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Abstract 

This thesis presented the design of an adaptive bearnforming antenna using a 

rear defogger. The main purpose of this project is to develop the vehicular adaptive 

antenna for VHF band, which does not require the installation space, does not spoil the 

industrial design, has low cost and low power consumption. In land communication, 

there is no clear line of sight between transmitter and receiver. The transmitted signal 

might be reflected, refracted because of the building or terrain. The receiver might 

receive a delayed, or reflected signal instead of the original signal. Adaptive antenna is 

the best candidate to mitigate the multipath fading effects. However, for VHF band, 

conventional adaptive antenna has a drawback of a large aperture size. Therefore, in this 

paper a rear defogger is proposed as an aperture to overcome the size problem of using a 

conventional adaptive antenna. A rear defogger of a vehicle can be used as an aperture, 
' 7 - 3  

and in order to make it compatible with ESPAR antenna, several ports have been 
1 1, 

provided. One port is used as an active port or output port, while other ports are 

connected to the variable reactor. Downhill simplex method is used as an algorithm to 

form the adaptive beam for the proposed antenna. This algorithm is maximized the 

correlation coefficients. Simplex method has been chosen because it has several 

advantages. Simplex method has a fast convergence time, robust beamforming, and it 

can be used for multi-dimensional optimization. There are several steps in simplex 

method for optimization; reflection, expansion, contraction, and multiple contractions. 

IE3D software is used to model the defogger with the car and from the IE3D results it 

shows that the defogger can be used as an adaptive antenna because it has low voltage 

standing wave ratio (VSWR) to make it operate as an antenna, low spatial cross 

correlation (SCC) for better diversity and has high coupling between port (CBP) for 

better capability of beamforming. In the analysis, the VSWR is lower than 3, SCC is 

lower than 0.5, and the CBP is between -6 dB to -10 dB. For numerical simulation, 

MATLAB is used to make a program for simplex method. From the simulation results, 

it shows that almost 80 % of the signals have signal to interference noise ratio (SINR) 

greater than 20 dB. Besides that, null is performed for incoming interference and 

remained high gain for the desired signal. A Rear defogger is made from heating wire, 

therefore it is necessary to confirm the effects of the resistivity to the antenna's 

performance. The effects of the resistivity has been confirm through IE3D simulator and 

MATLAB programming by comparing it to the copper wire. From IE3D simulator, 

comparison has been made for VSWR, SCC, and CBP for both resistive and copper 
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wire. The results show that the values of VSWR, SCC, and CBP for copper and resistive 

wires are nearly same. A statistical analysis has been carried out for copper and resistive 

wire, and the analysis show that the performance of the resistive wire is slightly 

decrease compared to copper wire. However, the different is very small, plus the 

resistive wire has more than 80% of the signal has SINR greater than 20 dB. The beam 

pattern is controlled by a varactor circuit. The varactor circuit is connected to the three 
passive elements. The reactance range is limited from - j300Q to j3000 in the 

simulation, consider manufacturing. It is difficult to manufacture a large range of 

reactance. The reactance value is different for each incoming DOAs. Measurement has 

been conducted in anechoic chambers for adaptive beamforming. It shows that after 

perform beamfonning, null is performed for incoming interference, improved VSWR, 

BER and SINR over the bandwidth. The proposed antenna has a fast convergence times, 

the convergence time is less than 50 ms and the iteration number is less than 70. 

Measurement in Rayleigh fading environment also been conducted, it shows that by 

applying the beamforming the BER is improved. The experiment was conducted for 473 ' * ' 
, xi 

MHz and 900 MHz for horizontal (co-polarization) and vertical (cross-polarization). For 

both co-polarization and cross-polarization, BER show an improvement. 
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CHAPTER 1 

 

Introduction 

 

1.1 Problem statement 

 

Nowadays, many electrical systems and devices have been incorporated in vehicles 

which contributed to easier and safety driving and also entertainment for driver and 

passengers. Therefore, the demands for those devices have been increased drastically. As far 

as vehicular antennas are concern, on glass antennas are rapidly been researched in order to 

fulfill this demands. However, many of the designed antennas have complex and bulky 

structure due to land mobile problems [1]-[3]. 

As we know, in land mobile communication, there is no clear line of sight (LOS) 

between transmitter and receiver especially for moving systems. The receiver might receive 

the reflected signals instead of the original signal. The LOS is often blocked by obstacles 

which will lead the signal to be reflected as shown in Figure 1.1. The received signal is 

consist of combination refracted signal, attenuation signal, reflected signal and diffraction 

signal. This effect is known as multipath fading effects. The carrier to noise ratio (CNR) is 

degraded because of multipath effects. Besides that, signal to interference plus noise ratio 

(SINR) also degraded because of frequency selective fading in multipath fading effects. Due 

to those effects, the transmission quality is definitely degraded. 
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Figure 1.1. Multipath effects 

 

Sklar in [9] has introduced several techniques to mitigate the effects of multipath 

fading. In order to combat the distortion caused by frequency selective fading, Sklar has 

proposed using adaptive equalization, spread spectrum, OFDM and pilot signal. He suggested 

several type of diversity to combat loss caused by flat-fading and slow fading. 

 Adaptive array antenna is the best candidate to overcome multipath effects [4]. 

Adaptive array antenna is one type of smart antennas. Smart antennas are an array antenna 

that can steer the beam toward the desired signal and eliminate the undesired signal 

(interference). There are two types of schemes for adaptive array antennas; digital 

beamforming and reactively steerable adaptive array (RSAA). Switched beam array antennas 

are antennas that only controlled the direction of maximum radiation. This antenna offers 

fixed beam direction. Meanwhile, the adaptive beamforming antennas controlled the radiation 

in all directions. 

A reactively steerable adaptive array (RSAA) using dipole antenna has been 

introduced by Harrington [10]. This antenna is an adaptive array with single receiver. For 

reactively controlled antenna array, the beam pattern is control by varying the reactive loads. 

By optimizing the gain, we are able to steer the beam toward the maximum gain direction 

which is the desired signal Many researches on reactively steerable adaptive array has been 

conducted. In addition, switched parasitic elements (SPE) technologies also can steer a beam 
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 3

toward the desired direction. These are array antennas consisting of several radiating elements 

such as a dipole or patch. These antennas have serious problems such as a bulky structures 

and a large amount of calculation because of blind algorithm.  

 A conventional adaptive antenna consisted of several antennas and receivers. In 

case of low frequency such as very high frequency (VHF), the aperture size becomes large 

[36,49,50]. Installation of several large apertures for adaptive antenna is not proper for 

vehicular design. In addition, several receiver and coaxial cables connection antenna with 

receiver will increase the cost. Therefore, in this study a smart antenna using a rear defogger 

has been proposed. The defogger has been used as an array antenna by placing several ports 

on it. Then, RSAA concept is applied to form adaptive pattern. Downhill simplex method is 

used as an algorithm to optimize the cross correlation function. This algorithm has the fastest 

convergence time compared to other algorithm such as steepest descent and direct search 

method.  

  

1.2 Objective of the study 

 

Recently, most vehicles are equipped with entertainment equipment such as monitor, 

dvd player, radio, car navigation and etc. Each equipment has their own system. For example, 

to watch television in a vehicle we need an antenna to receive the broadcasting signal. The 

television broadcasting in Japan has fully shifted to digital broadcasting in July 2011. The 

frequency for Integrated Service Digital Broadcasting-Terrestrial for sound broadcasting 

(ISDB-Tsb) is 90-108 MHz, while for Integrated Service Digital Broadcasting-Terrestrial for 

multi media (ISDB-Tmm) is 207.5-222 MHz is planned. For this broadcasting systems, the 

receive antenna such as diversity antenna and adaptive antenna should be able to receive an 

orthogonal frequency division multiplexing (OFDM) signal. 
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 4

Therefore, new technology is needed to cope with this new system. The main 

objective of this study is to design an adaptive antenna for vehicular used in future digital 

radio broadcasting. A conventional adaptive antenna has drawbacks of aperture size and a 

number of receivers. For a low frequency such as VHF, if conventional adaptive antenna is 

used, the aperture size if large. To overcome the aperture size, we proposed a rear defogger as 

a shared aperture antenna by placing several ports on it. Every vehicle is equipped with rear 

defogger for defrosting purpose. Therefore, by using rear defogger, we can save a space in the 

vehicle, do not spoil the vehicle design and also inexpensive to design. 

In order to make the defogger function as an array antenna, the antenna should have 

a low voltage standing wave ratio (VSWR), low spatial correlation coefficient (SCC) and high 

coupling between ports (CBP). To achieve high diversity gain, the SCC should be low and to 

achieve high beamforming capability, the CBP must be high. By adding vertical lines, we are 

able to make the defogger to be operated at the desired frequency bands; ISDB-Tsb and 

ISDB-Tmm and increased the CBP for a better beamforming capability. 

 

1.3 Thesis outline 

 

This thesis consists of 7 chapters stated as follows: 

 Chapter 1 is an overview of the thesis. It consists of problem statements, 

objectives of the project, and the thesis outline. 

 Chapter 2 is an introduction to smart antenna and the multipath fading. In the 

beginning, the principles of multipath fading is discussed followed by the 

techniques used to mitigate multipath in this thesis smart antenna will be 

discussed. The principles of digital beamforming and adaptive beamforming will 

be explained in this chapter. In this chapter, steerable antenna is also been 
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 5

discussed for switched parasitic elements and reactively steerable adaptive array 

antennas. 

 Electronically steerable parasitic array radiator (ESPAR) will be explained in 

Chapter 3. The first part of this chapter will discussed the principle and 

formulation of conventional ESPAR is explained in this chapter. Downhill 

simplex method also been explained in this chapter since it been used as an 

algorithm. The second part of this chapter will discuss the proposed antenna 

which is implemented the ESPAR concept to a rear defogger.  

 Chapter 4 is about shared aperture antenna based on a rear defogger. The design 

process using IE3D start from modeling and also process to select the port 

location is explained in this chapter. Analysis for effect of vertical wire and also 

the effect of resistivity also included in this chapter. Finally is the process of 

designing the dual band defogger. 

 Chapter 5 consists of simulation results conducted by MATLAB. The first part is 

the results for conventional ESPAR, and the second part is the results for the 

proposed antenna. The second part is basically consists of complimentary 

cumulative density function (CCDF) for selection of an output port, effect of 

resistivity, frequency characteristic and analysis for dual band. 

 Chapter 6 explained about the manufacturing process for defogger and varactor 

circuit and experiment setup for adaptive beamforming and Rayleigh fading. It 

also consists of experiment results and discussion. 

 Chapter 7 is summarizes everything in this thesis, and it also consists of future 

work to be done. 
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CHAPTER 2 

 

Smart Antenna 

 

 The demand for mobile communications systems has generated a great deal of 

research activities in order to cope with the needs such as, data throughput, mobility and cost. 

One of the new technologies that can cope with this demand is smart antenna. Smart antenna 

used adaptive beamforming to achieve maximum reception in a specified direction by 

estimating the signal arrival from a desired direction while signals of the same frequency from 

other directions are rejected. This can be achieved by varying the weight of each antenna 

elements. The basic idea is that, though the signals transmitted from different transmitter 

occupy the same frequency channel, they still arrive from different directions. This spatial 

separation is exploited to separate the desired signal and interference signal. In adaptive 

beamforming the optimum weights are iteratively computed using complex algorithms. 

 The advantage of using adaptive beamforming is, we can steer the beam toward the 

desired signal and eliminate the interference. This type of antenna is known as steerable 

antenna. Steerable antenna can be classified to two types; reactively steerable adaptive array 

(RSAA) and switched parasitic elements (SPE). 
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2.1 Multipath Fading 

 

In wireless communications, signal fading is caused by multipath effect. Multipath 

effect means that a signal transmitted from a transmitter may have multiple copies traversing 

different paths to reach a receiver [5,6,7,8,41]. Thus, at the receiver, the received signal 

should be the sum of all these multipath signals. Because the paths traversed by these signals 

are different; some are longer and some are shorter. The one at the direction of line of signal 

(LOS) should be the shortest. These signals interact with each other. If signals are in phase, 

they would intensify the resultant signal; otherwise, the resultant signal is weakened due to 

out of phase. This phenomenon is called channel fading.  

 

2.1.1 Doppler spread 

 

The channel adds noise to signal and cause a shift in the carrier frequency if the 

transmitter and receiver are moving. This effect is known as Doppler effects. If the transmitter 

and receiver is moving toward each other, the receive frequency is higher than the source and 

if the transmitter and receiver is moving away from each other, the receive frequency is 

decrease. The frequency is decrease because the wave is spread out since the distance between 

waves is increased. In mobile communication systems, this effect is very important to be 

taken care of.  

The amount of frequency changes due to the Doppler effects depends on the relative 

motion between the source and receiver and on the speed of propagation of the wave. The 

Doppler shift in frequency can be written: 

 

c
vff 0±≈Δ         (2.1) 
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 8

is

Where  is the change in frequency of the source seen at the receiver,  is the 

source frequency, is the speed difference between the source and the transmitter, and c   

the speed of light. 

fΔ 0f

v  

 

2.1.2 Delay spread 

The different signal paths between a transmitter and a receiver correspond to 

different transmission times. For an identical signal pulse from the transmitter, multiple 

copies of signals are received at the receiver at different moments. The signals on shorter 

paths reach the receiver earlier than those on longer paths. The direct effect of these 

unsimultaneous arrivals of signal causes the spread of the original signal in time domain. This 

spread is called delay spread.  

The delay spread puts a constraint on the maximum transmission capacity on the 

wireless channel. Specifically, if the period of baseband data pulse is larger than that of delay 

spread, inter-symbol interference (ISI) will be generated at the receiver. That is, the data 

signals on two neighbouring pulse periods are received at the same time, which causes the 

receiver not to be able to distinguish them.  

 

2.2 Antenna diversity 

 

As discussed previously, multipath fading occurs in land mobile communication, 

therefore, the performance was degraded. To overcome this problem a special reception 

technique is used, namely the multiple receiver combining techniques which is known as 

diversity. 
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Diversity techniques are used to mitigate the effects of the multipath phenomenon. 

There are several mechanisms to achieve diversity branches such as space diversity or 

spatial diversity, frequency diversity, angle diversity, polarization diversity, and pattern 

diversity.  

The most common and simple mechanism for achieving diversity branches is space 

diversity [38,43,66]. By using two antennas with a distance between them, the phase delay 

makes multipath signals arriving at the antenna differ in fading. The minimum spacing 

between the antennas at a mobile terminal is required for sufficient low correlation between 

fading signals. In this thesis, spatial diversity will be discussed in details.  

 

2.2.1 Selection combining 

 

Another popular diversity combining technique, known as selection combining, is 

shown in Figure 2.1. In this method, the receiver monitors the level of the incoming signal 

using switch logic. When the signal level drops below a predefined threshold a switch 

changes the path to the other antenna. This method performs better than passive combining in 

that the two signal paths cannot add destructively. The problem with selection combining is 

that the switching does not take place until a fade has already occurred. There is also the 

possibility that the signal at the other antenna will be at an even lower signal level. 

 

 
Figure 2.1. Selection combining 
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2.2.2 Maximal ratio combining 

 

Maximal ratio combining is similar to equal gain combining in that the signals are 

co-phased in the branch receivers by applying phase shifts of φ1 and φ2 as shown in Figure 

2.2. Maximal ratio combining differs from equal gain combining in that each branch is 

weighted by a factor, indicated by α1 and α2.  

 

 

Figure 2.2. Maximal ratio combining 

 

2.3 Adaptive antenna 

 

An antenna array uses an array of simple antennas such as omni-directional antennas, 

and combines the signals to form an array output. The direction where the maximum gain 

would appear is controlled by adjusting the phase between the different antenna elements. The 

adjusted and gain is known as weights, the output from the antenna is combined and the 

desired output is achieve [33,43]. The properties of the antenna array may vary over time in 

order to optimize the systems performance with respect to different optimization criterion 

including maximum power, maximum SNR, minimum interference and maximum SINR. An 
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adaptive antenna’s parameters are automatically adjusted, in order to obtain an optimal or 

near-optimal array output. The optimization cost function and the method used to achieve this 

state are dependent upon the optimization algorithm chosen.  

 

2.3.1 Temporal reference techniques 

 

Temporal reference techniques refer to the design of array processors which optimize 

the received antenna array weights. For this technique, a reference signal is used for easily 

identify the desired signal and distinguish the unwanted signal. 

 Figure 2.3 shows the structure of a temporal reference beamformer, where the array 

output is substracts from the reference signal, r(t) which assists in identifying the desired user. 

In order to generate the error signal , which is then used to control the 

weights. The weights are adjusted such that the mean squares error (MSE) between the array 

output and the reference signal is minimized, where the error is expressed as 

)()()( ttrte H xw−=

 

22 )]()([)( ttrte H xw−=         (2.2) 

 

Taking the expected values of both sides of equation (2.2), we get 

 

wxw RztrEteE HH +−= 2)]([)]([ 22       (2.3) 

 

Where  is the cross correlation between the reference signal and the array 

signal vector  and  is the correlation matrix of the array output signals. 

The MSE surface is a quadratic function of complex array weight vector  and it is 

)](*)([ trtEz x=

)(tx )]()([ ttER Hxx=

w
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minimized by setting its gradient with respect to  equal to zero, w
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Figure 2.3. The structure of temporal reference based beamformer with 3 antenna elements 

 

022)])([( 2 =+−=∇ wRzteEw        (2.4) 

 

Yielding the weill-known Weiner-hopf equation for the optimal weight vector in the form of 

zRopt
1−=w          (2.5) 

The minimum mean square error (MMSE) is given by  

 

zRztrEMMSE H 12 ]|)([| −−=        (2.6) 

 

Beside MSE and MMSE, there is a least mean square (LMS) is based on the steepest descent 

method, a well-known optimization technique that recursively computes and updates the 

weight vector. The algorithm updates the weights at each iterations by estimating the gradient 

of the quadratic error surface and then changing the weights in the direction opposite to the 
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gradient by a small amount in an attempt to minimize the MSE. The desired response, 

generated by inputting the reference sequence to the modulator is supplied to the algorithm, 

allowing the estimation error and thus the error surface to be calculated. The constant that 

determines the amount by which the weights are adjusted during each iterations is referred as 

the step size. When the step size is sufficiently small, the process leads these estimated 

weights to the near optimal weights 

 

2.3.2 Blind adaptation 

 

Blind adaptation of the array weights has several advantages over the temporal 

reference technique. As for temporal reference technique, assisted system must achieve 

synchronization and perform demodulation before weights adaptation can commence. In 

contrast, a blind adaptation does not required training sequences or any information 

concerning the antenna array’s geometry. 

The constant modulus algorithm (CMA) operates on the principles that the amplitude 

of the received antenna array output should remain constant, unless the interference causes 

fluctuations. If the transmitted signal, s(n) has a constant envelope, then the combiner output, 

y(n) should also have a constant envelope. The objective of CMA is to restore the array output 

to a constant envelope signal. This can be achieved by adjusting the array weight vector, w in 

such a way so as to minimize a cost function. The cost function for CMA is given by 

])|)([(|
2
1 22

0
2

)( ynyEJ n −=        (2.7) 

Where  is the desired amplitude in the absence of interference. 0y
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2.4 Parasitic elements 

 

2.4.1 Switched Parasitic Elements 

 

Switched parasitic elements (SPE) is the simplest smart antenna technique and 

several studies have been conducted for SPE, wired and patch antennas has been used in the 

studies. The concept of switched parasitic elements is adopted from Yagi-uda dipole array. 

The Yagi-uda consists of reflection dipole, single active dipole and a numbers of director 

dipoles as shown in Figure 2.4 [32]. 

 

V

Reflector

Driven element 

Director elements 
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Figure 2.4. Yagi-uda configuration using dipole elements 

 

ents are used to generate a directional beam. Usually, a numbers of 

parasitic elem

ent is if the current distribution of the 

parasitic elem

Parasitic elem

ents are used to surround the active elements or driven elements. Numerous 

director elements are used to achieve a highly focused radiation. The reflector is the backbone 

of a switched parasitic array [21,22,31,32].  

The basic principle of switched parasitic elem

ents is changed, the input impedance and radiation characteristic of the array 

also changed. The current of parasitic elements changed because of a current is induced from 
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active elements to the parasitic element by mutual coupling. For circular wired parasitic 

element, the number of beam obtained depends on the number of monopoles [26,34]. 

In SPE, there are several possible configurations. First is switching between active 

elements and leave all other parasitic elements at resonance condition. By using this 

configuration, RF switch is use to switch the generator between active elements and also PIN 

diodes to switch the elements between active and parasitic [21,22]. The control circuit for one 

element is given by Figure 2.5. The PIN diode is switched between being shorted to the 

ground or an open circuit and it is controlled by transistor-transistor logic (TTL). The RF 

switch is also controlled by the logic signal. The choke prevents the RF signal from flowing 

back to the TTL logic circuit and the resistor is used to control the current through the diode. 

For TTL= 0 V, RF power is delivered to the antenna and the diode has high impedance. For 

TTL = 5 V, the antenna feeds are grounded and the RF line is not connected. The phase shifter 

provides a phase difference between the two feeds of each antenna. 

Another configuration is required one central active elements surrounded by 

parasitic elements. The parasitic element is switched in and out of resonance using PIN diodes 

[23] as shown in Figure 2.6. For this array, polar pattern is obtained by two cases. First is 

when the parasitic element is short circuit and second is when the parasitic element is open 

circuit. When the parasitic element is open circuit, the parasitic element is no effect to the 

radiation pattern. The radiation pattern is same as for a half wave dipole. PIN diode is used to 

switch from open to short circuit. Open circuit is obtained by applying unbiased current, while 

short circuit is obtained by applying forward current. 

Preston et. al, has introduced a switched parasitic using rectangular patch antennas. 

For a patch antenna structure, the current distribution can be altered by shorting a point 

location located at the maximum current position [25]. When the point of maximum current is 

shorted, the parasitic elements acts as a reflector and if there is no shorted, it operates as a 
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director element in the array. The number of beam obtained is limited to the number of 

shorted pin. Kamarudin et.al has introduced a disc loaded monopole array for beam control 

[27-28]. In this paper, they propose to make an open circuit at one parasite to form a 

directional beam at this element. 

 

Ø 

RF CHOKE TTL 

RF Switch 
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Figure 2.5. Control circuit for one element. 

d PIN diode as switch(S) 

 dual band SPE has been design in [29,30]. In these papers, authors used genetic 

algorithm

  

V S

Figure 2.6. Two element wires antenna with voltage (V) an

 

A

 to determine the total wire length, load position, load reactance and the ring radius 

for 900 MHz and 1900 MHz. The beam can be switched for the desired two resonance 

frequency. In contrast with this, Lu et. al [51] has proposed an SPE with two beam operates 
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le Adaptive Array 

The adaptive concept is far superior to the performance of a SPE. Adaptive array 

antenna c

dipole as shown in Figure 2.7 [10]. It has one 

active el

beamforming algorithms optimize reactive loads to maximize the signal to noise 

ratio (SN

 radiator (ESPAR) antennas have 

attracted 

simultaneously by arranging two concentric ring. The number of switched beam is depends on 

the number of elements.  

2.4.2 Reactively Steerab

 

an locate and track signals and adjust the antenna pattern to enhance reception, while 

minimizing the interference using algorithms. Reactively loaded has been used in the adaptive 

array to improve the reception quality. Reactively loaded antenna is defined to be an N-port 

radiating system with reactive elements at the ports. The excitation of the antenna is a voltage 

source at one of the ports. Meanwhile, a reactively controlled antenna array is the reactance 

loads are varied to control the radiation pattern. 

 Harrington proposed a seven element 

ement in the middle and surrounded by several passive elements. Each passive 

element is connected to the variable reactance load. In this method, variable reactance load is 

used to control the radiation pattern of the antenna. By using an appropriate beamforming 

algorithm, the antenna has ability to steer toward the desired signal and form nulls at 

interference. 

The 

R). Many studies have been conducted using various types of optimization 

algorithms. Harrington has proposed pattern synthesis method to maximize the gain, while 

Dinger [11] has proposed a RSAA using microstrip patch elements and used steepest descent 

algorithm to maximize the output interference power.  

Recently, electronically steerable passive array

considerable attention because of its ability to significantly improve the performance 

of wireless systems by automatically eliminating surrounding interference. With a very simple 
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R and used various 

algorithm

 on ESPAR antenna has been conducted, since ESPAR antenna 

offers mo

ents as dipoles 

and patch

architecture, it has a significantly low power dissipation and inexpensive to manufacture. The 

direction of maximum gain is controlled by varying the load reactance. 

Ohira et. al [12-15,44-46,48,56,58,62,64] introduced ESPA

 such as the steepest descent algorithm, and the genetic algorithm, for beamforming, 

while Kuwahara [16] used direct search method for ESPAR. Vlasis et. al [24], introduced a 

stochastic beamforming algorithm for ESPAR. ESPAR concept also been tested for patch 

antenna in [47,60], corner-reflector ESPAR [42], and also a dielectric embedded ESPAR 

(DE-ESPAR) [47,57]. A dual-band ESPAR [59], tri-band ESPAR [69], and broadband ESPAR 

[61,67] has been design using various algorithm. In [35], an ESPAR with switched load at 

parasitic elements has been design. The same authors also proposed the same structure for 

multiband ESPAR [53].  

Many researches

re advantage over SPEs [63,65,68]. One of the advantage of using RSAA is it can 

control the beam to the various directions. It is not limited as SPE antennas.  

The RSAA discussed here are using mutual coupling between elem

es in the array antenna. In this thesis, we are proposing the defogger as the array 

antenna by providing several ports on it. Which means only a single aperture is used instead 

of an array antenna. 
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X3 X2 

X1 
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Figure 2.7. A seven element dipole array. 

 

 

 

CHAPTER 3 

 

Adaptive Beamforming 

  

In this section, adaptive beamforming using the ESPAR antenna will be discussed 

and also the implementation of the ESPAR concept to a rear defogger. ESPAR antenna is one 

of the smart antennas that can steer and eliminate interference automatically by varying the 

reactance load connected at passive elements. ESPAR antenna is introduced by Ohira using 

seven element; one active element at the center and six passive elements around it.  

 

3.1 ESPAR  

 

3.1.1 ESPAR Formulation 
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This section briefly describes the configuration of ESPAR and how we adapt the 

same configuration to the downhill simplex method. As shown in Figure 3.1(a), an ESPAR 

antenna basically comprises one active element and surrounded by six passive elements 

(M=6). 

All passive elements are terminated by a variable reactance denoted as . The 

reactance x is written as  

Mx

 

T
Mxxx ],...,,[ 21=x        (3.1) 

The output of ESPAR,  is given by )(ty

)()( tty Tsi=         (3.2) 

where, I is a current vector of (M+1)-elements that is expressed as 

T
Miii ],...,,[ 10=i         (3.3) 

V is a RF voltage vector and it is expressed by 

T
Mvvv ],...,,[ 10=v        (3.4) 

 

(a) Configuration of ESPAR 
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#2 
#3 

#4 

#5 
#6 

θ

 

(b)  ESPAR geometry 

Figure 3.1. ESPAR 

The RF voltage imposed on the reactance is defined as mx

 

   mmm ijxv −= Mm ,...,2,1=      (3.5) 

 

While, RF voltage at the central element is represented by 

 

         (3.6) 000 iZVv s −=

 

The notation of  is the output impedance of the transmitter and it is not affected by the 

mutual coupling of other elements. The value of  is assumed as 50 Ω without any loss. 

 is the internal source RF voltage. According to the theorem of reciprocity, the receive 

mode radiation pattern array factor of the ESPAR antenna is same as transmit mode. Assume 

 and arrange equation [3.5] and [3.6] in a vector form yields, 

0Z

0Z

sV

1=sV
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MM

        (3.7) 

where , and X is a diagonal matrix T
Miii ],...,,[ 10=i

  

],...,,,50[ 21 MjxjxjxdiagX =        (3.8) 

 

Current vector and RF voltage vector have a relationship 

 

          (3.9) vi Y=

where Y is referred as admittance matrix. Substitute equation (3.7) into (3.9) yields 

 

         (3.10) 0yi 1)( −+= YXI

 

Where I  the identity matrix and  is the vector of first column of Y matrix. 0y

 

       (3.11) T
Myyyy ],...,,,[ 0201000=0y

 

The steering vector )(θa  is defined based on the array geometry in Figure 3.1(b) 
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Mj
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e
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φθπ

φθπ

φθπ

θ

M

a        (3.12) 

 

Suppose there are a total number of Q signals  with DOAs )(tuq ),( qq φθ ),...,2,1( Qq = . Let 

 denote the signal induced at the M-th port, and let 

 be the column vector with M-th components .  is the 

superposition of all Q signals. 

),...,2,1)(( Mmtsm =

T
Q tststst )](),...,(),([)( 21=s )(tsm )(tsm

 

    )(),()(
1

tuts qqq

Q

q
mm φθ∑

=

= a ),...,2,1( Mm =    (3.13) 

 

Where ),( qqm φθa  is a steering vector defined in equation (3.12), then the column vector 

 can be expressed as )(ts

 

 )        (3.14) (),()(
1

tut qq

Q

q
q φθ∑

=

= as

 

Finally, the output of the ESPAR antenna can be written as 

 

 )       (3.15) (),()()(
1

tutty qqq

Q

q

TT φθaisi ∑
=

==

 

Notice that the current vector , and thus , is a function of the reactance vector,  of  

equation (3.1). 

i )(ty x
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3.1.2 Beamforming by simplex method 

 

3.1.2.1 Description of simplex method 

 

This section will describe about the downhill simplex method. It is an iterative search 

technique to minimize a function that is nonlinear in parameters. This method also known as 

Nelder-Mead method. The advantage of using Simplex method is it can be used to solve 

N-dimensional geometry. Simplex is a geometrical figure consisting N dimensions of N+1 

points and all interconnecting line segments and polygonal faces. For example, in two 

dimensional, simplex is viewed as triangle. 

Simplex method starts with defining,  which is consists of N+1 points. After that 

all points in  will be classified to highest point ( ), second highest point ( ) and lowest 

point ( ) [39]-[40]. Simplex method has several possible steps such as reflection, expansion, 

contraction and multiple contractions as shown in Figure 3.2. All this steps are required in 

order to discard the highest point.  

0P

0P hx shx

lx

The process starts by reflecting the highest point,  to a new point denoted as, . 

 is defined as 

hx rx

rx

 

hr xxx αα −+= )1(        (3.16) 

 

Where, α  is a reflection coefficient, and x  is a centroid point defined as 

 

∑
=

=
M

i
ix

M
x

1

1            (3.17) hi ≠
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