1̄

4̄

5̄

6̄

3

2

, 17 =

2̄

3̄

6

5

4

1

, 18 =

1̄

3̄

6

5

4

2

,

19 =

2̄

3̄

5̄

6̄

4

1

, 20 =

1̄

3̄

5̄

6̄

4

2

, 21 =

1̄

2̄

6

5

4

3

, 22 =

2̄

3̄

4̄

6̄

5

1

, 23 =

1̄

3̄

4̄

6̄

5

2

, 24 =

1̄

2̄

5̄

6̄

4

3

,

25 =

2̄

3̄

4̄

5̄

6

1

, 26 =

1̄

3̄

4̄

5̄

6

2

, 27 =

1̄

2̄

4̄

6̄

5

3

, 28 =

1̄

2̄

4̄

5̄

6

3

, 29 =

1̄

2̄

3̄

6̄

5

4

, 30 =

1̄

2̄

3̄

5̄

6

4

,
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31 =

1̄

2̄

3̄

4̄

6

5

, 32 =

1̄

2̄

3̄

4̄

5̄

6̄

.

Example 2.4 Consider the case n = 4.

Let c0 =

4

3

2

1

, c(1) =

3̄

4̄

2

1

, c(2) =

2̄

4̄

3

1

, c(3) =

1̄

4̄

3

2

, c(4) =

1̄

3̄

4

2

, c(5) =

1̄

2̄

4

3

.

e2(c(2)) = c(1), f2(c(2)) = 0, f0(c(2)) = 0.

Example 2.5 Consider the case n = 5.

Let c̃0 =

5

4

3

2

1

, c̃(1) =

4̄

5̄

3

2

1

, c̃(2) =

3̄

5̄

4

2

1

, c̃(3) =

2̄

5̄

4

3

1

, c̃(4) =

1̄

5̄

4

3

2

, c̃(5) =

3̄

4̄

5

2

1

.

e2(c̃(2)) = 0, f2(c̃(2)) = c̃(3), f0(c̃(2)) = 0.

2.3 Crystal structure on Bn,l

Let b ∈ Bn,l.

b =
c1 c2 ⋅ ⋅ ⋅ cl , cj ∈ Bn,1 (2.3)

The actions of ei, fi for i ∕= 0 can be calculated by using the rule called

signature rule. For b ∈ Bn,l we associate an element cl ⊗ cl−1 ⊗ ⋅ ⋅ ⋅ ⊗ c2 ⊗ c1 of

the tensor product (Bn,1)⊗l to find the indices j, j′ such that

9
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ei(cl ⊗ cl−1 ⊗ ⋅ ⋅ ⋅ ⊗ c2 ⊗ c1) = cl ⊗ cl−1 ⊗ ⋅ ⋅ ⋅ ⊗ eicj ⊗ ⋅ ⋅ ⋅ ⊗ c2 ⊗ c1 (2.4)

fi(cl ⊗ cl−1 ⊗ ⋅ ⋅ ⋅ ⊗ c2 ⊗ c1) = cl ⊗ cl−1 ⊗ ⋅ ⋅ ⋅ ⊗ ficj′ ⊗ ⋅ ⋅ ⋅ ⊗ c2 ⊗ c1 (2.5)

With this element we associate an i-signature : −...−︸ ︷︷ ︸
"i(cl)

+...+︸ ︷︷ ︸
'i(cl)

−...−︸ ︷︷ ︸
"i(cl−1)

+...+︸ ︷︷ ︸
'i(cl−1)

... −...−︸ ︷︷ ︸
"i(c1)

+...+︸ ︷︷ ︸
'i(c1)

.

We then reduce the signature by deleting the adjacent +− pair successively. Even-

tually we obtain a reduced signature of the following form.

−− ⋅ ⋅ ⋅ −+ + ⋅ ⋅ ⋅+

Then the action ei (resp. fi) corresponds to changing the rightmost − to

+ (resp. leftmost + to −). If there is no − (resp. +) in the signature, then the

action of ei (resp. fi) should be set to 0. The value of "i(b) (resp. 'i(b)) is given by

the number of −(resp. +) in the reduced signature.

Example 2.6 Since the signature rule enables us to calculate the multiple tensor prod-

uct of Bn,l’s, we consider B4,4 ⊗B4,3 ⊗B4,2. Let c(j)(j = 1, ..., 5) as in Example 2.4.

Consider an element b = (c0 c
(1)c(1)c(2))⊗ (c0 c0 c

(1))⊗ (c(1)c(3)) ∈ B4,4 ⊗B4,3 ⊗
B4,2. The 4-signature is given as follows

b = (c(2) ⊗ c(1) ⊗ c(1) ⊗ c0)⊗ (c(1) ⊗ c0 ⊗ c0)⊗ (c(3) ⊗ c(1))
�4 = − − + − + + −

2 3 6

The reduced signature is �4 = − − +, where the upper number signifies the component

of the tensor product the sign belonged to. Therefore, we have

e4b = (c(2) ⊗ c(1) ⊗ e4(c(1)) ⊗ c0) ⊗ (c(1) ⊗ c0 ⊗ c0) ⊗ (c(3) ⊗ c(1)) = (c0 c0 c
(1)c(2)) ⊗

(c0 c0 c
(1))⊗ (c(1)c(3))

f4b = (c(2) ⊗ c(1) ⊗ c(1) ⊗ c0)⊗ (c(1) ⊗ f4(c0)⊗ c0)⊗ (c(3) ⊗ c(1)) = (c0 c
(1)c(1)c(2))⊗

(c0 c
(1)c(1))⊗ (c(1)c(3))
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Example 2.7 Since the signature rule enables us to calculate the multiple tensor prod-

uct of Bn,l’s, we consider B4,4 ⊗B4,3 ⊗B4,2. Let c̃(j)(j = 1, ..., 5) as in Example 2.5.

Consider an element b′ = (c̃0 c̃
(1)c̃(1)c̃(2))⊗ (c̃0 c̃0 c̃

(1))⊗ (c̃(1)c̃(3)) ∈ B4,4 ⊗B4,3 ⊗
B4,2. The 5-signature is given as follows

b′ = (c̃(2) ⊗ c̃(1) ⊗ c̃(1) ⊗ c̃0)⊗ (c̃(1) ⊗ c̃0 ⊗ c̃0)⊗ (c̃(3) ⊗ c̃(1))
�5 = − − + − + + −

2 3 6

The reduced signature is �5 = − − +, where the upper number signifies the component

of the tensor product the sign belonged to. Therefore, we have

e5b
′ = (c̃(2) ⊗ c̃(1) ⊗ e4(c̃(1))⊗ c̃0)⊗ (c̃(1) ⊗ c̃0 ⊗ c̃0)⊗ (c̃(3) ⊗ c̃(1)) = (c̃0 c̃0 c̃

(1)c̃(2))⊗
(c̃0 c̃0 c̃

(1))⊗ (c̃(1)c̃(3))

f5b
′ = (c̃(2) ⊗ c̃(1) ⊗ c̃(1) ⊗ c̃0)⊗ (c̃(1) ⊗ f4(c̃0)⊗ c̃0)⊗ (c̃(3) ⊗ c̃(1)) = (c̃0 c̃

(1)c̃(1)c̃(2))⊗
(c̃0 c̃

(1)c̃(1))⊗ (c̃(1)c̃(3))

2.4 Bn,l and Bn−1,l of type D
(1)
n

We give an affine crystal action on Bn,l. To do this we need Bn−1,l of type D
(1)
n . Bn,l

and Bn−1,l are associated to the spin nodes in the Dynkin diagram. As {1, 2, ..., n}-
crystals we have the isomorphisms

Bn,l ∼= B(lΛn), Bn−1,l ∼= B(lΛn−1). (2.6)

To define the affine crystal action, we introduce an involution � : Bn,l ↔ Bn−1,l

corresponding to the Dynkin diagram automorphism that interchanges the nodes n to

n − 1. Let J = {2, 3, ..., n}. J is the J-highest if and only if eib = 0 for every i ∈ J .

By definition in [2], � is required to commute with ei, fi(i ∈ J). Hence it sufficies to

define � on J-highest elements in Bn,l and all of the form of the LHS of (2.7) with

some a, and mapped by � as

� :

n ⋅ ⋅ ⋅n
...

2 ⋅ ⋅ ⋅ 2
1 ⋅ ⋅ ⋅ 1︸ ︷︷ ︸
a

1̄ ⋅ ⋅ ⋅ 1̄
n̄ ⋅ ⋅ ⋅ n̄

...

2 ⋅ ⋅ ⋅ 2︸ ︷︷ ︸
l−a

←→

n̄ ⋅ ⋅ ⋅ n̄
...

2 ⋅ ⋅ ⋅ 2
1 ⋅ ⋅ ⋅ 1︸ ︷︷ ︸
l−a

1̄ ⋅ ⋅ ⋅ 1̄
n ⋅ ⋅ ⋅n

...

2 ⋅ ⋅ ⋅ 2︸ ︷︷ ︸
a

(2.7)
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Example 2.8 When n = 4, the crystal graph of B3,1 of type D
(1)
4 is depicted as

follows.

4̄ 3̄ 2̄ 1̄
3 4 4 4
2 2 3 3
1 1 1 2

1̄ 1̄ 1̄ 2̄
2̄ 2̄ 3̄ 3̄
3̄ 4̄ 4̄ 4̄
4 3 2 1

3 2 1

4

4

123

0

0

Definition 2.9 The action e0 and f0 on Bn,l is given by

e0 = � ∘ e1 ∘ �, f0 = � ∘ f1 ∘ �.

Example 2.10 Consider the case Bn,l’s, where n = 4 and l = 5. Let c(j) (j = 1, ..., 5)

as in Example 2.4.

Consider an element b = (c0 c0 c0 c
(3)c(3)) ∈ B4,5. We are to calculate e0b.

�(b) =

4̄ 4̄

3 3

2 2

1 1

1̄ 1̄ 1̄

4 4 4

3 3 3

2 2 2

(2.8)

e1

4̄ 4̄

3 3

2 2

1 1

1̄ 1̄ 1̄

4 4 4

3 3 3

2 2 2

=

4̄ 4̄

3 3

2 2

1 1

2̄ 1̄ 1̄

4 4 4

3 3 3

1 2 2

(2.9)

f1

4̄ 4̄

3 3

2 2

1 1

1̄ 1̄ 1̄

4 4 4

3 3 3

2 2 2

= 0 (2.10)

But, � is required to commute with ei, fi(i ∈ J). Then we apply e3e2 to get the

J-highest.
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e3e2

4̄ 4̄

3 3

2 2

1 1

2̄ 1̄ 1̄

4 4 4

3 3 3

1 2 2

=

4̄ 4̄

3 3

2 2

1 1

4̄ 1̄ 1̄

3 4 4

2 3 3

1 2 2

= b′. (2.11)

Since �(f2f3(b′)) = f2f3�(b′) and �(b′) =

4 4

3 3

2 2

1 1

1̄ 1̄ 1̄

4̄ 4̄ 4̄

3 3 3

2 2 2

,

e0b = f2f3�(b′) = f2f3

4 4

3 3

2 2

1 1

1̄ 1̄ 1̄

4̄ 4̄ 4̄

3 3 3

2 2 2

=

4 4

3 3

2 2

1 1

1̄ 1̄ 1̄

4̄ 4̄ 2̄

3 3 4

2 2 3

.

f0b = 0.

2.5 Energy function

Next consider a ℤ-valued function H on B⊗B′ satisfying the following property: For

any b ∈ B, b′ ∈ B′ and i such that ei(b⊗ b′) ∕= 0

H(ei(b⊗ b′)) =

⎧⎨⎩
H(b⊗ b′) + 1 if i = 0 , '0(b) ≥ "0(b′), '0(b̃′) ≥ "0(b̃),

H(b⊗ b′)− 1 if i = 0 , '0(b) < "0(b′), '0(b̃′) < "0(b̃),

H(b⊗ b′) otherwise.

H is known to exist and unique up to additive constant. b̃ and b̃′ are defined from the

combinatorial R matrix by R(b⊗ b′) = b̃′ ⊗ b̃. The existences of the isomorphism and

energy function H are guaranteed by the existence of the R matrix. See Ref [13].

Note that we normalized H so that we have H((c0)l⊗ (c0)l
′
) = 0. Here and later, (c0)l

means c0 ⋅ ⋅ ⋅ c0︸ ︷︷ ︸
l

∈ Bn,l.

Definition 2.11 A combinatorial R matrix for the crystal Bn,s ⊗Bn,t is a map

R : Bn,s ⊗Bn,t → Bn,t ⊗Bn,s

satisfying

(1) R ∘ ei = ei ∘R, R ∘ fi = fi ∘R for i = 1, ..., n, and
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(2)

R

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

s︷ ︸︸ ︷
c0 ⋅ ⋅ ⋅ c0 ⊗

t0︷ ︸︸ ︷
c0 ⋅ ⋅ ⋅ c0

t1︷ ︸︸ ︷
c1 ⋅ ⋅ ⋅ c1

t2︷ ︸︸ ︷
c2 ⋅ ⋅ ⋅ c2 ⋅ ⋅ ⋅

tn′︷ ︸︸ ︷
cn′ ⋅ ⋅ ⋅ cn

′

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
(2.12)

=

t︷ ︸︸ ︷
c0 ⋅ ⋅ ⋅ c0 ⊗

s′︷ ︸︸ ︷
c0 ⋅ ⋅ ⋅ c0

t1︷ ︸︸ ︷
c1 ⋅ ⋅ ⋅ c1

t2︷ ︸︸ ︷
c2 ⋅ ⋅ ⋅ c2 ⋅ ⋅ ⋅

tn′︷ ︸︸ ︷
cn′ ⋅ ⋅ ⋅ cn

′
(2.13)

where c0 =

n

n− 1

n− 2

n− 3

.

.

.

1

, c1 =

n− 1

n̄

n− 2

n− 3

.

.

.

1

, c2 =

n− 3

n− 2

n− 1

n̄

.

.

.

1

, ⋅ ⋅ ⋅

cn′ =

2̄

3̄

.

.

.

n̄

1

(if n is an odd number), cn′ =

1̄

2̄

3̄

.

.

.

n̄

(if n is an even number),

n′ = [n2 ] and t1 + t2 + ⋅ ⋅ ⋅+ tn′ ≤ s, s′ = s− (t1 + t2 + ⋅ ⋅ ⋅+ tn′).

We explain how to calculate R(b) for a general element b. Let b
ea1−→ b1

ea2−→
b2 ⋅ ⋅ ⋅ bm−2

eam−1−→ bm−1
eam−→ b̃, where ei(b̃) = 0 for every i ∕= 0. Namely, b̃ is of the

form
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b =

s︷ ︸︸ ︷
c0 ⋅ ⋅ ⋅ c0 ⊗

t0︷ ︸︸ ︷
c0 ⋅ ⋅ ⋅ c0

t1︷ ︸︸ ︷
c1 ⋅ ⋅ ⋅ c1

t2︷ ︸︸ ︷
c2 ⋅ ⋅ ⋅ c2 ⋅ ⋅ ⋅

tn′︷ ︸︸ ︷
cn′ ⋅ ⋅ ⋅ cn

′

R(b) = R(fa1 ⋅ ⋅ ⋅ fam b̃) = fa1 ⋅ ⋅ ⋅ famR(b̃).

Example 2.12

Set b =

3̄ 3̄ 1̄

4̄ 4̄ 3̄

2 2 4

1 1 2

⊗

2̄ 2̄

4̄ 3̄

3 4

1 1

and we calculate R(b).

b̃ = e4e2
3e4

2e3
2e1b =

4 4 4

3 3 3

2 2 2

1 1 1

⊗

3̄ 3̄

4̄ 4̄

2 2

1 1

and R(b̃) =

4 4

3 3

2 2

1 1

⊗

4 3̄ 3̄

3 4̄ 4̄

2 2 2

1 1 1

.

Since f1f3
2f4

2f2
3f4R(b̃) =

3̄ 3̄

4̄ 4̄

2 2

1 1

⊗

2̄ 2̄ 1̄

4̄ 3̄ 3̄

3 4 4

1 1 2

,

we have R

⎛⎜⎜⎜⎝
3̄ 3̄ 1̄

4̄ 4̄ 3̄

2 2 4

1 1 2

⊗

2̄ 2̄

4̄ 3̄

3 4

1 1

⎞⎟⎟⎟⎠ =

3̄ 3̄

4̄ 4̄

2 2

1 1

⊗

2̄ 2̄ 1̄

4̄ 3̄ 3̄

3 4 4

1 1 2

.

Lemma 2.13 We give all the images of the isomorphism Bn,l ⊗ Bn,1 ≃ Bn,1 ⊗ Bn,l

that will be needed in the next section. Let the symbol

�
�

�′
�′

signify �⊗ � 7→ �′ ⊗ �′ under the isomorphism. We also set
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ca =

n− 1

n̄

n− 2

.

.

.

2

1

, cb =

n− 2

n̄

n− 1

.

.

.

2

1

, cd =

n− 3

n− 2

n

.

.

.

2

1

, ce =

n− 3

n− 1

n

.

.

.

2

1

, cf =

n− 3

n− 2

n− 1

n̄

.

.

.

1

and c0 is the column of height n without barred letters.

We list up the cases as below where i, j, k, l,m, p ∈ ℤ≥0.

Case 1.

(i) m > 0 (ii) l > 0

ci0c
j
ac
k
b c
l
dc
m
f ci0c

j
ac
k
b c
l
d

c0 c0

cf cd

ci+1
0 cjac

k
b c
l
dc
m−1
f ci+1

0 cjac
k
b c
l−1
d

(iii) k > 0 (iv) j > 0 (v) i > 0

ci0c
j
ac
k
b ci0c

j
a ci0

c0 c0 c0

cb ca c0

ci+1
0 cjac

k−1
b ci+1

0 cj−1a ci0

Case 2.

(i) i > 0, m > 0 (ii) m > 0

ci0c
j
ac
k
b c
l
dc
m
f cjac

k
b c
l
dc
m
f

ca ca

ca cf

ci−10 cj+1
a ckb c

l+1
d cm−1f cj+1

a ckb c
l
dc
m−1
f

(iii) i > 0 (iv) l > 0

ci0c
j
ac
k
b c
l
d cjac

k
b c
l
d

ca ca

c0 cd
ci−10 cj+1

a ckb c
l
d cj+1

a ckb c
l−1
d

(v) k > 0 (vi) j > 0

cjac
k
b cja

ca ca

cb ca

cj+1
a ck−1b cja

Case 3.
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(i) j > 0, l > 0 (ii) j > 0

ci0c
j
ac
k
b c
l
dc
m
f ci0c

j
ac
k
b c
p
ec
m
f

cb cb

cb ca
ci0c

j−1
a ck+1

b cl−1d cec
m
f ci0c

j−1
a ck+1

b cpec
m
f

(iii) p > 0 (iv) i > 0

ci0c
k
b c
l
dc
p
ec
m
f ci0c

k
b c
p
ec
m
f

cb cb

ce ca
ci0c

k+1
b cldc

p−1
e cmf ci−10 ck+1

b cdc
p
e

(v) m > 0, i > 0 (vi) l > 0

ci0c
k
b c
l
dc
m
f ckb c

p
ec
l
d

cb cb

ca cd

ci−10 ck+1
b cl+1

d cm−1f ck+1
b cpec

l−1
d

(vii) m > 0 (viii) i > 0

ckb c
l
dc
m
f ci0c

k
b c
l
d

cb cb

cf c0
ck+1
b cldc

m−1
f ci−10 ck+1

b cld

(ix) p > 0 (x) l > 0 (xi) k > 0

ckb c
p
e ckb c

l
d ckb

cb cb cb

ce cd cb
ck+1
b cp−1e ck+1

b cl−1d ckb

Case 4.

(i) j > 0, l > 0 (ii) j > 0, k > 0

ci0c
j
ac
k
b c
l
dc
m
f ci0c

j
ac
k
b c
m
f

cd cd

cd cb

ci+1
0 cj−1a ckb c

l−1
d cm+1

f ci+1
0 cj−1a ck−1b cm+1

f

(iii) k > 0 (iv) j > 0

ci0c
k
b c
l
dc
m
f ci0c

j
ac
m
f

cd cd

cb ca
ci0c

k−1
b cl+1

d cmf ci+1
0 cj−2a cm+1

f

(v) i > 0, j > 0, m > 0. (vi) k > 0

ci0c
l
dc
m
f ci0c

k
b c
m
f

cd cd

ca cb

ci−10 cj−1a c3dc
m−1
f ci0c

k−1
b cdc

m
f

(vii) i > 0, m > 0 (viii) l > 0, j > 0 (ix) i > 0
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ci0c
l
dc
m
f ci0c

j
ac
l
d ci0c

l
d

cd cd cd

ca cd c0

ci−10 cl+2
d cm−1f ci+1

0 cj−1a cl−1d cf ci−10 cl+1
d

(x) j > 0, l > 0 (xi) i > 0, m > 0 (xii) j > 0

cjac
l
dc
m
f ci0c

m
f ci0cac

m
f

cd cd cd

cd ca ca

ci0c
j−1
a cl−1d cm+1

f ci−10 c2dc
m−1
f ci0cdc

m
f

(xiii) i > 0, m > 0 (ivx) m > 0 (ix) l > 0

ci0c
l
dc
m
f cldc

m
f cld

cd cd cd

ca cf cd

ci−10 cl+2
d cm−1f cl+1

d cm−1f cld

Case 5.

(i) i > 0 (ii) l > 0

ci0c
j
ac
k
b c
l
dc
m
f cjac

k
b c
l
dc
m
f

cf cf

c0 cd

ci−10 cjac
k
b c
l
dc
m+1
f cjac

k
b c
l−1
d cm+1

f

(iii) k > 0 (iv) j > 0 (v) m > 0

cjac
k
b c
m
f cjac

m
f

cmf

cf cf cf

cb ca cf
cjac

k−1
b cm+1

f cj−1a cm+1
f

cmf

Proof for Case 1 where k > 0.

(ckb ⊗ cja ⊗ ci0) ⊗ c0
ekn−2−→ (cj+ka ⊗ ci0) ⊗ c0

ej+k
n−→ ci+j+k0 ⊗ c0. Reform ci+j+k0 ⊗ c0 to

c0⊗(c0⊗ci+j+k0 ). Then c0⊗ci+j+k0

fj+k
n−→ ca⊗(cj+k−1a ⊗ci+1

0 )
fk
n−2−→ cb⊗(ck−1b ⊗cja⊗ci+1

0 ).

Hence R(ci0c
j
ac
k
b ⊗ c0) = cb ⊗ ci+1

0 cjac
k−1
b .

Definition 2.14 A combinatorial R matrix for the crystal B ⊗ B′ is a map R :

Aff(B)⊗Aff(B′)→ Aff(B′)⊗Aff(B) given by

R(zdb⊗ zd
′
b′) = zd

′+H(b⊗b′)b̃′ ⊗ zd−H(b⊗b′)b̃

where b⊗ b′ 7→ b̃′ ⊗ b̃ under the isomorphism B ⊗ B′ ∼→ B′ ⊗ B. The following result

is a direct consequence of the ordinary (i.e. not combinatorial) Yang-Baxter equation.
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2.6 Yang-Baxter equation

Let us define the affinization Aff(B) of the crystal B. We introduce an indeterminate

z ( the spectral parameter) and set

Aff(B) = {zdb ∣d ∈ ℤ, b ∈ B}.

Thus Aff(B) is an infinite set. z0b ∈Aff(B) will often be written as b. Aff(B) also

admits the crystal structure by ei.z
db = zd+�i0(eib), fi.z

db = zd−�i0(fib).

Proposition 2.15 (Yang-Baxter equation). Let Bn,l = Bl. The following equation

hold on Aff(Bl)⊗Aff(Bl′)⊗Aff(Bl′′).

(R⊗ 1)(1⊗R)(R⊗ 1) = (1⊗R)(R⊗ 1)(1⊗R).

3 Soliton cellular automata

3.1 States and time evolutions.

Consider the crystal (Bn,1)⊗N for sufficiently large N . The elements of (Bn,1)⊗N we

have in mind are of the following form:

⋅ ⋅ ⋅ ⊗ c0 ⊗ ⋅ ⋅ ⋅ ⊗ c0 ⊗ c1 ⊗ ⋅ ⋅ ⋅ ⊗ cl ⊗ c0 ⊗ ⋅ ⋅ ⋅ ⊗ c0 ⊗ ⋅ ⋅ ⋅ ,

Namely, relatively few elements are non c0, and almost all are c0. In the assertions

below, we embed, if necessary, (Bn,1)⊗N into (Bn,1)⊗N
′
(N < N ′) by

(Bn,1)⊗N ↪→ (Bn,1)⊗N
′
,

b1 ⊗ ⋅ ⋅ ⋅ ⊗ bN 7→ b1 ⊗ ⋅ ⋅ ⋅ ⊗ bN ⊗ c0 ⊗ ⋅ ⋅ ⋅ ⊗ c0︸ ︷︷ ︸
N ′−N

.

Lemma 3.1 By iterating Bn,l ⊗Bn,1 → Bn,1 ⊗Bn,l we consider a map

Bn,l ⊗Bn,1 ⊗ ⋅ ⋅ ⋅ ⊗Bn,1 ∼−→ Bn,1 ⊗ ⋅ ⋅ ⋅ ⊗Bn,1 ⊗Bn,l,

(c0)l ⊗ b1 ⊗ ⋅ ⋅ ⋅ ⊗ bN 7→ b̃1 ⊗ ⋅ ⋅ ⋅ ⊗ b̃N ⊗ b̃,

then there exists an integer N0 such that b̃ = (c0)l for N ≥ N0.
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Taking sufficiently large N such that the above lemma holds, we define a map

Tl : (Bn,1)⊗N −→ (Bn,1)⊗N by b1 ⊗ ⋅ ⋅ ⋅ ⊗ bN 7→ b̃1 ⊗ ⋅ ⋅ ⋅ ⊗ b̃N .

Lemma 3.2 For a fixed element of (Bn,1)⊗N as a Lemma 3.1, there exists an integer

l0 such that Tl = Tl0 for any l ≥ l0.

Both lemmas are obvious from Lemma 2.13.

An element of (Bn,1)⊗N having the property described in the beginning of this

subsection will be called a state. Lemma 3.1 and Lemma 3.2 enable us to define an

operator T = liml→∞ Tl on the space of states. Application of T induces a transition

of state. Thus it can be regarded as a certain dynamical system, in which T plays the

role of ’time evolution’. By the same reason, Tl may also be viewed as another time

evolution. (In this paper, time evolution means the one by T unless otherwise stated.)

3.2 Conservation laws

Fix sufficiently large N and consider a composition of the combinatorial R matrices

Rl = RNN+1 ⋅ ⋅ ⋅R23R12 : Aff(Bn,l)⊗Aff(Bn,1)⊗N → Aff(Bn,1)⊗N⊗Aff(Bn,l).

Here Rii+1 signifies that the R matrix acts on the i-th and (i + 1)-th components

of the tensor product. Applying Rl to an element (c0)l⊗p (p = b1⊗⋅ ⋅ ⋅⊗ bN ), we have

Rl((c0)l ⊗ p) = zH1 b̃1 ⊗ zH2 b̃2 ⊗ ⋅ ⋅ ⋅ ⊗ zHN b̃N ⊗ zẼl(p)(c0)l,

Ẽl(p) = −
∑N
j=1Hj , Hj = H(b(j−1) ⊗ bj),

where b(0) = (c0)l and b(j) (1 ≤ j < N) is defined by

Bn,l ⊗Bn,1 ⊗ ⋅ ⋅ ⋅ ⊗Bn,1︸ ︷︷ ︸
j

≃ Bn,1 ⊗ ⋅ ⋅ ⋅ ⊗Bn,1︸ ︷︷ ︸
j

⊗Bn,l,

(c0)l ⊗ b1 ⊗ ⋅ ⋅ ⋅ ⊗ bj 7→ b̃1 ⊗ ⋅ ⋅ ⋅ ⊗ b̃j ⊗ b(j).

Lemma 3.3 Let H be the energy function and −Hj = −H(b(j−1)⊗bj) ∈ {0, 1, 2, ..., n′}.
Then b(j−1)⊗ bj commute with ei, fi until it will get in form ci0c

l
d⊗ cd 7→ c0⊗ ci−10 cl+1

d .

as in Case 4 in Lemma 2.13. Then by using the rule in [24] we will get −Hj = 1 if

and only if ci0c
l
d ⊗ cd 7→ c0 ⊗ ci−10 cl+1

d .

Proof. Use the definition of energy function in [31] to prove it directly.
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Proposition 3.4 For an element p ∈ (Bn,1)⊗N , we have

(1) TlTl′(p) = Tl′Tl(p).

(2) El(Tl′(p)) = El(p). In particular, El(T (p)) = El(p).

We refer to [3] for the proof.

3.3 Soliton

A state of the following form is called an m soliton state of length l1, l2, ..., lm,

...[l1]........[l2]..... ⋅ ⋅ ⋅ .....[lm]......... (3.1)

Here ⋅ ⋅ ⋅ [l] ⋅ ⋅ ⋅ denotes a local configuration such as

⋅ ⋅ ⋅ ⊗ c0 ⊗ c0 ⊗ cl ⊗ cl−1 ⊗ ⋅ ⋅ ⋅ ⊗ c1︸ ︷︷ ︸
l

⊗c0 ⊗ c0 ⊗ ⋅ ⋅ ⋅ , (c0 ⪯ c1 ⪯ c2 ⪯ ⋅ ⋅ ⋅ ⪯ cl)

where c0 means column without barred letter and cj ∈ Bn,1 with exactly two barred

letters. That means we cannot form the soliton as above when the number of barred

letter is more than two. c ⪯ c′ if and only if aj (j-th entry of c), aj ⪯ a′j for all

j = 1, 2, ..., n.

Remark. It would be an interesting problem to consider color separation scheme

in [[34]: §4.7 ]. A reasonable choice of B♮ such as Bn−1,1 or Bn−2,1 seems to fail for

n = 4.

Lemma 3.5 Let p be a one-soliton state of length l, then

(1) The kth conserved quantity of p is given by Ek(p) = min(k, l).

(2) The state Tk(p) is obtained by the rightward shift by Ek(p) lattice steps.

Proof . (1) Recall that the conserved quantity Ek is a sum of local H functions

−Hj = −H(b(j−1) ⊗ bj). b(j−1) ⊗ bj 7→ b̃j ⊗ b(j) commutes with fi(i ∈ 1, 2, ..., n − 1)

until we will get the lowest weight where fib = 0 for any i ∈ {1, 2, ..., n− 1}. Then we

apply f0, e0 and we will get (c0)k ⊗ c0 7→ c0 ⊗ (c0)k. By using Lemma 3.3, −Hj = 1 if

and only if (c0)icld ⊗ cd 7→ c0 ⊗ (c0)i−1cl+1
d . Ek(p) is the sum of the local −Hj = 1 in

the tensor product in Bn,l. Hence Ek=min(k, l). Similarly, the statement (2) follows

from the rule (2.3) and Lemma 3.1.

Definition 3.6 For any state p, the number Nl = Nl(p) (l = 1, 2, ...) are defined by

El =
∑
k≥1min(k, l)Nk, E0 = 0, Ni = −El−1 + 2El − El+1.
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By Lemma 3.5, we have

Proposition 3.7 For m-soliton state (3.1), Nl is the number of solitons of length l,

Nl = #{j∣lj = l}.

This proposition implies the stability of solitons, since the number El(p), and hence

Nl(p), are conserved.

3.4 Type A Br,s

In this subsection, we recall the crystal structure of Br,s for arbitrary r, s and the

combinatorial R for Br,s ⊗ Br′,s′ . Our reference is [31]. We use the French notation

for semistandard tableau, which is upside-down from [31]

Our U ′q(A
(1)
n−1)-crystal Br,s (1 ≤ r ≤ n− 1, s ∈ ℤ>0) is as a set, identified with the

set of semistandard tableau of rectangular shape (sr) with letters from {1, 2, ..., n}.
For an element t of Br,s, let tij denote the letter in the i-th row from bottom and

j-th column of t. We first describe the action of ei, fi for i = 1, 2, ..., n − 1. For this

purpose, let us define the Japanese reading word of t by

J(t) = w(1)w(2) ⋅ ⋅ ⋅w(s), w(j) = t1jt2j ⋅ ⋅ ⋅ trj (j = 1, 2, ..., s).

We then regard J(t) as an element of (B1,1)⊗(rs). Namely, each letter is considered to

be an element of B1,1.

The bumping algorithm is defined for a pair of tableau t and single word u and de-

picted as t← u. First, let us consider the case where t is one-row tableau. If t is empty,

t ← u is defined to be the tableau u with one node. Otherwise, let t = t11t12 ⋅ ⋅ ⋅ t1m
and look at

t11t12 ⋅ ⋅ ⋅ t1m ← u.

If t1m ≤ u, then define

t← u = t11t12 ⋅ ⋅ ⋅ t1mu

and the algorithm stops (case (a)). Otherwise, set i1 = min{i ∣t1i > u} and de-

fine
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t← u = t11 ⋅ ⋅ ⋅ t1i1−1ut1i1+1 ⋅ ⋅ ⋅ t1m

and we have the single word t1i1 bumped out from t (case (b)). Now suppose we

have a tableau t of l rows and let ti be the i-th row of t. The bumping algorithm

t ← u proceeds as follows. Set t′1 = t1 ← u. If case (a) occurs, the algorithm stops.

Otherwise, let u1 be the letter bumped out and set t′2 = t2 ← u1. We again devide

the algorithm into the two cases. The algorithm proceeds until it stops. If case (b)

still occurs in the highest row, we append the empty row above it.

Example 3.8 Let

t =
23444

11122

and u = 1. The bumping algorithm proceeds as follows.

23444

11122 ← 1

23444 ← 2

11112

And we have the answer.
3

22444

11112

Example 3.9 Let

t =
24555

11334

and u = 2. The bumping algorithm proceeds as follows.

24555

11334 ← 2

24555 ← 3

11234

And we have the answer.
4

23555

11234

For a tableau t ∈ Br,s we define the row word row t by

row(t) = trtr−1 ⋅ ⋅ ⋅ t1 ti = ti1ti2 ⋅ ⋅ ⋅ tis (i = 1, 2, ..., r).
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Let t be a tableau and w = u1u2 ⋅ ⋅ ⋅ul a word of length l. Let t ← w be a tableau

obtained by applying the bumping algorithm for a single word uj successively as

(⋅ ⋅ ⋅ ((t← u1)← u2)← ⋅ ⋅ ⋅ )← ul.

Then we have the following proposition to obtain the combinatorial R for Br,s⊗Br,m.

Proposition 3.10 [31] Assume t ∈ Br,m and t′ ∈ Br,s. Then t′⊗ t is mapped to t̃⊗ t̃′

by the crystal isomorphism

Br,s ⊗Br,m −→ Br,m ⊗Br,s if and only if t← row(t′) = t̃′ ← row(t̃).

Moreover, the energy function H(t′ ⊗ t) is given by the number of nodes in the

shape of t← row(t′) that are strictly north of the r-th row.

Note that the decomposition of Br,s ⊗Br,m into Uq(A
(1)
n−1)-crystals is multiplicity

free. From this fact, it follows that for a given pair t′⊗t we can determine t̃, t̃′ uniquely.

To explain the algorithm of computing t̃, t̃′ we prepare terminology. Let � be a skew

tableau, that is, set-theoretical difference of a Young diagram from a smaller one with

letters in each node. Let � be the shape of �. � is called a vertical k-strip if ∣� ∣ = k

and �i ≤ 1 for any i ≥ 1. The algorithm to obtain t̃, t̃′ is given as follows. Let p be the

tableau obtained by the bumping algorithm t ← row(t′). We attach an integer from

1 to rm to each node of the skew tableau p − p′, where p′ is the NE part of p whose

shape is (sr). The integer should be labeled in the following manner. Let �1 be the

rightmost vertical r-strip in p− p′ as lower as possible. We attach integers 1 through

r from lower nodes. Remove �1 from p− p′ and define the vertical r-strip �2 in similar

manner. Continue it until we finish attaching all integers up to rm. Next we apply

the reverse bumping algorithm according to the order of the labeling. Namely we find

a word u1 and a tableau p1 whose shape is (shape of p)-(node of label 1), such that

p1 ← u1 = p. (Note that such a pair p1, u1) is unique.) We repeat this procedure to

obtain u2 and p2 by replacing p and the node of label 1 with p1 and the node of label

2 and continue until we arrive at a tableau of shape (sr). Then we have

t̃ = ((⋅ ⋅ ⋅ (�← urm)← ⋅ ⋅ ⋅ )← u2)← u1 and t̃′ = prm.

Note that in [31], the energy function H(t′ ⊗ t) is given by the number of nodes in

the shape of t′ ← row(t) that are strictly east of the max(m, s)-th column.

We introduce � as a map sending an element b of the U ′q(D
(1)
n )-crystal Bn,l to

�b in the U ′q(A
(1)
n−1)-crystal B2,l

A . The operator � will change D
(1)
n to A

(1)
n−1 as a set,
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