
HOMOGENIZATION STUDIES FOR
OPTICAL SENSORS BASED ON

SCULPTURED THIN FILMS

Siti Suhana Jamaian

Doctor of Philosophy
University of Edinburgh

2012

PTTA
PERP

UST
AKA
AN 
TUN
KU T

UN 
AMI
NAH



Declaration

I declare that this thesis was composed by myself and that the work contained therein is my
own, except where explicitly stated otherwise in the text.

(Siti Suhana Jamaian)

ii

PTTA
PERP

UST
AKA
AN 
TUN
KU T

UN 
AMI
NAH



To my love

Abd Fathul Hakim Zulkifli

Faheem Irsyad Abd Fathul Hakim

iii

PTTA
PERP

UST
AKA
AN 
TUN
KU T

UN 
AMI
NAH



Acknowledgements

I would like to express my sincere gratitude to my research supervisor, Dr. Tom G. Mackay

who has served not only as a supervisor but also encouraged and motivated me throughout

my research study. His wide knowledge and logical way of thinking have been of great value

for me. Without his continuos support, this thesis would not be the same as presented here.

I am also very thankful to my family for giving me great supports especially my mum who

keep pushing me to finish this study on time. To my son, Faheem Irsyad who always makes

me laugh with his cute funny face whenever I tired and depressed with my work. My special

thanks also dedicated to my lovely husband Abd Fathul Hakim who sacrificed not only his

career but also everything to make sure I could finish this research study.

My sincere appreciation also extends to my second supervisor Dr. Nikola Popovic, lectur-

ers, all my friends and others who have provided assistance at various occasions. Their views

and tips are useful indeed. Only God can repay all their contributions.

And most especially to God, who made all things possible. Alhamdulillah.

iv

PTTA
PERP

UST
AKA
AN 
TUN
KU T

UN 
AMI
NAH



Abstract

In this thesis we investigate theoretically various types of sculptured thin film (STF) envi-

sioned as platforms for optical sensing. A STF consists of an array of parallel nanowires which

can be grown on a substrate using vapour deposition techniques. Typically, each nanowire

has a diameter in the range from ∼ 10−300 nm while the film thickness is . 1µm. Through

careful control of the fabrication process, both the optical properties and the porosity of

the STF can be tailored to order. These abilities make STFs promising for optical sensing

applications, wherein it is envisaged that the material to be sensed infiltrates the void re-

gion in between the parallel nanowires and hence changes the optical properties of the STF.

Various homogenization formalisms can be used to estimate the constitutive parameters of

the infiltrated STFs. In this thesis two different homogenization formalisms were used: the

Bruggeman formalism (extended and non–extended versions) and the strong-permittivity-

fluctuation theory (SPFT). These were used in investigations of the following optical–sensing

scenarios: (i) Electromagnetic radiation emitted by a dipole source inside an infiltrated chiral

STF. The effects of using the extended Bruggeman homogenization formalism, which takes

into account the nonzero size of the component particles, were studied. (ii) Surface–plasmon–

polariton waves on a metal–coated, infiltrated columnar thin film. The influences of using

the extended SPFT formalism, which takes into account the nonzero size of the component

particles and their statistical distributions, were explored. (iii) A metal-coated infiltrated

chiral STF which supports both surface-plasmon-polariton waves and the circular Bragg phe-

nomenon. The possibility of using in parallel both surface-plasmon-polariton waves and the

circular Bragg phenomenon was investigated using the non–extended Bruggeman formalism.

Our numerical studies revealed that the design performance parameters of the infiltrated STF

are bode well for these optical–sensing scenarios. The use of inverse Bruggeman formalism

was also investigated: this was found to be problematic in certain constitutive parameter

regimes, but not those for optical–sensing scenarios considered in this thesis.
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Chapter 1

Introduction

1.1 Background of Research

Composite materials are produced by mixing together different component materials. This

process has been studied for quite a long time ago, and has been applied in various applica-

tions. A mixture of materials may be considered effectively homogenous when wavelengths

are much larger than the particle sizes of the component materials. The estimation of the

constitutive parameters of such a homogenized composite material (HCM) is central to the

work described in this thesis. Several theoretical approaches can be implemented to estimate

the constitutive parameters of HCM [1, 2, 3]. The most common approaches are based

on the Maxwell Garnett formalism and the Bruggeman formalism [4]. Like most conven-

tional approaches to homogenization, the Maxwell Garnett formalism and the Bruggeman

formalism do not take the statistical distribution of the component particles into account.

Instead, the spatial distributions are characterized by volume fraction alone. Moreover,

the depolarization dyadics which characterize the electromagnetic response of each com-

ponent particle embedded in the comparison medium is treated on a vanishingly small

region and is represented by the singularity of the corresponding dyadic Green function [5, 6].

In this thesis the conventional homogenization formalisms were used Chap. 3 (Maxwell

Garnett and Bruggeman) and Chap. 7 (Bruggeman). In Chap. 5 the extended homogeniza-

tion formalism based on Bruggeman formalism which takes into account the size of the

component particles is used. Meanwhile, in Chap. 6 the statistical distribution of the com-

ponents phases is taken into account in a more sophisticated homogenization approach

known as strong-property-fluctuation theory (SPFT) [7, 8, 9]. This approach is also known as

strong-permittivity-fluctuation theory when it is applied to dielectric materials.
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1.2 Objectives of Research

The aims of this project are as follows;

a) to understand the concept of homogenization formalisms and including inverse ho-

mogenization

b) to study sculptured thin films (STFs), especially columnar thin films (CTFs) and chiral

sculptured thin films (CSTFs), with a view to possible applications as optical sensors

c) to explore the emission of electromagnetic radiation from a dipole source embedded

inside an infiltrated CSTF where the extended version of Bruggeman formalism is

implemented in homogenization studies

d) to investigate the potential of CTF as platforms for exciting surface plasmon polariton

(SPP) where the extended version of the second order SPFT is employed in homoge-

nization studies

e) to elucidate the ability of CSTF for exciting surface multi plasmonic (SMP) and exploit-

ing circular Bragg phenomenon (CBP) in parallel where the non-extended version of

Bruggeman formalism is applied in homogenization studies

1.3 Importance of Research

The work in this thesis is chiefly aimed at providing a guideline for experimental efforts by

presenting numerical studies. We predict how the design parameters of an infiltrated STF

which accommodates a more sophisticated homogenization formalisms effect its perfor-

mance and sensitivity based on optical sensors in particular in exciting SPP and exploiting

CBP.

1.4 Framework of Research

This thesis consists of eight chapters. The first chapter discusses the background of research,

objectives of research, importance of research and framework of research.

In Chap. 2, the theory describing the electromagnetic response of an inclusion embedded

in the comparison medium and the statistical distribution of the components phases is

2
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presented. This chapter also provides discussion on conventional approaches of homoge-

nization to estimate the constitutive parameters of HCMs, namely Maxwell Garnet formalism,

Bruggeman formalism and SPFT.

Chap. 3 is focused on the Bruggeman formalism for inverse homogenization. The limita-

tion of this formalism is studied by comparing the results with the inverse Maxwell Garnett

formalism. Numerical studies are presented for dissipative and nondissipative homogeniza-

tion scenarios.

The background of STF is provided in Chap. 4. Two types of STF are considered, i.e.,

CTF and CSTF. Homogenization studies on these STF used to estimate their constitutive

parameters also presented in this chapter.

In Chap. 5, the emission of electromagnetic radiation from a dipole source embedded

inside an infiltrated CSTF is explored. The extended version of Bruggeman formalism is

implemented. This study is extended by investigating the influence of different positions of

the dipole source. The non-extended version of the Bruggeman formalism is considered in

this case.

Chap. 6 is investigating the potential of CTF as platforms for exciting SPP. Higher order

homogenization technique, based on an extended version of the second order SPFT is used

to estimate the constitutive parameters of the infiltrated CTF.

Our final numerical works are revealed in Chap. 7. This work investigates the ability of

CSTF for exciting SMP and exploiting CBP in parallel. In order to determine the relative

permittitivity parameters of the infiltrated CSTF, the non-extended version of Bruggeman

homogenization formalism is implemented.

Chap. 8 consists the summary of this research. Also provided are some recommendations

for future works. The framework of this research is summarized in Fig. 1.1.
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Figure 1.1: Framework of research
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Chapter 2

Homogenization formalisms

2.1 Introduction

The mixture of two component materials yields a composite material which may be regarded

as effectively homogeneous when the particle sizes of the component material are small

enough compared to wavelengths involved. The estimation study of the effective consti-

tutive parameters of such homogenized composite materials (HCMs) is the main focus in

this chapter. In order to achieve this, we first provide a brief introduction to Maxwell equa-

tions [10] and constitutive relations which is important in describing the electromagnetic

properties of the materials, as provided in Sec. 2.2. It is followed by a presentation of the

theory of the depolarization dyadic (Sec. 2.3) and distributional statistics (Sec. 2.4) which

both provide the nanostructural details of the ellipsoidal particles inside the materials. Fi-

nally, the homogenization formalisms studies are given in Sec. 2.5. We considered three

homogenization formalisms i.e., Maxwell Garnett formalism, Bruggeman formalism and

strong–property–fluctuation theory (SPFT).

2.2 The Maxwell Equations and Constitutive Relations

The Maxwell equations provide the starting point in characterizing all electromagnetic phe-

nomena. Maxwell equations in the time–domain take the form [11]

∇× Ẽ (r, t ) =− ∂

∂t
B̃ (r, t ) , (2.1)

∇× H̃ (r, t ) = ∂

∂t
D̃ (r, t )+ J̃ (r, t ) , (2.2)
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∇ • B̃ (r, t ) = 0, (2.3)

∇ • D̃ (r, t ) = ρ̃ (r, t ) , (2.4)

where Ẽ (r, t ), H̃ (r, t ), D̃ (r, t ) and B̃ (r, t ) stand for the electric field, magnetic field, dielectric

displacement and magnetic induction respectively, while the current and charge densities are

represented by J̃ (r, t ) and ρ̃ (r, t ), respectively. In the following, we only make use of 2.1 and 2.2.

Eqs. 2.3 and 2.4 can be derived from 2.1 and 2.2 under the assumption of continuity of charge

[11]. The two vector differential equation 2.1 and 2.2 involve four unknown vector fields,

Ẽ (r, t ), H̃ (r, t ), D̃ (r, t ) and B̃ (r, t ). In order to allow a unique solution for the field vectors,

further equations are required. These equations take the form of the constitutive relations

which characterize the behaviour of the material when applying fields to the material. For an

anisotropic dielectric medium, the constitutive relations may be written as [11, 12]

D̃ (r, t ) =
∫ 0

−∞
ε̃
(
r, t ′

)
• Ẽ

(
r, t − t ′

)
d t ′, (2.5)

B̃ (r, t ) =µ0H̃ (r, t ) , (2.6)

where ε̃
(
r, t ′

)
indicates the time domain permittivity dyadic, while µ0 represents the perme-

ability of free space which both have a role in specifying the material. The time dependence

of D̃ is different to that of Ẽ since the material requires some time to respond to the applied

field.

In solving for fields D̃ and Ẽ, it is complicated if the constitutive relations 2.5 and 2.6 are

directly substituted into the Maxwell equations 2.1 and 2.2. Instead, we introduce Fourier

transformation [13]

f (r,ω) = 1

2π

∫ ∞

−∞
f̃ (r, t )exp(iωt )d t , (2.7)

to transfer the time-domain to the frequency-domain. The f (r,ω) is representing the frequency–

domain ε
r

, E, D, B, H and J while ω is an angular frequency.

After applying Fourier transform to 2.5 and 2.6 along with the convolution theorem[13]

Suppose that f (r, t ) and g (r, t ) are piecewise continuous, bounded, and absolutely integrable

on the t-axis. Then the convolution is

(
f ∗ g

)
(r, t ) =

∫ +∞

−∞
f
(
r, t ′

)
g

(
r, t − t ′

)
d t ′, (2.8)
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and its Fourier transformation

F ( f ∗ g ) =p
2πF ( f )F (g ), (2.9)

the constitutive relations in frequency–domain may be written as

D (r,ω) = ε (r,ω) • E (r,ω) , (2.10)

B (r,ω) =µ0H (r,ω) . (2.11)

Therefore, the Maxwell equations 2.1 and 2.2 are presented in the frequency-domain as

∇×E (r,ω) = iωµ0H (r,ω) , (2.12)

∇×H (r,ω) =−iωε (r,ω) • E (r,ω)+ J (r,ω) . (2.13)

Upon eliminating H (r,ω) from 2.12 and 2.13, we obtain

∇×∇×E (r,ω)−ω2µ0ε (r,ω) • E (r,ω) = iωµ0J (r,ω) . (2.14)

Since 2.14 is a linear equation, we may express its solution in terms of dyadic Green function

per

E (r,ω) = iωµ0

∫
V

G
(
r− r′,ω

)
• J

(
r′,ω

)
d 3r′. (2.15)

Herein, G
(
r− r′,ω

)
is called the dyadic Green function which is a function of the field point r

and the source point r′. The integration is calculated within the source region V . Substitution

of 2.15 into 2.14 shows that G
(
r− r′,ω

)
must satisfies the differential equation [11]

∇×∇×G
(
r− r′,ω

)−ω2µ0ε (r,ω) • G
(
r− r′,ω

)= δ(
r− r′

)
I , (2.16)

with δ
(
r− r′

)
is the Dirac delta function and I is 3×3 identity dyadic representing the source

terms in 2.14. Generally, the dyadic Green function can be thought as representing the

response of the medium at r to a point source at r′.
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2.3 Depolarization dyadic

Depolarization dyadics play an important role in characterizing the electromagnetic response

of an ellipsoidal inclusion embedded in an anisotropic dielectric comparison medium, for

example, which take the form [14]

D
cm

=
∫

V η
e

G
cm

(r)d 3r =
∫

V η
G

cm

(
U • r

)
d 3r. (2.17)

Herein, G
cm

is the dyadic Green function of the comparison medium in which the inclusion

is embedded. Explicit expressions for dyadic Green functions are not generally available for

anisotropic materials. However, it suffices here to consider the spatial Fourier transform of

G
cm

(r), viz

G̃
cm

(
q
)= ∫

r
G

cm
(r)exp

(
i q • r

)
d 3r, (2.18)

and which can be found by taking the spatial Fourier transform of 2.16. We obtain

G̃
cm

(
q
)=−iωµ0

(
q×q× I +ω2µ0ε

cm

)−1
, (2.19)

wherein ε
cm

denotes the permittivity dyadic of the comparison medium. The ellipsoidal

surface of V η
e in 2.17 is parametrized by

re
(
θ,φ

)= ηU • r̂
(
θ,φ

)
, (2.20)

in which r̂
(
θ,φ

)
is the radial unit vector specified by the spherical polar coordinates θ and φ.

The symmetric shape dyadic U (of unit determinant) maps the spherical region V η of radius

η onto the ellipsoidal region V η
e . The dyadic Green function in the case of an anisotropic

dielectric comparison medium [5], characterized by the permittivity dyadic ε
cm

, satisfies the

partial differential equation 2.16. In order to consider the depolarization of an inclusion of

nonzero volume, D is expressed as the sum [14]

D
U /cm

(
η
)= D0

U /cm
+Dη

U /cm

(
η
)

, (2.21)

where

D0
U /cm

= lim
η→0

η

2π2

∫
q

1

q2

(
sin(qη)

qη
−cos(qη)

)
G̃

∞
cm

(
U−1 • q

)
d 3q, (2.22)

Dη

U /cm

(
η
)= η

2π2

∫
q

1

q2

(
sin(qη)

qη
−cos(qη)

)
G̃
η

cm

(
U−1 • q

)
d 3q, (2.23)
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and

G̃
∞
cm

(
U−1 • q

)
= lim

q→∞G̃
cm

(
U−1 • q

)
, (2.24)

G̃
η

cm

(
U−1 • q

)
= G̃

cm

(
U−1 • q

)
−G̃

∞
cm

(
U−1 • q

)
. (2.25)

Thus, the dyadic D0
U /cm

corresponds to the limit η→ 0 i.e., considering vanishingly small

inclusions, whereas the dyadic Dη

U /cm
provides the nonzero size of the inclusion particles

i.e., k0η¿ 1 but k0η> 0 where k0 is wavenumber in free space and k0 = 2π/λ with λ being

wavelength. The volume integral 2.22 can be simplified to the η-independent double integral

[5, 6]

D0
U /cm

= 1

4πiω

∫ 2π

0
dφ

∫ π

0
dθ sinθ

 1

tr
(
ε

cm
• A

) A

 , (2.26)

where

A = diag

(
sin2θcos2φ

U 2
x

,
sin2θ sin2φ

U 2
y

,
cos2θ

U 2
z

)
(2.27)

for U =


Ux 0 0

0 Uy 0

0 0 Uz

.

On the other hand, by applying the residue calculus to 2.23, we have the surface integral

Dη

U /cm

(
η
)= 1

4πiω
η3

∫ 2π

0
dφ

∫ π

0
dθ

sinθ

3∆

{[
3(κ+−κ−)

2η
+ i

(
κ3/2
+ −κ3/2

−
)]
α+ iω2µ0

(
κ1/2
+ −κ1/2

−
)
β

}
,

(2.28)

with

α=
[

2ε
cm

− tr
(
ε

cm

)
I
]

• A− tr
(
ε

cm
• A

)
I −

tr
(
εad j

cm
• A

)
−

[
tr

(
εad j

cm

)
tr

(
A

)]
tr

(
ε

cm
• A

) A, (2.29)

β= εad j
cm

−
det

(
ε

cm

)
tr

(
ε

cm
• A

) A, (2.30)

∆=
{[

tr
(
εad j

cm
• A

)
− tr

(
εad j

cm

)
tr (A)

]2 −4det
(
ε

cm

)
tr

(
A

)
tr

(
ε

cm
• A

)}1/2

, (2.31)

κ± =µ0ω
2

[
tr

(
εad j

cm

)
tr

(
A

)]
− tr

(
εad j

cm
• A

)
±∆

2tr
(

A
)

tr
(
ε

cm
• A

) . (2.32)

The double integrals 2.26 and 2.28 may be evaluated using standard numerical techniques

[15].
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2.4 Distributional statistics

Consider the homogenization of two different material phases labelled as phase a and phase

b. Both phases are considered to consist of randomly distributed, but identical orientation

ellipsoidal particles. The size of the particles is specified by η, whereas the ellipsoidal shape

is given by U . The space occupied by the component material a and component material b

is partitioned into the disjoint regions Va and Vb . Hence, the distributional statistics of the

component phases are expressed by the characteristic functions [7]

Φ` (r) =



1, r ∈V`,

(`= a,b) .

0, r ∉V`,

(2.33)

The nth moment ofΦ` is given by the ensemble-average 〈Φ` (r1) , ..,Φ` (rn)〉 which describes

the probability of r1, ...,rn inside V`. The key concept of ensemble-average is to take an

average over a large number of different samples of the two component materials. The

volume fraction of phase ` is given by the first moment ofΦ`; i.e. 〈Φ` (r)〉 = f` and obviously

fa + fb = 1. It is noteworthy that the first moment, which only considers the volume fraction

of the two components, does not give more information about the composite materials. A

more comprehensive description is given by the second moment of Φ`, which provides a

two–point covariance function [8]

〈Φ` (r)Φ`
(
r′

)〉 =


〈Φ` (r)〉〈Φ`
(
r′

)〉, |U−1 •
(
r− r′

) |> L,

〈Φ` (r)〉, |U−1 •
(
r− r′

) |≤ L.

(2.34)

The correlation length L is required to be larger than the size of the component particles

but much smaller than the wavelength in order to consider the mixture is homogeneous.

Certainly, higher–order moment of theΦ` give a more comprehensive statistical description

of composite materials. But, in this thesis we only considered for the first and second order

moments ofΦ`, as higher–order moments as described elsewhere [8, 16].
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2.5 Homogenization formalisms

2.5.1 Preliminaries

A composite material is formed as a mixture of component materials and yet may be con-

sidered effectively homogenous provided that wavelengths are sufficiently larger than the

particle sizes of the component materials. The estimation of the constitutive parameters

of such a homogenized composite material (HCM) is often derived using the very popular

approaches called the Maxwell Garnett homogenization formalism and the Bruggeman ho-

mogenization formalism [1, 17]. Like most conventional approaches to homogenization, the

Bruggeman formalism does not take the statistical distribution and size of the component

phase particles into account. Instead, the spatial distributions are characterized by volume

fraction alone and the electromagnetic response of each component particle is treated as a

vanishingly small depolarization volume. Therefore, extended homogenization formalisms

have been formulated in which a nonzero volume is attributed to the component phase

particles [18, 19]. The electromagnetic response of an inclusion embedded in the compar-

ison medium is usually described by the depolarization dyadic. Meanwhile, the statistical

distribution of the components phases is characterized by SPFT [20].

2.5.2 Maxwell Garnett formalism

The Maxwell Garnett formalism is intended to estimate the constitutive dyadic of HCM of

two component materials. Suppose material a represents an ellipsoidal inclusion charac-

terized by shape dyadic U . The inclusions may be regarded as randomly distributed, but

with identical orientation, as shown in Fig. 2.1. Meanwhile, material b is regarded as the

comparison material with unspecified morphology. Thus, we introduce [4]

εMG
hcm

= ε
b
+ fa a

a/b
•
(
I − iω faD

I /b

(
η
)

• a
a,b

)−1
, (2.35)

as the Maxwell Garnett estimate of the HCM relative permittivity of an anisotropic dielectric

composite material with

a
a/b

=
(
ε

a
−ε

b

)
•
[

I + iωD
U /b

(
η
)

•
(
ε

a
−ε

b

)]−1
, (2.36)

the polarisability dyadic and D
U /b

(
η
)(

D
I /b

(
η
))

the depolarization dyadic in the component

material b.
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Figure 2.1: Schematic image of the component particles for the Maxwell Garnett formalism.
All the ellipsoidal particles have the same shape and orientation, but randomly distributed.
(Image is reprinted from [16]).

Figure 2.2: Schematic image of the component particles for the Bruggeman formalism. All
material a and material b particles have the same ellipsoidal shape, but the shape for each
component materials are generally different. The particles for each component materials are
randomly distributed but have identical orientation. (Image is reprinted from [16]).

2.5.3 Bruggeman formalism

In the Bruggeman formalism material a and material b are treated symmetrically. That

is, both materials may be regarded as randomly distributed, but with particles identical

orientation as illustrated in Fig. 2.2. Furthermore, the shape dyadic of material a and material
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b as specified by U a and U b , respectively. Generally, U a 6=U b . Therefore, the Bruggeman

estimate is generalized as [4]

fa a
a,Br

+ fb a
b,Br

= 0, (2.37)

with polarisabilities

a
a,Br

=
(
ε

a
−εBr

hcm

)
•
[

I + iωD
U a /Br

(
η
)

•
(
ε

a
−εBr

hcm

)]−1
, (2.38)

a
b,Br

=
(
ε

b
−εBr

hcm

)
•
[

I + iωD
U b /Br

(
η
)

•
(
ε

b
−εBr

hcm

)]−1
. (2.39)

In solving the nonlinear dyadic Eq. 2.37 for εBr
hcm

, the common solution method is Jacobi

iteration [21]. Thus, the iterative solution is

εBr
hcm

(n) =z
{
εBr

hcm
(n −1)

}
, (n = 1,2, ...) , (2.40)

where

z
{
εBr

hcm

}
=

{
faε

a
•
[

I + iωD
U a /Br

(
η
)

•
(
ε

a
−εBr

hcm

)]−1 + fbε
b

•
[

I + iωD
U b /Br

(
η
)

•
(
ε

b
−εBr

hcm

)]−1
}

{
fa

[
I + iωD

U a /Br

(
η
)

•
(
ε

a
−εBr

hcm

)]−1 + fb

[
I + iωD

U b /Br

(
η
)

•
(
ε

b
−εBr

hcm

)]−1
}−1

,

(2.41)

and εBr
hcm

(0) = εMG
hcm

.

2.5.4 Strong Property Fluctuation theory

A more sophisticated approach to homogenization is provided by SPFT. As for the Bruggeman

formalism, SPFT treats the two component material symmetrically, but in higher–order

implementations of the SPFT, the shapes and orientations of both component material a

and material b particles need to be the same (i.e., U a = U b). Therefore, the Bruggeman

formalism can also be thought of SPFT, but at the lowest order of approximation. A schematic

illustration of SPFT is given in Fig. 2.3.

SPFT accommodates the distributional statistics of the particles of the component phases

contained by material a and material b. That means, the HCM constitutive parameters are

estimated by iterative refinements of the comparison material. The iterations are expressed

in term of correlation functions. The two–point covariance function 2.34 along with the

correlation length L, describes the statistical geometry of material a and material b and is

often implemented to the second order of SPFT. Thus, the second order SPFT estimates of
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Figure 2.3: Schematic image of the component particles for the SPFT. All material a and
material b particles have the same ellipsoidal shape. The particles for each component
material are randomly distributed, but have identical orientation. (Image is reprinted from
[16]).

the constitutive dyadic of the HCM is given by [22]

εSPF T [2]
hcm

= ε
cm

− 1

iω

(
I +Σ[2] • D

U /cm

(
η
))−1

•Σ[2]. (2.42)

Herein, Σ[2] is the second order mass operator provided by [23]

Σ[2] = fa fb

(
a

a/cm
−a

b/cm

)
• Dη

U /cm
•
(
a

a/cm
−a

b/cm

)
, (2.43)

with polarisability density dyadics

a
a/cm

= iω
(
ε

a
−ε

cm

)
•
[

I + iωDη

U /cm

(
η
)

•
(
ε

a
−ε

cm

)]−1
, (2.44)

a
b/cm

= iω
(
ε

b
−ε

cm

)
•
[

I + iωDη

U /cm

(
η
)

•
(
ε

b
−ε

cm

)]−1
. (2.45)

The mass operator Σ[n] is null at the zeroth and first order [9] . Hence, εSPF T [0]
hcm

= εSPF T [1]
hcm

=
ε

cm
for which the constitutive parameters of the comparison material ε

cm
are provided by

Bruggeman formalism estimation εBr
hcm

[9]. The depolarization dyadic D
U /cm

(
η
)

in 2.42 and

2.43 corresponds to component particles with the same shape dyadic U in the comparison

material.
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2.6 Conclusion

In this chapter we described the homogenization formalisms used in the later chapters of

this thesis. These mathematical constructions will be implemented for certain dielectric

materials with a view to optical sensing applications.
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Chapter 3

The Bruggeman formalism for inverse

homogenization

A composite material is formed as a mixture of component materials. Its may be regarded as

being effectively homogeneous when wavelengths are sufficiently larger than the particle

sizes of the component materials that make up the composite material. The estimation

of the constitutive parameters of such a homogenized composite material (HCM) is often

derived using a very widely applied homogenization formalism approach called the Brugge-

man formalism [2, 24], from a knowledge of the constitutive parameters of its component

materials, along with a knowledge of the distributional statistics and shapes of its component

particles [2, 22]. Applications of Bruggeman formalism are continuing to emerge, for exam-

ples, in recent developments pertaining to complex HCMs [25, 26] and negatively–refracting

metamaterials [22, 27]. However, a certain limitation of the Bruggeman homogenization

formalism was reported in 2004 for isotropic dielectric HCMs [28]. The manifestation of

physically–implausible Bruggeman estimates resulted from the choice of constitutive pa-

rameters for the component materials and independent of the distributional statistics or

shapes of the component particles. This limitation which is also relevant to active [29] and

anisotropic [30] HCMs, also extends to the Maxwell Garnett homogenization formalism

which shares a common provenance with the Bruggeman formalism [17].

In this chapter, we investigate the applicability of the Bruggeman formalism to the inverse

homogenization scenario wherein the relative permittivity of one of the component materials

is estimated from a knowledge the relative permittivities of the other component material

and the HCM. We restrict our attention to the simplest possible case of an isotropic dielectric

HCM arising from two isotropic dielectric component materials. Formal expressions have
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been established for the inverse Bruggeman formalism (and the inverse Maxwell Garnett

formalism) in the general setting of bianisotropic HCMs [31], but in certain cases these formal

expressions may be ill–posed [32] and the ranges of applicability of these inverse formalisms

have not been established. Generally, inverse problems may be ill–posed even when the

corresponding forward problems are well–posed [33]. However, the inverse Bruggeman for-

malism is fundamentally different to the forward Bruggeman formalism as further described

in Sec. 3.1 and some illustrative numerical examples in Sec. 3.2. Our study is partly motivated

by very recent implementations of the inverse Bruggeman formalism in estimating nanoscale

constitutive and morphological parameters of certain sculptured thin films [34], which is

a key step in modelling the electromagnetic response of infiltrated sculptured thin films

[35, 36].

3.1 Theory

We consider the homogenization of two isotropic dielectric component materials with relative

permittivities εa and εb . The component materials a and b are assumed to be distributed

randomly as spherical particles with volume fractions fa and fb = 1− fa , respectively. The

Bruggeman estimate of the relative permittivity of the corresponding HCM, namely εBr
hcm , is

provided via [24]

fa
εa −εBr

hcm

εa +2εBr
hcm

+ fb

εb −εBr
hcm

εb +2εBr
hcm

= 0, (3.1)

which is nonlinear in εBr
hcm . A straightforward manipulation of 3.1 delivers the explicit formula

εa =
(

fa −2 fb
)
εb +2εBr

hcm

fb
(
εb −εBr

hcm

)+ fa
(
εb +2εBr

hcm

) εBr
hcm (3.2)

for εa in terms of εb , εBr
hcm , fa and fb . Since the component materials a and b are treated in

an identical manner within the Bruggeman formalism, the corresponding formula for εb has

the same form as 3.2. Notice that as the inverse Bruggeman equation 3.2 does not involve a

square root, there is no scope for Im{εa} being nonzero if εb ,εBr
hcm ∈R. This contrasts with the

forward Bruggeman formalism where a square root term enables Im
{
εBr

hcm

}
to be nonzero

even though εa ,εb ∈R. This physically–implausible scenario can arise when εa/εb < 0 [28].

Consequently, the explicit formula 3.2 provides the inverse formalism estimate of εa or εb

whereas the forward formalism estimate of the relative permittivity of the HCM is provided

by selecting a root of a quadratic equation. Therefore, the range of applicability of the inverse
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Bruggeman formalism cannot be inferred from a knowledge of the range of applicability of

the forward Bruggeman formalism.

For comparison, we introduce the Maxwell Garnett estimate of the HCM relative permit-

tivity [24]

εMG
hcm = εb +

3 faεb (εa −εb)

εa +2εb − fa (εa −εb)
(3.3)

and its corresponding inverse

εa =
(
2+ fa

)
εMG

hcm −2 fbεb(
1+2 fa

)
εb − fbε

MG
hcm

εb . (3.4)

The limiting behaviour of the inverse Bruggeman estimate 3.2 as compared with that of

the inverse Maxwell Garnett estimate 3.4 is especially revealing. In the limit fa → 1, both

estimates yield the relative permittivity of the HCM, as they must 1. In the limit fa → 0,

the inverse Bruggeman formalism yields εa →−2εBr
hcm whereas the inverse Maxwell Garnett

formalism yields εa → −2εb . Therefore, the two inverse estimates differ markedly as fa

approaches zero, provided that εb and the relative permittivity of the HCM are sufficiently

different.

3.2 Numerical studies

For our numerical studies, we explore the inverse Bruggeman estimate 3.2, in comparison

with the inverse Maxwell Garnett estimate 3.4, by means of some illustrative numerical

examples. We consider three different scenarios. First is nondissipative homogenization

scenarios, followed by dissipative homogenization scenarios and finally the scenario when

Re
{
εBr,MG

hcm

}
/Re{εb} < 0. For nondissipative scenarios, the forward Bruggeman formalism

runs into difficulties when εa/εb < 0, but not when εa/εb > 0 [28]. Accordingly, let us begin

by focussing on the regimes εBr,MG
hcm /εb < 0 and εBr,MG

hcm /εb > 0. In Fig. 3.1, plots of εa , as de-

termined by the inverse Bruggeman formalism and the inverse Maxwell Garnett formalism,

versus fa are provided for the cases where εb = ±2 and εBr,MG
hcm = 3. When εBr,MG

hcm /εb > 0

the inverse Bruggeman and inverse Maxwell Garnett estimates are in fairly close agree-

ment. However, the values of εa yielded by the two inverse formalisms differ markedly when

εBr,MG
hcm /εb < 0, except in the limit as fa approaches unity. Most notably, the inverse Brugge-

1The Maxwell Garnett estimate of the HCM relative permittivity is only strictly applicable in the dilute
composite regime fa . 0.3. Accordingly, estimates of εa delivered by the inverse Maxwell Garnett formalism are
strictly valid only for fa . 0.3. However, εMG

hcm coincides with one of the Hashin–Shtrikman bounds on the HCM
relative permittivity which applies at all values of fa [37].
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man estimate becomes singular and undergoes a change in sign as the volume fraction

increases through fa = 0.56, whereas the inverse Maxwell Garnett value remains finite and

does not change sign.

¶b = 2

¶hcm

Br, MG
= 3

0.0 0.2 0.4 0.6 0.8 1.0
-40

-20

0

20

40

fa

¶
a

¶b = -2

¶hcm

Br, MG
= 3

0.0 0.2 0.4 0.6 0.8 1.0
-30

-20

-10

0

10

20

30

fa

¶
a

Figure 3.1: Plots of εa as determined by the inverse Bruggeman formalism (red, solid curves)
and the inverse Maxwell Garnett formalism (blue, dashed curves) versus fa for εb =±2 and
εBr,MG

hcm = 3. Estimates of εa delivered by the inverse Maxwell Garnett formalism are strictly
valid only for fa . 0.3.

Next we turn to dissipative homogenization scenarios. In the case of the forward Brugge-

man formalism, problems arise when Re{εa}/Re{εb} < 0 and the degree of dissipation is

relatively small. If Re{εa}/Re{εb} < 0 and the degree of dissipation is relatively large or if

Re{εa}/Re{εb} > 0, then the forward Bruggeman formalism was found to deliver physically–

plausible estimates of the HCM relative permittivity [28]. Accordingly, we consider the

regimes where Re
{
εBr,MG

hcm

}
/Re{εb} > 0 with the degree of dissipation in the HCM being rela-

tively small, moderate and large. Graphs of the real and imaginary parts of εa , as estimated

by the inverse Bruggeman and inverse Maxwell Garnett formalisms, are plotted versus fa in

Fig. 3.2 for the cases εb = 2 and εBr,MG
hcm = 3+δi where δ ∈ {0.1,1,10}. When the degree of HCM

dissipation is relatively small (δ= 0.1), the estimates of the real and imaginary parts of εa pro-

vided by the inverse Bruggeman and inverse Maxwell Garnett formalisms agree fairly closely.

When the degree of HCM dissipation is moderate (δ= 1), there is still fairly close agreement

between the inverse Bruggeman and inverse Maxwell Garnett values of εa for most values of

fa . Crucially, however, for fa < 0.05 the imaginary part of εa estimated by the inverse Brugge-

man formalism is negative–valued (unlike Im{εa} estimated by the inverse Maxwell Garnett

formalism which is positive–valued). Here Im{εa} < 0 is not a physically–plausible outcome

as it implies that the homogenization of an active material a and a nondissipative material b

results in a dissipative HCM. For both the real and imaginary parts of εa , the discrepancies

between the values estimated by the two inverse formalisms become enormous when the

degree of HCM dissipation is relatively large (δ= 10). Furthermore, the inverse Bruggeman
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estimate is physically implausible for a much larger range of fa values; i.e., Im{εa} estimated

by inverse Bruggeman formalism is negative–valued for fa < 0.3 when δ= 10.
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Br, MG
= 3 + 0.1i
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Figure 3.2: Plots of the real and imaginary parts of εa as determined by the inverse Bruggeman
formalism (red, solid curves) and the inverse Maxwell Garnett formalism (blue, dashed
curves) versus fa for εb = 2 and εBr,MG

hcm = 3+δi where δ ∈ {,0.1,1,10}. Estimates of εa delivered
by the inverse Maxwell Garnett formalism are strictly valid only for fa . 0.3.

Lastly, we explore the Re
{
εBr,MG

hcm

}
/Re{εb} < 0 regime. Plots of the real and imaginary

values of εa in Fig. 3.3 correspond to the same parameter values as those used for Fig. 3.2

except that here εb =−2. The estimates of the inverse Bruggeman formalism are now physi-

cally implausible due to Im{εa} < 0 for a wide range of fa values, regardless of whether the

degree of HCM dissipation is relatively small, moderate or large. In contrast, the estimate of

Im{εa} provided by the inverse Maxwell Garnett formalism is positive–valued for all scenarios

considered. Additionally, the real parts of εa delivered by the two inverse formalisms differ
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enormously except when fa approaches unity, for all degrees of HCM dissipation considered.

¶b = -2

¶hcm

Br, MG
= 3 + 0.1i

0.0 0.2 0.4 0.6 0.8 1.0
-60

-40

-20

0

20

40

60

fa

R
e
H¶

a
L ¶b = -2

¶hcm

Br, MG
= 3 + 0.1i

0.0 0.2 0.4 0.6 0.8 1.0
-40

-30

-20

-10

0

10

fa

Im
H¶

a
L

¶b = -2

¶hcm

Br, MG
= 3 + i

0.0 0.2 0.4 0.6 0.8 1.0
-20

-10

0

10

20

30

fa

R
e
H¶

a
L

¶b = -2

¶hcm

Br, MG
= 3 + i

0.0 0.2 0.4 0.6 0.8 1.0
-40

-30

-20

-10

0

fa

Im
H¶

a
L

¶b = -2

¶hcm

Br, MG
= 3 + 10i

0.0 0.2 0.4 0.6 0.8 1.0

0

20

40

60

80

100

120

fa

R
e
H¶

a
L

¶b = -2

¶hcm

Br, MG
= 3 + 10i

0.0 0.2 0.4 0.6 0.8 1.0

-80

-60

-40

-20

0

20

40

fa

Im
H¶

a
L

Figure 3.3: As Fig. 3.2 except that εb =−2.

3.3 Closing remarks

From our numerical studies, we have found that in the case of dissipative HCMs, the inverse

Bruggeman estimates of εa can be physically implausible when

(i) Re
{
εBr

hcm

}
/Re{εb} > 0 and the degree of HCM dissipation is moderate or greater; or

(ii) Re
{
εBr

hcm

}
/ Re{εb} < 0 regardless of the degree of HCM dissipation.

In the case of nondissipative HCMs, enormous discrepancies can exist between the estimates

of εa provided by the inverse Bruggeman formalism and the inverse Maxwell Garnett for-

malism when εBr,MG
hcm /εb < 0. The constitutive parameters chosen in Sec. 3.2 to illustrate the
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limitations of the inverse Bruggeman formalism were representative examples. Further nu-

merical studies for other choices of constitutive parameters conforming to scenarios (i) and

(ii) (presented in Appendix A) yielded qualitatively similar results. Therefore, we conclude

that the inverse Bruggeman formalism should be applied with great caution.

Finally, we note that in the very recent implementations of the inverse Bruggeman

formalism which motivated this study [34, 35, 36], the relative permittivity parameters were

positive–valued and the materials were nondissipative. The estimates yielded by the inverse

Bruggeman formalism in these cases seem physically plausible, but the acid test can only be

provided by suitable experimental measurements.
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Chapter 4

Sculptured thin films

4.1 Introduction

Sculptured thin films (STFs) are nanostructured materials with anisotropic and unidirection-

ally nonhomogenous which can be designed and fabricated using physical vapour deposition

(PVD) techniques. In a controllable manner, various columnar morphologies of STF can

be formed in 2D and 3D [38], which have been termed as sculptured nematic thin films

(SNTFs) [39] and thin-film helicoidal bianisotropic medium (TFHBMs) [40, 41], respectively.

For example, slanted columns, chevrons, C-shaped, S-shaped and zigzag for 2D STFs while

helixes and superhelixes are examples for 3D STFs [42]. In this chapter, we provide a rough

introduction of the simple slanted columns known as columnar thin films (CTFs) as well as

the more complex shape known as chiral sculptured thin films (CSTFs). These two types of

STF are implemented in our studies in the following chapters of this thesis. Homogenization

studies on STFs with particular to estimate their constitutive parameters are also presented

in this chapter.

4.2 Columnar thin films

CTF was first studied during the 1960s [43]. It consists of a parallel array of columnar

nanowires which may be grown on the substrate by directing the vapour flux at an angle χv

to a fixed substrate during PVD. Under certain conditions, parallel columns are oriented at

angle χ≥χv to a planar substrate [42] (see Fig. 4.1). Furthermore, through judicious control

of the vapour deposition process, both the macroscopic optical properties and the porosity

of the CTF can be tailored to order [45]. Consequently, CTFs are promising candidates as

platforms for optical sensing applications, wherein it is envisaged that the species to be
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sensed is contained within a fluid which penetrates the void regions in between the CTF’s

columns for which the column diameter can range from 10 to 300 nm.

Figure 4.1: Scanning electron micrograph of CTF. (Image is reprinted from [44])

A recent theoretical investigation highlighted the fact that surface-plasmon-polariton

(SPP) waves (see Appendix B for further details), guided by the planar interface of an infil-

trated CTF and a thin layer of metal, may be usefully harnessed for optical sensing [36]. In

this scenario, the angle of incidence required to excite an SPP wave was found to be acutely

sensitive to changes in the refractive index n` of the fluid which fills the CTF’s void regions.

Furthermore, the phase speed and propagation length of the SPP wave were also sensitive to

n`.
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