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ABSTRACT

In this thesis, new and effective operational methods based on polynomials and

wavelets for the solutions of FDEs and systems of FDEs are developed. In particular

we study one of the important polynomial that belongs to the Appell family of

polynomials, namely, Genocchi polynomial. This polynomial has certain great

advantages based on which an effective and simple operational matrix of derivative

was first derived and applied together with collocation method to solve some singular

second order differential equations of Emden-Fowler type, a class of generalized

Pantograph equations and Delay differential systems. A new operational matrix of

fractional order derivative and integration based on this polynomial was also

developed and used together with collocation method to solve FDEs, systems of

FDEs and fractional order delay differential equations. Error bound for some of the

considered problems is also shown and proved. Further, a wavelet bases based on

Genocchi polynomials is also constructed, its operational matrix of fractional order

derivative is derived and used for the solutions of FDEs and systems of FDEs. A

novel approach for obtaining operational matrices of fractional derivative based on

Legendre and Chebyshev wavelets is developed, where, the wavelets are first

transformed into corresponding shifted polynomials and the transformation matrices

are formed and used together with the polynomials operational matrices of fractional

derivatives to obtain the wavelets operational matrix. These new operational matrices

are used together with spectral Tau and collocation methods to solve FDEs and

systems of FDEs.
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ABSTRAK

Dalam tesis ini, kaedah operasi baru dan berkesan berdasarkan polinomial dan

wavelet untuk penyelesaian persamaan pembezaan pecahan (PPP) dan sistem PPP

dibangunkan. Khususnya, kami mengkaji satu polinomial penting yang tergolong

dalam keluarga Appell, iaitu Genocchi polinomial. Polinomial ini mempunyai

kelebihan tertentu dimana matriks operasi yang berkesan dan mudah buat pertama

kalinya diperolehi dan digunakan bersama-sama dengan kaedah kolokasi untuk

menyelesaikan persamaan pembezaan terbitan kedua jenis Emden-Fowler, persamaan

Pantograph umum dan sistem persamaan pembezaan tertunda. Satu matriks operasi

baru pembezaan dan kamiran pecahan yang berdasarkan polinomial ini juga telah

dibangunkan dan digunakan bersama-sama dengan kaedah kolokasi untuk

menyelesaikan PPP, sistem PPP dan persamaan pembezaan tertun da terbitan

pecahan. Ralat batas untuk beberapa masalah juga ditunjukkan dan dibuktikan.

Tambahan pula, satu basis wavelet berdasarkan polinomial Genocchi juga dibina,

matriks operasi pembezaan peringkat pecahan diperolehi dan digunakan untuk

penyelesaian PPP dan sistem PPP. Pendekatan baru untuk mendapatkan matriks

operasi pembezaan peringkat pecahan berdasarkan Legendre dan Chebyshev wavelet

juga dibangunkan, di mana, wavelet digubal daripada polinomial anjakan yang

sepadan dan matriks transformasi dibentuk dan digunakan bersama dengan

polinomial matriks operasi pembezaan peringkat pecahan untuk mendapatkan wavelet

matriks operasi. Matriks operasi baru ini digunakan bersama-sama dengan kaedah

Tau dan kaedah kolokasi spektrum untuk menyelesaikan PPP dan sistem PPP.
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CHAPTER 1

INTRODUCTION

1.1 Background

The concept of fractional calculus was first mentioned in a letter exchange traced

back between Leibniz and L’Hopital [106, 147]. Leibniz introduced the notation dny
dxn

(still used today) for nth order derivative with the assumption that n ∈ N, and reported

this to L’Hopital. In his letter L’Hopital posed the question to Leibniz "...What would

be the result if n = 1
2?”, Leibniz in his reply, dated 30th September 1695, writes "...

this is an apparent paradox from which, one day, useful consequences will be drawn.

Since there are little paradoxes without usefulness. ..." [106, 147]. S. F. de Lacroix

was the first to introduced the fractional derivatives in published text in the year 1819.

Subsequent contributions to fractional calculus were made by many great

mathematicians of the time. Excellent summary of key milestones in the history of

fractional calculus can be found in [109, 128]. Moreover, in a survey report [109], J.

T. Machado, V. Kiryakova and F. Mainardi have comprehensively listed the major

documents and key events in this area of mathematics since 1974 up to April 2010.

Fractional calculus has long and rich history, but due to lack of suitable physical and

geometrical interpretations, it remained unfamiliar to applied scientists up to recent

years and was considered mathematical curiosities, not useful for solving problems

arising from applied sciences. Several attempts have been made to provide physical

and geometric interpretations for fractional operators. However, these interpretations

are limited to only a small collection of selected applications of fractional derivatives
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and integrals in the context of hereditary effects and self-similarity. Podlubny in [135]

proposed a convincing physical and geometric interpretation of fractional derivatives

and integrals. The authors in [84] interpret the geometrical meaning of the fractional

order derivatives of any function.

There are several competing definitions of fractional derivatives and integrals.

Some of them include, the Riemann-Liouville, the Caputo, the Hadamard, the

Marchaud, the Granwald-Letnikov, the Erdelyi-Kober and the Riesz-Feller fractional

derivatives and integrals. In general, these definitions are not equivalent except for

some special cases. The most frequently used definition of fractional derivative and

integral is due to B. Riemann and J. Liouville [134], commonly known as the

Riemann-Liouville fractional derivative (integral). But in some situations, this

approach is not useful due to lack of physical interpretation of initial and boundary

conditions involving fractional derivatives, and also the Riemann-Liouville approach

may yield derivative of a constant different from zero. A useful alternative to

Riemann-Liouville derivative is the Caputo fractional derivative, introduced by

Caputo in [28] and adopted by Caputo and Mainardi in the context of the theory of

viscoelasticity [27].

For almost three centuries fractional calculus had been treated as an interesting, but

abstract, mathematical concept. It had significantly been developed within pure

mathematics. However the applications of the fractional calculus just emerged in last

few decades in several diverse areas of sciences, such as physics, bio-sciences,

chemistry and engineering. It is realized widely that in many situations fractional

derivative based models are much better than integer order models. Being nonlocal in

nature, the fractional derivatives provide an excellent tool for the understanding of

memory and hereditary properties of various materials and processes. This is the

main advantage of fractional derivatives in comparison with classical integer order

derivatives. A new application field for fractional calculus is psychological and life

sciences, to characterize the time variation of emotions of people [7, 159]. In addition

to the above mentioned applications, there are several applications of fractional

calculus within different fields of mathematics itself. For example, the fractional

operators are useful for the analytic investigation of various spacial functions [90, 91].
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There are several collections of articles such as [74, 150], which exhibit wide variety

of applications of fractional calculus and present many of the key developments of the

theory.

The mathematical modelling and simulation of systems and processes, based on the

description of their properties in terms of fractional derivatives, naturally lead to the

formation of systems of differential equations of fractional order and to the necessity

of solving such systems. However, effective general methods for solving them cannot

be found even in the most useful works on fractional derivatives and integrals.

Recently, orthogonal wavelets bases are becoming more popular for numerical

solutions of differential equations due to their excellent properties such as ability to

detect singularities, orthogonality, flexibility to represent a function at different levels

of resolution and compact support. In recent years, there has been a growing interest

in developing wavelet based numerical algorithms for solution of fractional

differential equations. Wavelets have been successfully applied for the solutions of

ordinary and partial differential equations, integral equations, and integro-differential

equations of arbitrary order. Therefore, the main focus of this present research is the

application of different wavelets techniques as well as polynomials techniques for

solving systems of fractional differential equations.

1.1.1 Fractional Calculus

In the following, we study the most commonly used definitions of fractional

integration and differentiation together with their important properties. We begin with

the Riemann-Liouville fractional integration.

1.1.1.1 The Riemann-Liouville Fractional Integration

The common approach to define a fractional order integration is by the use of the well

known Cauchy’s integral formula for n-fold integral, i.e

Iα
a f (x) =

x∫
a

xn−1∫
a

· · ·
x1∫

a

f (x0)dx0 · · ·dxn−1dxn =
1

(n−1)!

x∫
a

(x− s)n−1 f (s)ds (1.1)
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where f ∈ L2[a,b], a,b∈R. With the help of the generalization of factorial function to

Gamma function one can replace n in (1.1) with an arbitrary real number α provided

that the integral on right side converges. Thus, it is natural to define the fractional

integral as follows:

Definition 1.1.1 [134] Let f ∈ L1[a,b], α ∈ R+, the Riemann-Liouville fractional

integral operator of order α is defined as

Iα
a f (x) =

1
Γ(α)

x∫
a

(x− τ)α−1 f (τ)dτ, ∀x ∈ [a,b] (1.2)

where Γ(.) is the well known Gamma function, when α = 0 then we have, Iα
a = I

identity operator.

We should also note that for arbitrary lower limit (1.2) is the Riemann version of

fractional integral and for infinite lower limit, i.e., for a = −∞, (1.2) is the Liouville

version of fractional integral. The case when a = 0, i.e Iα
0 is called the

Riemann-Liouville fractional integral. On the other hand, if we keep lower limit

arbitrary, take upper limit to ∞ and replace kernel in (1.2) with (s− x)α−1 then the

resulting integral operator, for a reasonable class of functions, is called the Weyl

fractional integral of order α [83] and is usually denoted by xW α
∞ .

Lemma 1.1.2 [134] If α ≥ 0, β > −1, then the Riemann-Liouville fractional

integral of the function (x−a)β is given by

(Iα
a (x−a)β )(t) =

Γ(β +1)
Γ(β +α +1)

(t−a)β+α .

Before we discuss about the important property known as semi group property for the

Riemann-Liouville fractional integral, we need the following theorem.

Theorem 1.1.3 [46] Let α ≥ 1 and f ∈ L1[a,b]. Then, Iα
a f ∈C[a,b].

Lemma 1.1.4 [89] Let α,β ∈ R+⋃{0} and f ∈ L1[a,b]. Then

Iα
a Iβ

a f (x) = Iα+β
a f (x) = Iβ

a Iα
a f (x) (1.3)

holds almost everywhere on [a,b]. Further, if f ∈ C[a,b] or α +β ≥ 1, then (1.3) is

identically true ∀x ∈ [a,b].
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1.1.1.2 The Riemann-Liouville Fractional Derivatives

With the concept of fractional integrals in mind, the notion of fractional order

derivatives and some of their important basic properties is developed as follows.

Let Dn denotes the nth order differential operator with D1 = D. Then the fundamental

theorem of integer order calculus becomes;

DIa f = f (1.4)

n−fold application of (1.4) yields the following relation

DnIn
a f = f , n ∈ N. (1.5)

Replacing n in (1.5) by m−n with n < m , m ∈ N, we have

Dm−nIm−n
a f = f . (1.6)

Taking nth derivative of both sides of (1.6), we have

Dn f = DnDm−nIm−n
a f = DmIm−n

a f . (1.7)

This relation is still valid and meaningful, for some reasonable class of functions, if n is

replaced by α ∈R provided that m≥ dαe. Using the semigroup property of fractional

integrals together with the index law of classical derivative D and the fact that D is

inverse of I, we have

Dα f = DmIm−α
a f .

It is worth noting that the operator defined in this way depends on the choice of lower

limit a of fractional integral operator involved. Thus, fractional order derivative of a

function is defined as follows.

Definition 1.1.5 [89] Let α ∈ R+, and m an arbitrary integer such that m > α and

f ∈Cm[a,b]. The Riemann-Liouville fractional derivative of order α denoted by rDα

is defined by
rDα f = Dm

a Im−α
a f . (1.8)
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Without loss of generality one can consider the narrow condition m = dαe or m−1≤

α < m. Also in view of (1.7), the operator rDα
a coincides with classical nth order

derivative operator when α is replaced with a positive integer.

Lemma 1.1.6 [89] Let α ≥ 0, β >−1, the Riemann-Liouville fractional derivative

of a function (x−a)β is given by

(rDα
a (x−a)β )(t) =

Γ(β +1)
Γ(β −α +1)

(t−a)β−α .

Note: when β = α− i, with i = 1,2, · · · ,dαe+1, we have rDα
a (x−a)α−i = 0.

In the following, the composition relation between Riemann-Liouville fractional

derivatives and integral is shown.

Lemma 1.1.7 [134] If α,β ∈ R+, α > β and f ∈ L1[a,b], then rDβ
a Iα

a f = Iα−β
a f

holds almost everywhere on [a,b].

Proof. Using Definition 1.1.5 and semigroup property of fractional integrals, we have

rDβ
a Iα

a f =r DdβeIdβe−β
a Iα

a f = Iα−β f .

�

When α = β it immediately follows from above Lemma that the Riemann-Liouville

fractional derivative is left inverse to fractional integral operator. For some restricted

class of functions the Riemann-Liouville fractional derivative is also right inverse of

fractional integral. The following Lemma is of great importance.

Lemma 1.1.8 [134] Suppose that m−1 < α ≤ m, m ∈ N, then,

rDα
a Iα

a f (x) = f (x) (1.9)

Iα
a (

rDα
a f (x)) = f (x)−

m−1

∑
i=0

f (i)(0+)
xi

i!
. (1.10)
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1.1.1.3 The Caputo Fractional Derivative

The Riemann-Liouville fractional differential operators have played a significant role

in the development of the theory of differentiation and integration of arbitrary order.

However, there are certain disadvantages of using the Riemann-Liouville fractional

derivatives for modeling the real world phenomena. In Lemma 1.1.6 when β = 0

and f (t) = C(t − a)β , one can easily see that the fractional derivative of constant,

(rDα
a (C))(t) = C(t−a)−α

Γ(1−α) is a function of t and is never zero except for a = −∞. But

for most of the physical applications the lower limit is required to be a finite number.

Its is also noted that the initial value problems for fractional differential equations

with the Riemann-Liouville approach leads to the initial conditions involving fractional

derivative at lower limit. Mathematically, such problems can successfully be solved.

Being familiar with interpretation of real world problems with classical derivatives, it

is commonly known up till now we do not have any known physical interpretation of

initial conditions involving fractional derivatives. Applied problems, modeled using

fractional operators, require an approach to fractional derivatives which can utilize

physically meaningful initial conditions involving classical derivatives. To cope with

these situations, Caputo in [28] introduced another definition of fractional derivative

and later in 1969 Caputo and Mainardi used it in the framework of viscoelasticity

theory [27]. In what follows, the formal definition of the Caputo derivative and its

relations with the Riemann-Liouville fractional integral and derivative is given.

Definition 1.1.9 [89] Let α ∈ R+ and f ∈ Cm[a,b], m = dαe. Then the Caputo

fractional derivative of order α is defined by

Dα
a f (x) = Im−αDm f (x) (1.11)

for m = α the equation yields Dα
a f (x) = Dm f (x). Thus for integer values of α , the

Caputo fractional derivative becomes the conventional derivative.

It is obvious from definition of Caputo derivative that Dα
a (C) = 0, where C is constant.

The definitions of fractional derivative, both in the sense of Riemann-Liouville and

Caputo, utilize the definition of Riemann-Liouville fractional integral but the order

of fractional integration with integer differentiation is interchanged. Also, note that
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both in the definition of the Riemann-Liouville fractional derivative and the Caputo

fractional derivative it is required that m = dαe. This condition is not strict in the

case of the Riemann-Liouville definition of fractional derivative. one may chose any

integer m such that m≥ α . However in the case of the Caputo fractional derivative, the

condition m ≥ dαe may not be used. Another difference between Riemann-Liouville

and caputo fractional derivatives is that the Riemann-Liouville fractional derivative

exists for a class of integrable function while the existence of the Caputo fractional

derivative requires the integrability of m times differentiable functions. This can be

seen from following Lemma.

Lemma 1.1.10 [46] If α ≥ 0 and f (x) = (x− a)β , m = dαe, where dαe denote

the smallest integer greater than or equal to α and bαc denotes the largest integer less

than or equal to α , then

Dα
a f (x)=

 0, β ∈ N∪{0} and β < dαe
Γ(β+1)

Γ(β+1−α)(x−a)β−α , β ∈ N∪{0} and β ≥ dαe or β /∈ N and β > bαc.

Similar to the integer order differentiation, the Caputo factional differential operator is

a linear operator, Since,

Dα(λ f (x)+µg(x)) = λDα f (x)+µDαg(x) (1.12)

where λ and µ are constants. We end this subsection by recalling the definition of

fractional derivative due to Grunwald-Letnikov

1.1.1.4 Grunwald-Letnikov Fractional Derivative

The Grunwald-Letnikov fractional derivative is defined as [134]

aDα
x f (x) = lim

h→0
h−p

n

∑
r=0

nh=x

(−1)r
(

p
r

)
f (x− rh). (1.13)
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1.1.2 Wavelets

The origin of wavelets goes back to the beginning of 20th century, when Alfred Haar

in 1910 constructed an orthonormal system of functions on the unit interval [0,1]

which led to the development of a set of rectangular basis functions [62]. Historically,

the concept of wavelets was formally introduced at the beginning of eighties by J.

Morlet, a French geophysical engineer, as a family of functions constructed by

translation and dilation of single function, called the mother wavelet [62, 99, 143].

The reason behinds the discovery of wavelets is that Fourier series represents

frequency of a signal, but it does not model its localized features appropriately. This

is because the building blocks of Fourier series, the sine and cosine functions, are

periodic waves which continue forever.

The wavelet theory have drawn great deal of attention from scientists working in

various disciplines because of its comprehensive mathematical power and wide range

applications in science and engineering. Particularly, wavelets are very useful in

signal processing, image processing, edge extraction, computer graphics,

approximation theory, biomedical engineering, differential equations, numerical

analysis, etc. Wavelets are special kind of functions which exhibit oscillatory

behavior for a short period of time and then become zero. Wavelets are constructed

from dilation and translation of single function ψ(t), called mother wavelet and thus

generating a two parameter family of functions ψa,b(t). ψa,b(t) is defined as follows.

ψa,b(x) =
1√
|a|

ψ

(
x−b

a

)
, a,b ∈ R, a 6= 0

where a is dilation parameter and b is translation parameter. If |a| < 1, then ψa,b

is compressed form of mother wavelet and corresponds to higher frequencies. On

the other hand, for |a| > 1 the wavelet ψa,b corresponds to lower frequencies. More

precisely, the following is the definition of wavelets:

Definition 1.1.11 [41] A function ψ ∈ L2(R) is admissible as a wavelet if and only

if

Aψ =

∞∫
−∞

|ψ̂(ω)|2

|ω|
dω < ∞
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where ψ̂ is the Fourier transform of ψ .

The admissibility condition requires that Aψ is finite, this means ψ̂(0) = 0, i.e

the mean value of ψ should vanish;
∞∫
−∞

ψ(s)ds = 0.

The continuous wavelets are not useful for many practical purposes. In particular they

do not form basis. For that reason, wavelets are discretized by fixing the positive

constants a0 > 1, b0 > 0 and setting a = a−k
0 , b = nb0a−k

0 where n, k ∈ N. Thus, the

following family of discrete wavelets are defined as

ψk,n(x) = |a0|
1
2 ψ(ak

0x−nb0).

Usually a0 is chosen to be 2 and b = 1. Ingrid Daubechies gave solid foundations for

wavelet theory. In [40], she provided major break through by constructing a system of

orthonormal wavelets with compact support. The Haar wavelet is the simplest example

of orthogonal wavelets compactly supported on the interval [0,1] and was constructed

by Haar in 1910 in his Ph.D. dissertation [62].

1.1.2.1 Haar Scaling Functions

In discrete wavelet transform we consider two sets of functions, scaling functions and

wavelet functions. The Haar scaling function hφ is defined on interval [0,1] as

h
φ(x) = χ[0,1)(x) =

 1, x ∈ [0,1)

0, elsewhere
(1.14)

which is a characteristics function of the interval [0,1). The translates of Haar scaling

function {hφ(x− k)}k∈Z form an orthonormal set of functions. That is

∫
R

h
φ(x−m)h

Φ(x−n) = δm,n.

The subspace of L2(R) spanned by translates of the Haar scaling functions is denoted

by V0. Scaling translates of φ(x) by 2i, we get the functions hφi,k = 2
i
2 (hφ(2ix− k))

supported on the dyadic sub-intervals I j,k = [k2− j,(k+1)2− j), j,k ∈Z. For fixed i, the

functions {hφi,k} are orthonormal among themselves and the space spanned by {hφi,k}
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is denoted by Vi. The Haar scaling function hφ satisfies the dilation equation

h
φ(x) =

√
2

∞

∑
k=−∞

ckφ(2x− k) (1.15)

where ck is given by

ck =
√

2
∞∫
−∞

(h
φ(s))(h

φ(2s− k))ds (1.16)

evaluating (1.16) we have

c0 =
1√
2
, c1 =

1√
2

and ck = 0, ∀k > 1. Therefore, the dilation equation becomes

h
φ(x) =h

φ(2x)+h
φ(2x−1). (1.17)

The spaces spanned by the scaling functions, define a multiresolution representation

in L2(R). The idea of multiresolution is to express functions in L2(R) as limit of

successive approximations. These successive approximations use different levels of

resolutions. In the following subsection, we define multiresolution analysis.

1.1.2.2 Multiresolution Analysis (MRA)

As a more general framework we explain Mallat’s Multiresolution Analysis (MRA).

The MRA is a tool for a constructive description of different wavelet bases.

Definition 1.1.12 A multiresolution analysis is a sequence {Vj} j∈Z of closed

subspaces of L2(R), that satisfy the following conditions;

(i). The sequence {V j} j∈Z is nested, i.e · · ·V−1 ⊂V0 ⊂V1 ⊂ ·· · ⊂Vn ⊂Vn+1 ⊂ ·· ·

(ii).
⋃

i∈Z
Vi is dense in L2(R), i.e

⋃
i∈Z

Vi = L2(R)

(iii).
⋂

i∈Z
Vi = {0}

(iv). f (x) ∈Vi if and only if f (2x) ∈Vi+1

(v). There exists a function φ ∈V0 such that {hφ0,k =
h φ(x−k), k∈Z} is a Riez basis

for V0, that is, for every f ∈ V0, there exists a unique sequence {ck}k∈Z ∈ l2(Z)
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such that f (x) = ∑
k∈Z

ch
kφ(x− k) with convergence in L2(R) and there exist two

positive constants M,N independent of f ∈V0 such that

M ∑
k∈Z
|ck|2 ≤ ‖ f‖2 ≤ N ∑

k∈Z
|ck|2

where 0 < M < N < ∞.

The subspaces {Vi}i∈Z of L2(R) spanned by the sets of functions φi,k is a MRA. Thus

the Haar scaling function generates the MRA.

1.1.2.3 Haar Wavelets

Based on the relation Vj ⊂ Vj+1 we are interested in the decomposition of Vj+1 as

an orthonormal sum of Vj and its orthogonal complement. For j = 0, the space V0 is

spanned by the integer translates of scaling function hφ . This observation motivates for

the construction of a function ψ(x) whose translate form the basis for the orthogonal

complement V⊥0 of V0. The function ψ should be member of V1 and orthogonal to V0.

The simplest ψ that fulfills these requirements is ψ(x) = χ[0, 1
2 ]
− χ[ 1

2 ,1]
and is referred

as Haar wavelet function. The translates of ψ i.e. {ψ(x− k)}k∈Z form an orthonormal

set. Furthermore it is easy to see that the system {ψ(x− k)}k∈Z forms basis for the

space V⊥0 . For each pair of j,k ∈ Z, the dilated translates of ψ are given as

ψ j,k(x) = 2
j
2 ψ(2 jx− k). (1.18)

The functions ψ j,k(x) are compactly supported on the dyadic intervals I j,k, j,k ∈ Z.

For fixed j ∈Z, we define V⊥j as the orthogonal complement of Vj ⊂Vj+1. The system

{ψ(x− k)}k∈Z, forms an orthonormal basis of the complementary space V⊥j .

1.2 Problem Statements

FDEs have attracted considerable interests because of their ability to formulate

complex phenomena in the fields of physics, chemistry, engineering, aerodynamics,

electrodynamics of complex medium, polymer rheology and etc, [6, 89, 134]. Due to
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their extensive applications, considerable interest in developing numerical schemes

for their solutions is becoming very attractive research area, as such, several methods

are established. Adomian decomposition method [140], variational iteration method

[177], homotopy perturbation method [126] and predictor-corrector method [47] are

some of the famous methods. The idea of approximating the solutions of FDEs by

family of basis functions have been widely used and it turns out to yield very good

results when compared with some other existing methods. The most commonly used

functions are Block pulse functions [98, 179], Legendre polynomials [149],

Chebyshev polynomials [50], Laguerre polynomials [2, 22, 23] and so on.

Furthermore, wavelets are just another basis sets that offers considerable advantages

over alternative basis sets and allow us to tackle problems not accessible with

conventional numerical methods, these main advantages are discussed in [60].

Legendre wavelets [77, 144, 163], chebyshev wavelets [182] and Bernoulli wavelets

[85] are few examples of the wavelets methods applied for solving FDEs. However, it

should be noted that much of the researches published to date, concerning exact and

numerical solutions of FDEs are devoted to the initial value problems or boundary

value problem for single FDEs. The systems of fractional differential equations has

received less attention in this regard, despite the fact that most of the real world

processes modeled using fractional calculus results in systems of fractional

differential equations. Therefore, it is the purpose of this research to propose an

effective and simple operational method for the solution of systems of fractional

differential equations.

1.3 Objectives

The main objectives of this research is to investigate the applications of wavelets

operational algorithms on systems of FDEs in particular, the specific objectives are:

(i) To develop new and efficient polynomials and wavelets operational algorithms

(i.e Genocchi polynomials) for the solution of FDEs and systems of FDEs.

(ii) To derive more simpler method of obtaining operational matrix of fractional

derivative for some of the existing wavelets (Legendre and Chebyshev wavelets)
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for the solution of FDEs and systems of FDEs.

(iii) To Investigate the error bounds of the approximate solutions using these

polynomials and wavelets operational method for the FDEs and systems of

FDEs.

1.4 Scope of Study

In this research, we will focus on polynomials and wavelets operational matrix of

fractional order derivatives of Genocchi, Legendre and Chebyshev polynomials and

wavelets bases. We will show a new simple algorithms based on these bases, its

accuracy and effectiveness when solving systems of fractional differential equations

through some error analysis. Many numerical examples are considered to clearly

justify the accuracy of the new algorithms in comparison with other methods.

1.5 Main Contributions

This present research provides a new algorithms based on the Genocchi polynomials

and wavelets, Legendre wavelets and Chebyshev wavelets for the solution of FDEs

and systems of FDEs. Therefore, the novelty of this work goes to the new developed

wavelets operational method based on Genocchi polynomials and the modification

made on the Legendre and Chebyshev wavelets operational algorithms, in which new

way to obtain the wavelets operational matrices of fractional derivatives is developed.

1.6 Thesis Outline

This thesis consists of six chapters. First chapter is the brief introduction and

background of the research as well as the objectives of the research. Chapter two

highlights the information from the previous works relevant to this research in order

to have a deeper understanding of the scope in this thesis. In Chapter three, we

introduce the operational method for solving FDEs where we will focus on the

methods followed by previous literature to obtain operational matrices of fractional
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order derivative and its application in solving FDEs and systems of FDEs. In Chapter

four, The Genocchi polynomials and Genocchi wavelets are introduced together with

their operational matrices which is applied through collocation method to solve

several FDEs and systems of FDEs. While in chapter five, new way to obtain

Legendre and Chebyshev wavelets operational matrices of fractional derivative

through wavelets-polynomial transformation is shown and applied together with

collocation method to obtain solutions of FDEs and systems of FDEs. Conclusion and

recommendations are given in Chapter six.
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CHAPTER 2

LITERATURE REVIEW

2.1 Introduction

In this chapter, the current state of knowledge in the analytical and numerical

approaches for solving FDEs and systems of FDEs is explored. The mathematical

modelling of numerous processes in various areas of science and engineering using

fractional derivatives naturally leads to the formation of FDEs. Although the

fractional calculus has a long history and has been applied in various fields of study,

the interest in the study of FDEs and their applications has attracted the attention of

many researchers and scientific societies beginning only in the last three decades.

However, the exact solutions of most of the FDEs can not be found easily, thus

analytical and numerical methods must be used.

2.2 Analytical Methods for Solving FDEs

Various analytical methods for solving FDEs problems are employed by many

researchers, the most used methods include the Adomian decomposition method

(ADM) and the homotopy perturbation method (HPM). For example, in [4, 122, 141]

ADM is used to solve fractional diffusion equations and linear and nonlinear

fractional differential equations, respectively. In [76] the authors presented an

enhanced HPM to obtain an approximate solution of FDEs, and Abdulaziz et al. [5]
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extended the application of HPM to systems of FDEs. However, the convergence

region of the corresponding results is rather small. S.J. Liao in

[100, 101, 102, 103, 104] used the basic ideas of the homotopy in topology to come

up with a general analytic method for nonlinear problems, known as, Homotopy

Analysis Method (HAM). This method has been successfully applied to solve many

types of nonlinear problems in science and engineering, such as the viscous flows of

non-Newtonian fluids [65], the Kdv equations [1], higher dimensional initial

boundary value problems of variable coefficients [79], linear and nonlinear fractional

partial differential equations are solved in [3]. Using HAM, the solutions of some

Schrodinger equations are exactly obtained in the form of convergent Taylor series [9]

and finance problems [188]. The HAM contains a certain auxiliary parameter h which

provides a simple way to adjust and control the convergence region and rate of

convergence of the series solution. Another powerful method which can also give

explicit form for the solution is the variational iteration method (VIM). It was

proposed by He [69, 70], and other researchers have applied VIM to solve various

problems in [66, 67, 68]. Also, Song et al. [160] used VIM to obtain approximate

solution of the fractional Sharma-Tasso-Olever equations. Yulita Molliq et al.

[118, 119] solved fractional Zhakanov-Kuznetsov and fractional heat and wavelike

equations using VIM to obtain the approximate solution have shown the accuracy and

efficiency of VIM. Nevertheless, VIM is only valid for short time interval for solving

the fractional system. In [183], a modification of VIM to overcome this weakness is

proposed.

2.3 Numerical Methods for Solving FDEs

Several methods for the approximate solutions to classical differential equations are

extended to solve differential equations of fractional order numerically. These methods

include, generalized differential transform method [127], finite difference method [96],

fractional linear multi-step method [107], extrapolation method [48] and predictor-

corrector method [47].
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2.3.1 Polynomial and Orthogonal Functions Operational Methods

Recently, the idea of approximating the solutions of FDEs by family of orthogonal

basis functions have been widely used, Saadatmandi and Dehghan [149] introduced

shifted Legendre operational matrix for fractional derivatives and applied it with

spectral methods for numerical solution of multi-term linear and nonlinear FDEs.

Doha et al. [50] derived a new formula expressing explicitly any fractional order

derivatives of shifted Chebyshev polynomials of any degree in terms of shifted

Chebyshev polynomials themselves, and used it together with tau and collocation

spectral methods to find an approximate solutions for multi-term linear and nonlinear

FDEs, Atabakzadeh et al. [14] used the operational matrix of Caputo fractional-order

derivatives for Chebyshev polynomials to solve a system of FDEs, Bhrawy et al. [21]

used a quadrature shifted Legendre tau method for treating multi-order linear FDEs

with variable coefficients, Doha et al. [50] introduced shifted Chebyshev operational

matrix and applied it with spectral methods for solving multi-term linear and

nonlinear FDEs subject to initial and boundary conditions, Doha et al. [51] also

introduce the shifted Jacobi operational matrix of fractional derivative which is based

on Jacobi tau method for solving numerically linear multi-term FDEs with initial or

boundary conditions. They also introduce a suitable way to approximate the nonlinear

multi-term fractional initial or boundary value problems on the interval [0,L], by

spectral shifted Jacobi collocation method based on Jacobi operational matrix. In [2]

a new approach implementing Laguerre operational matrix in combination with the

Laguerre collocation technique is introduced for solving nonlinear multi-term FDEs,

where as in [23] the authors derived the operational matrix of Riemann-Liouville

fractional integration of Modified generalized Laguerre polynomials (MGLP) and

applied it for approximating the linear FDEs on the half-line. Furthermore, the

operational matrix of Caputo fractional derivatives of MGLP is used in combination

with the spectral tau scheme for approximating linear FDEs, and with the

pseudo-spectral scheme for approximating nonlinear FDEs on the half-line [22] in

which it was stated that the Laguerre operational matrix and the generalized Laguerre

operational matrix [18] can be obtained as special cases of MGLP.

Bernstein’s approximation is used in [156, 157] to find the stable solution of the
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problem of Abel inversion, while in [132] Bernstein operational matrix of fractional

order integration is developed and is applied for solving linear and non linear FDEs.

Bernoulli and Euler polynomials are also very important functions when it comes to

an arbitrary function approximation, they are not based on orthogonal functions but

they posses both operational matrix of derivative and integration. In [137] the

properties of Bernoulli polynomials are used to construct the operational matrices of

integration together with the derivative and product to approach differential equations.

Tohidi et al [162] they used collocation method based on Bernoulli operational matrix

of derivatives for the numerical solution of the generalized pantograph equation with

variable coefficients subject to initial conditions. New operational matrix based on

hybrid Bernoulli and Block-Pulse functions has been developed to approximate the

solution of system of linear Volterra integral equations in [64]. Euler polynomials

operational matrix of derivative and integration also played an important role in

solving FDEs and fractional integral equations for instance some works that used

Euler polynomials as basis for numerically solving integral, differential, and

integro-differential equations. In [113, 114], operational matrices for integration and

differentiation of Euler polynomials are introduced. A new operational matrix of

differentiation for these polynomials are also used via collocation method to convert

nonlinear fractional Volterra integro-differential equations to the associated systems

of algebraic equations in [115]. In [112] the authors used the Euler polynomials to

construct the approximate solutions of the second-order linear hyperbolic partial

differential equations with two variables and constant coefficients in which a formula

expressing explicitly the Euler expansion coefficients of a function with one or two

variables is proved. The authors also show explicit formula which expresses the two

dimensional Euler operational matrix of differentiation Application of these formulae

for reducing the problem to a system of linear algebraic equations with the unknown

Euler coefficients, is then explained.

Another interesting method is to divide the interval into a collection of sub-intervals

and construct a generally distinct approximating polynomial on each sub-interval.

This is called B-spline function. We may note that the "B" in B-spline stands for

basis. Spline functions are instances of a piecewise polynomial function associated

with a partition of an arbitrary interval. Approximation by functions of this type is
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called piecewise-polynomial approximation. The main applications of B-splines arise

in computer-aided design, computer graphics, geometric modeling and many other

different subjects [52]. With the help B-spline collocation techniques many authors

suggested the operational matrix of fractional derivative to solve fractional differential

equations as in [95] where the authors introduce a new operational method based on

B-spline operational matrix of fractional derivative to solve multi-order fractional

differential and partial differential equations by expanding the solution as linear

B-spline functions with unknown coefficients. Also in [81] the authors generalize the

operational matrix for fractional integration and multiplication to solve fractional

Riccati problems. Operational matrices based on cubic B-spline scaling functions are

also constructed and used in solving many kinds of FDEs. In the work of Xinxiu [97]

they constructed the cubic B-spline operational matrix of fractional derivative in the

Caputo sense, and use it to solve fractional differential equation. In [94] cubic

B-spline scaling functions operational matrix of derivative is used to reduced the

solution of Fokker- Planck equations. Many more operational matrices of fractional

derivatives and integration based on other polynomials for the solution of FDEs can

be found in open literature.

2.3.2 Wavelets Basis Operational Methods

Wavelets are localized functions, which are the basis for L2(R). So that localized

pulse problems can be easily approached and analyzed [29, 30, 31]. They are used in

system analysis, optimal control, numerical analysis, signal analysis for wave form

representation and segmentations, time-frequency analysis and fast algorithms for

easy implementation [144]. However, wavelets are just another basis set which offers

considerable advantages over alternative basis sets and allows us to attack problems

not accessible with conventional numerical methods. Their main advantages are as

[60] the basis set can be improved in a systematic way, different resolutions can be

used in different regions of space, the coupling between different resolution levels is

easy, there are few topological constraints for increased resolution regions, the

Laplace operator is diagonally dominant in an appropriate wavelet basis, the matrix

elements of the Laplace operator are very easy to calculate and the numerical effort
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scales linearly with respect to the system size. Different wavelets operational matrices

of fractional order integration and differentiation for solving FDEs have been

developed by many researchers for example see [71, 99, 123, 143]. We discuss

existing literature of some examples of the wavelets in the following sections.

2.3.2.1 Haar Wavelets Operational Methods

Haar wavelets are the mathematically simplest of all wavelet families and was

constructed by Haar in 1909 in his Ph.D. dissertation. Historically, Chen and Hsiao

[33], first proposed a Haar operational matrix for the integration of Haar function

vectors and used it for solving differential equations. Since then numerous

operational matrices based on different orthogonal functions emerge. Haar wavelets

permit straight inclusion of the different types of boundary conditions in the

numerical algorithms. Another good feature of these wavelets is the possibility to

integrate them analytically in arbitrary times. However, the major drawback of these

wavelets is their discontinuity, since the derivatives do not exist at the partition points,

so the integration approach is preferred instead of the differentiation for calculation of

the coefficients. Authors in [99, 139] have successfully applied the Haar wavelet

operational matrix of fractional order integration to solve FDEs numerically, while

[165] have obtained sufficient conditions for the existence and uniqueness of

solutions for a class of fractional partial differential equations using Haar wavelet

operational matrix of fractional order integration. In [154] a new Haar wavelet

method based on operational matrices of fractional order integration to solve several

types of fractional order differential equations numerically is presented, the method

proposed through which the operational matrices of fractional order integration were

formed does not require the use of the block pulse functions and inverse of Haar

wavelet matrix. Furthermore, this procedure is shown to consume less CPU time as

the major blocks of Haar wavelet operational matrix are calculated once and, are used

in the subsequent computations repeatedly.
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2.3.2.2 Chebyshev Wavelets Operational Methods

Chebyshev wavelets has been widely applied for solving different functional

equations, In [71], the Chebyshev wavelets operational matrix of fractional-order

integration is derived and employed to reduce the multi-order FDEs to systems of

nonlinear algebraic equations, Saeed in [158] used Chebyshev wavelets for numerical

solution of Abel’s integral equation, a computational method based on the second

kind Chebyshev wavelet for solving a class of nonlinear Fredholm integro-differential

equations of fractional order is presented in [187], An extension of Chebyshev

wavelets method for solving nonlinear systems of Volterra integral equations is

explored in [24], the authors in [123] used Chebyshev wavelets expansions together

with operational matrix of derivative to solve ordinary differential equations in which,

at least, one of the coefficient functions or solution function is not analytic. For more

works on Chebyshev wavelets see [15, 57, 72, 166] and references therein.

2.3.2.3 Legendre Wavelets Operational Methods

Legendre wavelets method is also thoroughly applied for solving differential

equations. In [82], a framework to obtain approximate numerical solutions of FDEs

using Legendre wavelet approximations is developed, they used the properties of

Legendre wavelets to reduce the fractional ordinary differential equations to the

solution of algebraic equations. In [110], multi-projection operators to solve the linear

Fredholm integral equation of the second kind with Legendre wavelets is shown. An

operational matrix of fractional order integration based on Legendre wavelets is

derived and is utilized to reduce the FDEs to system of algebraic equations in [163].

In [142], a direct method for solving variational problems using Legendre wavelets is

presented. The authors in [143] introduce a new method based on Legendre wavelets

operational matrix of integration to solve nonlinear problems of the calculus of

variations. The operational matrix of integration is used to evaluate the coefficients of

Legendre wavelets in such a way that the necessary conditions for extremizatlon are

imposed. In [181], application of Legendre wavelets to the numerical solution of

PTTA
PERP

UST
AKA
AN 
TUN
KU T

UN 
AMI
NAH



23

Lane-Emden equations is discussed. The method first convert Lane-Emden equations

to integral equations and then expand the solution by Legendre wavelets with

unknown coefficients. A numerical method based upon Legendre wavelet

approximations for solving nonlinear Volterra-Fredholm integral equations is

presented in [180]. Operational matrix of derivative based on Legendre wavelets is

constructed by using shifted Legendre polynomials in [116], application of this

operational matrix for solving initial and boundary value problems are then described

while in [111] Legendre wavelets operational matrix of fractional order integration is

used for the solution of linear and nonlinear fractional integro-differential equations

and the upper bound for the Legendre wavelets expansion is shown. Recently, the first

paper by Yimin used Legendre wavelets operational methods to solve nonlinear

system of FDEs [37]. Our contributions in this particularly focus on construction of a

new algorithm for obtaining Legendre wavelets operational matrix of fractional order

derivative and this operational methods are applied for the solution of fractional order

Brusselator system [32].

2.3.2.4 Bernoulli Wavelets Operational Methods

Another important wavelets basis is Bernoulli wavelets, this wavelets are not based on

orthogonal functions, but, they possess the operational matrices of integration and

derivative [17, 85]. They have been widely applied for solving FDEs, for instance, in

[85] an operational matrix of fractional order integration based on Bernoulli wavelets

is derived and is utilized to reduce the initial and boundary value problems to system

of algebraic equations. Balaji [17] derived Bernoulli wavelets operational matrix of

derivative and apply it to solve Lane-Emden equations. In the proposed method the

nonlinear derivatives of Lane-Emden equations are directly replaced by Bernoulli

wavelet series using Bernoulli wavelet operational matrix of derivative. Further the

non linearity of unknown function resolved by taking suitable collocation points. In

this procedure, there is no necessity of conversion of the Lane-Emden equation into

integral equations and no iterations is required to remove the non linearity in the

Lane-Emden equation. This indeed provides the advantage of proposed method over

other wavelet method in terms of less computational effort and time for getting good
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approximate solution to the Lane-Emden type equations. Recently, P.K Sahu [151]

developed Bernoulli wavelets method to solve nonlinear weakly singular Volterra

integro-differential equations. More recently, P Rahimkhan in [138] introduced a

Bernoulli wavelet operational matrix of fractional integration and proposed the

application of the operational matrix for the solution of fractional order delay

differential equations. He also proposed a new fractional function based on the

Bernoulli wavelet to obtain a solution for systems of FDEs. The method entails

expanding the considered approximate solution as the elements of the fractional-order

Bernoulli wavelets, then the operational matrices of fractional order integration and

derivative based on fractional order Bernoulli wavelets are derived. These operational

matrix of fractional integration together with collocation method are utilized to

reduce the initial value problems to system of algebraic equations.

2.4 Summary

This review of the solution techniques for FDEs serves as a base to begin to identify

the importance and challenges in constructing new numerical approximation schemes

for solving FDEs. One notes from the above discussion that numerical methods for

the FDEs comprise a very new and fruitful research field. Although the majority of

the previous research in this field has focused on single FDE problems, the systems of

FDEs received less attention. Furthermore, some of the wavelets algorithms looks

somehow complicated and used much CPU time in computations. Therefore, this

motivates us to consider effective, simple and fast wavelets numerical algorithms for

the FDEs and systems of FDEs.
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[153] Sezer, M. & Akyüz-Daşcıoglu, A. (2007). A Taylor method for numerical

solution of generalized Pantograph equations with linear functional argument.

Journal of Computational and Applied Mathematics, 200(1), pp. 217–225.

[154] Shah, F.A. & Abbas, R. (2015). Haar wavelet operational matrix method for

the numerical solution of fractional order differential equations. Nonlinear

Engineering, 4(4), pp. 203–213.

[155] Shawagfeh, N. (1993). Non-perturbative approximate solution for Lane-Emden

equation. Journal of Mathematical Physics, 34(9), pp. 4364–4369.

[156] Singh, O.P., Singh, V.K. & Pandey, R.K. (2010). A stable numerical inversion

of Abel’s integral equation using almost Bernstein operational matrix. Journal

of Quantitative Spectroscopy and Radiative Transfer, 111(1), pp. 245–252.

[157] Singh, V.K., Pandey, R.K. & Singh, O.P. (2009). New stable numerical solutions

of singular integral equations of Abel type by using normalized Bernstein

polynomials. Applied Mathematical Sciences, 3(5), pp. 241–255.

[158] Sohrabi, S. (2011). Comparison Chebyshev wavelets method with BPFs method

for solving Abel’s integral equation. Ain Shams Engineering Journal, 2(3), pp.

249–254.

[159] Song, L., Xu, S. & Yang, J. (2010). Dynamical models of happiness

with fractional order. Communications in Nonlinear Science and Numerical

Simulation, 15(3), pp. 616–628.

[160] Song, L., Wang, Q. & Zhang, H. (2009). Rational approximation solution of

the fractional Sharma-Tasso-Olever equation. Journal of Computational and

Applied Mathematics, 224(1), pp. 210–218.

[161] Tavazoei, M.S. & Haeri, M. (2008). Chaos control via a simple fractional-order

controller. Physics Letters A, 372(6), pp. 798–807.

PTTA
PERP

UST
AKA
AN 
TUN
KU T

UN 
AMI
NAH



168

[162] Tohidi, E., Bhrawy, A. & Erfani, K. (2013). A collocation method based on

Bernoulli operational matrix for numerical solution of generalized Pantograph

equation. Applied Mathematical Modelling, 37(6), pp. 4283–4294.

[163] ur Rehman, M. & Khan, R.A. (2011). The Legendre wavelet method for solving

fractional differential equations. Communications in Nonlinear Science and

Numerical Simulation, 16(11), pp. 4163–4173.

[164] Vanani, S.K. & Aminataei, A. (2009). Multiquadric approximation scheme

on the numerical solution of delay differential systems of neutral type.

Mathematical and Computer Modelling, 49(1), pp. 234–241.

[165] Wang, L., Ma, Y. & Meng, Z. (2014). Haar wavelet method for solving

fractional partial differential equations numerically. Applied Mathematics and

Computation, 227, pp. 66–76.

[166] Wang, Y. & Fan, Q. (2012). The second kind Chebyshev wavelet method

for solving fractional differential equations. Applied Mathematics and

Computation, 218(17), pp. 8592–8601.

[167] Wang, Y. & Li, C. (2007). Does the fractional Brusselator with efficient

dimension less than 1 have a limit cycle? Physics Letters A, 363(5), pp. 414–

419.

[168] Wazwaz, A.M. (2001). A new algorithm for solving differential equations of

Lane-Emden type. Applied Mathematics and Computation, 118(2), pp. 287–

310.

[169] Wazwaz, A.M. (2002). The numerical solution of special fourth-order boundary

value problems by the modified decomposition method. International Journal

of Computer Mathematics, 79(3), pp. 345–356.

[170] Wazwaz, A.M. (2005). Adomian decomposition method for a reliable treatment

of the Emden-Fowler equation. Applied Mathematics and Computation, 161(2),

pp. 543–560.

PTTA
PERP

UST
AKA
AN 
TUN
KU T

UN 
AMI
NAH



169

[171] Wazwaz, A.M. (2005). Analytical solution for the time-dependent Emden-

Fowler type of equations by Adomian decomposition method. Applied

Mathematics and Computation, 166(3), pp. 638–651.

[172] Wazwaz, A.M. (2006). The modified decomposition method for analytic

treatment of differential equations. Applied Mathematics and Computation,

173(1), pp. 165–176.

[173] Wazwaz, A.M. (2015). Solving two Emden-Fowler type equations of third

order by the variational iteration method. Applied Mathematics and Information

Sciences, 9(5), pp. 2429–2436.

[174] Wu, G.C. & Baleanu, D. (2014). Discrete fractional logistic map and its chaos.

Nonlinear Dynamics, 75(1-2), pp. 283–287.

[175] Wu, G.C., Baleanu, D. & Zeng, S.D. (2014). Discrete chaos in fractional sine

and standard maps. Physics Letters A, 378(5), pp. 484–487.

[176] Wu, X.Y. & Xia, J.L. (2001). Two low accuracy methods for stiff systems.

Applied Mathematics and Computation, 123(2), pp. 141–153.

[177] Yang, S., Xiao, A. & Su, H. (2010). Convergence of the variational iteration

method for solving multi-order fractional differential equations. Computers &

Mathematics with Applications, 60(10), pp. 2871–2879.

[178] Yang, Y. & Huang, Y. (2013). Spectral-collocation methods for fractional

Pantograph delay-integro differential equations. Advances in Mathematical

Physics, 2013, pp. 14 pages, Article ID 821327.

[179] Yi, M., Huang, J. & Wei, J. (2013). Block pulse operational matrix method

for solving fractional partial differential equation. Applied Mathematics and

Computation, 221, pp. 121–131.

[180] Yousefi, S. & Razzaghi, M. (2005). Legendre wavelets method for the

nonlinear Volterra-Fredholm integral equations. Mathematics and Computers

in Simulation, 70(1), pp. 1–8.

PTTA
PERP

UST
AKA
AN 
TUN
KU T

UN 
AMI
NAH



170

[181] Yousefi, S.A. (2006). Legendre wavelets method for solving differential

equations of Lane-Emden type. Applied Mathematics and Computation, 181(2),

pp. 1417–1422.

[182] Yuanlu, L. (2010). Solving a nonlinear fractional differential equation using

Chebyshev wavelets. Communications in Nonlinear Science and Numerical

Simulation, 15(9), pp. 2284–2292.

[183] Yulita Molliq, R., Noorani, M.S.M., Ahmad, R. & Alomari, A. (2011). Modified

step variational iteration method for solving fractional biochemical reaction

model. International Journal of Differential Equations, 2011, pp. 12 pages,

Article ID 514384.
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