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ABSTRACT 

Adaptive Neuro Fuzzy Inference System (ANFIS) is one of those soft computing 

techniques that have solved the problems effectively in a wide variety of real-world 

applications. Even though it has been widely used, ANFIS architecture still has a 

drawback of computational complexities. The number of rules and its tunable 

parameters increase exponentially which created the problem of curse of 

dimensionality. Moreover, the standard architecture has a key drawback because of 

using grid partitioning and combination of gradient descent (GD) and least square 

estimation (LSE) which have problem to be likely trapped in local minima. Even 

though grid partitioning method is very useful to generate better accuracy for ANFIS 

model, since it generates maximum number of rules by considering all possibilit ies, 

but it also increases computational complexity. Since, ANFIS use fuzzy logic, the 

model accuracy is highly dependent on selecting the appropriate type of membership 

function. Furthermore, researchers have mainly used metaheuristic algorithms to avoid 

the problem of local minima in standard learning method. In this study, the 

experiments have been made to find out best suitable membership function for ANFIS 

model. Additionally, ANFIS architecture is modified for lessening computationa l 

complexities of the ANFIS architecture by reducing the fourth layer and reducing the 

trainable parameters as well. The proposed ANFIS model is trained by one of the 

metaheuristics approach instead of standard two pass learning algorithm. The 

performance of proposed modified ANFIS architecture is validated with the standard 

ANFIS architecture for solving classification problems. The results show that the 

proposed modified ANFIS architecture with gaussian membership function and 

Artificial Bee Colony (ABC) optimization algorithm, on average has achieved 

classification accuracy of 99.5% with 83% less computational complexity. 
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ABSTRAK 

Adaptive Neuro Fuzzy Inference System (ANFIS) adalah merupakan salah satu 

daripada teknik komputeran lembut yang telah menyelesaikan masalah secara efektif 

dalam pelbagai aplikasi dunia nyata. Meskipun teknik ini telah digunakan secara 

meluas, seni bina ANFIS masih mempunyai kelemahan komputeran kompleks. 

Bilangan rules dan parameter boleh ubah bertambah secara mendadak mengakibatkan 

masalah dimensi yang rumit berlaku. Selain itu, seni bina standard mempunya i 

kelemahan utama kerana menggunakan grid partitioning dan gabungan antara 

gradient descent (GD) dan least square estimation (LSE) yang mungk in 

mengakibatkan masalah terperangkap dalam local minima. Walaupun teknik grid 

partitioning mampu memberi ketepatan keputusan yang lebih baik, ia menjana 

bilangan rules secara maksimum dan meningkatkan masalah komputeran kompleks. 

Algoritma GD pula terkenal dengan masalah local minima. Memandangkan ANFIS 

menggunakan fuzzy logic, ketepatan model sangat bergantung kepada pemilihan 

membership function yang bersesuaian. Oleh itu, para penyelidik telah menggunakan 

algoritma metaheuristic untuk mengelakkan masalah local minima. Justeru itu, kajian 

ini telah dilakukan untuk mendapatkan nilai membership function yang terbaik untuk 

ANFIS. Di samping itu, lapisan ke empat seni bina ANFIS telah diubahsuai untuk 

mengurangkan kerumitan ANFIS dan mengurangkan bilangan parameter untuk 

dilatih. Dalam kajian ini, algoritma metaheuristic iaitu Artificial Bee Colony (ABC) 

telah digunakan menggantikan kombinasi GD dan LSE algoritma di dalam ANFIS. 

Keberkesanan model yang dicadangkan dibandingkan dengan konvensional ANFIS 

untuk menyelesaikan masalah klasifikasi. Hasil keputusan jelas menunjukkan bahawa 

model yang dicadangkan secara puratanya telah mencapai ketepatan klasifikas i 

sebanyak 99.5% beserta pengurangan terhadap masalah komputeran kompleks 

sebanyak 83%. 
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CHAPTER 1 

INTRODUCTION 

1.1  Research Background 

The recent advances in artificial intelligence and soft computing techniques have 

opened new avenues for researchers to explore their applications. These machine 

learning techniques consist of several intelligent computing paradigms, includ ing 

Artificial Neural Networks (ANN), Support Vector Machine (SVM), decision tree, 

Neuro-Fuzzy Systems (NFS), which have been successfully employed to model 

various real-world problems (Buragohain & Mahanta, 2008). These problems include 

engineering, finance, geology and bio-sciences. Because of successful interventions, 

many researchers are constantly working on training speed of these techniques. 

Among the other soft computing techniques mentioned above, ANFIS is an 

efficient combination of ANN and fuzzy logic for modeling highly non-linear, 

complex, and dynamic systems. It is used to mine the rules, during its training process, 

for a system in which building rules manually is almost impossible (Aghbashlo et al., 

2016). ANFIS is capable of handling data with uncertainty and noise. It has been 

proved that, with proper number of rules, an ANFIS system is able to approximate 

every circumstance. This is the reason, ANFIS systems are widely used and play the 

advantage of good applicability since they can be interpreted as non-linear modeling 

and conventional linear techniques for state estimation and control (Liu et al., 2013). 

However, despite its efficiency in modeling non-linear functions with significant 

accuracy, the standard learning process is difficult and involves interleaving the 

optimization of the parameters of antecedent and conclusion parts. Training antecedent 

part is more difficult than consequent part because it is based on gradient computation 
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which is computationally expensive as well as prone to falling in local optimum 

(Behmanesh et al., 2014). 

Even though ANFIS incorporates advantages of neural network and fuzzy 

logic, and overcomes shortcomings of both the techniques, Su (2011) contended that 

learning of ANFIS is a difficult task. Moreover, training the parameters of the ANFIS 

model is one of the main issues encountered when the model is applied to the real-

world problems. There is a need for effective methods for tuning the membership 

functions to minimize the output error measure or maximize performance index. Due 

to that many have proposed improved approaches, but mostly implement revision and 

selection for input-output data, and do not resolve the problem (Liu et al., 2013; Su, 

2011). To cope with this, many researchers have proposed different learning strategies 

that include derivative free training via metaheuristic algorithms, clustering input-

output data, and even modifying the structure of ANFIS architecture. 

1.2 Motivation 

ANFIS has achieved more popularity among other machine learning techniques 

because it combines the advantages of learning ability of neural network and reasoning 

ability of fuzzy logic. ANFIS architecture has been implemented to solve many highly 

non-linear complex real-world problems with high accuracy. Since tuning of ANFIS 

parameters can be termed as optimization problem, many researchers have proposed 

ANFIS training methods based on metaheuristic algorithms. Those algorithms include 

Ant Colony (AC), Particle Swarm Optimization (PSO), Firefly Algorithm (FFA), 

Cuckoo Search Algorithm (CSA), Genetic Algorithm (GA), Artificial Bee Colony 

(ABC). Most of such ANFIS learning techniques proposed by different researchers are 

employing metaheuristic algorithms for tuning membership function parameters and 

least square methods for updating linear consequent parameters. Moreover, the models 

based on ANFIS are often designed for data with less number of dimensions or with 

few inputs. ANFIS becomes computationally expensive when the number of 

dimensions increases significantly. In this case, the number of rules explodes 

exponentially and so do the parameters to be tuned. There is a need of an effic ient 

technique to train ANFIS computationally less expensive even when there is a large 

number of inputs. The architecture of ANFIS can also be modified in order to lessen 
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its computations for generating rules and producing accurate output. This research will 

modify the architecture of ANFIS in order to lessen computational complexity. The 

consequent layer contains the most number of parameters, which is equal to the 

number of inputs plus one times the number of rules [(inputs + 1) ×

numberof rules]. Additionally, the proposed modified ANFIS architecture will be 

trained by one of the metaheuristic approach which is artificial bee colony (ABC). 

Furthermore, the accuracy of ANFIS depends on how its membership function 

parameters are tuned. Therefore, this research will try different types of membership 

functions and tune these parameters so that ANFIS generates maximum accurate 

output. 

1.3 Problem Statement 

In recent years, neuro-fuzzy systems have been widely implemented which combine 

the advantages of both techniques, as well as overcome the drawbacks of each one 

individually. Considering the robustness on the results generated by ANFIS, it has 

been implemented in wide variety of applications including rule-base control systems, 

classification tasks and pattern matching. 

Even though ANFIS has produced better results as compare to other machine 

learning techniques but, the model has a major drawback of computationa l 

complexities because of grid partitioning. Grid partitioning approach divides data 

space into grids based on the number of memberships function per input.  The number 

of rules and its tunable parameters increase exponentially when the number of inp uts 

for the underlying system is significantly large. Thus, large number of inputs not only 

effects to the transparency of the model, but also increases the computationa l 

complexity. Generally, ANFIS model is suitable for data with less than 6 number of 

inputs. 

Moreover, the standard two pass learning process of ANFIS involves gradient 

based learning which is computationally expensive and prone to fall in local minima. 

The systems designed in literature generally have few inputs and ANFIS models with 

large inputs have not been implemented due to curse of dimensionality. To cope with 

this, many researchers have used metaheuristic algorithms to tune parameters of 
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ANFIS. There has been limited studies found out regarding the modification of ANFIS 

architecture in order to reduce its complexity. 

1.4 Objectives of the study 

This study embarks on the following objectives: 

(i) To propose a modified ANFIS architecture with efficient training mechanism 

and appropriate type of membership functions in order to reduce the 

computational complexity to achieve the better output for ANFIS model. 

(ii) To modify the ANFIS architecture according to (i) with artificial bee colony 

(ABC) as training algorithm and apply the best membership function to 

achieve reasonable accuracy while implemented on small to large 

dimensional classification problems. 

(iii) To evaluate the performance of modified ANFIS architecture in objective (ii) 

with the standard ANFIS architecture in terms of MSE, percentage of 

accuracy, number of trainable parameters and number of epochs. 

1.5 Scope of the Study 

This research is scoped at: 

 

This study is limited to an investigation of types and shapes of membership functions 

of ANFIS architecture to produce maximum accuracy for highly dimensional data. 

Furthermore, this research also focuses on modifying ANFIS architecture from five 

layers to four in order to reduce the complexity of the architecture and apply artific ia l 

bee colony (ABC) to optimize and train the proposed ANFIS model parameters to 

solve the problem of local minima. This research is intended to solve the classifica t ion 

problems with the dataset having small to large number of dimensions taken from 

University California Irvine Machine Learning Repository (UCIMLR) (David & Christopher, 

2007).  
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The proposed approach will be validated by comparing results with standard 

ANFIS model and modified ANFIS model with the performance measurement criteria 

of MSE, percentage of accuracy, number of trainable parameters and number of 

epochs. 

1.6 Expected Outcome 

As, any application of ANFIS demands expert knowledge of fuzzy logic, therefore, 

ANFIS structure requires better choice of membership functions. This does not only 

influence the efficiency of ANFIS-based model, but also the computational cost. 

Hence, this research discovered the best suitable membership functions for ANFIS 

architecture to implement for classification problems. Additionally, the standard 

ANFIS model contains five layers and apply gradient based learning that increase the 

computational complexities of the ANFIS model when the number of inputs become 

large. Therefore, this study proposed modified ANFIS architecture with four layers 

and ABC algorithm that can be implemented for the problems with the small to large 

number of inputs.   

1.7 Thesis Organization 

This research thesis comprises of five chapters including Introduction and Conclusion 

chapters. The followings are synopsis of each chapter.  

Chapter 1: Introduction. Apart from providing an outline of the thesis, this chapter 

contains an overview of the research background, problem to be solved, objectives to 

achieve, scope, aim, and outcome of the study.  

Chapter 2: Literature Review. This chapter explains basic ANFIS architecture and 

learning mechanism, applications and reviews some of the work on soft-computing 

techniques that has already been applied by researchers while solving problems related 

to achieve more accuracy. After reviewing literature, a critical analysis has been 

explained in terms of gaps and limitation on existing architecture of ANFIS.  

Chapter 3: Research Methodology. This chapter discusses the research methodology 

used to carry out the study systematically. First, existing work on ANFIS training and 

optimization has been analyzed and by observing the gap analysis the proposed 
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methodology is presented to explain what phases and steps will be taken in this 

research to achieve the objectives as an outcome.  

Chapter 4: Results and Analysis. Different shapes of membership functions have been 

employed to ANFIS’s architecture to find out the best membership function for ANFIS 

models. The proposed modified ANFIS model with ABC optimization algorithm have 

been evaluated with standard ANFIS model while training in terms of proficiency of 

achieving high accuracy with less computational complexity. The performance 

evaluation was carried out based on MSE, accuracy, total number of parameters and 

number of epochs. 

Chapter 5: Conclusion and Future work . The contributions of the proposed modified 

ANFIS’s architecture are summarized, and the recommendations are given for further 

continuation of work. 
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3  

4 CHAPTER 2 

LITERATURE REVIEW 

2.1      Introduction 

Artificial Neural Network (ANN) is used to compile a programming structure that 

behaves like biological neurons; which is made up of interconnected artificial neurons. 

ANN architecture consists of three layers; (i) input layer, (ii) hidden layer, and (iii) 

output layer (Venkatesan et al., 2013). To avoid any uncertainty in decisions of neural 

networks; a fuzzy logic module was used as a decision-making tool. Unlike binary 

logic that can either be True or False (0 or 1), fuzzy logic provides an attractive solution 

to the real-world challenges by introducing the concept of values that can be partially 

true and partially false to handle the imprecision and uncertainty. Because of the 

concept of fuzzy if-then rules, set theory and reasoning ability; fuzzy inference systems 

are popular computing paradigms. The three main parts in a fuzzy system are, (i) 

fuzzification, (ii) inference, (iii) de-fuzzification (Abdulshahed et al., 2014). Despite 

the fact that it is extremely convenient to express the information as an arrangement 

of if-then rules, there is no systematic way to make this conversion (Jovanovic et al., 

2004). However, ANFIS, as the name suggests, it is an adaptive network with the 

combination of neural network and fuzzy logic. This relationship eliminates the 

limitations of both techniques by combining the advantages of both techniques. To 

train and update parameters; ANFIS applies the hybrid learning algorithm which is a 

combination of least-square method and gradient descent method to identify the 

parameters of FIS (Walia et al., 2015).   

This chapter is organized in the following order: Section 2.2 defines the 

fundamentals and working structure of neural network and fuzzy logic. In Section 2.3, 
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