VOLTAGE STABILITY ASSESSMENT FOR DISTRIBUTED GENERATION IN ISLANDED MICROGRID SYSTEM

SALEH ALI AHMED HENDI GAREH

A project report submitted in partial fulfillment of the requirement for the award of the Degree of Master of Electrical Engineering

Faculty of Electrical and Electronic Engineering
Universiti Tun Hussein Onn Malaysia

JULY 2012
ABSTRACT

The increasing energy demands are stressing the generation and transmission capabilities of the power system. Distributed generation (DG), which generally located in distribution systems, has the ability to meet some of the growing energy demands. However, unplanned application of individual distributed generators might cause other technical problems. The microgrid concept has the potential to solve major problems arising from large penetration of DG in distribution systems. A microgrid is not a forceful system when it is compared to a power system. This project proposes a simulation approach to study voltage stability index (VSI) and voltage stability analysis in microgrid system for the improvement of the dynamic voltage stability in a microgrid in case of the dynamic voltage insufficiency. A model of IEEE-14 Bus System has been presented as a case study of an islanded microgrid system. This project also presented line voltage stability index analysis which accurately performs voltage stability analysis at each transmission line and precisely predicts voltage collapse on power systems. A formula to calculate VSI has been derived and applied on two cases on the system. To show the effectiveness of the proposed voltage stability analysis method, this approach is implemented in a microgrid test system (14-bus, 20 lines) in PSAT which is a MATLAB toolbox environment. The test system has four diesel DGs and a wind turbine connected with eleven constant loads. The dynamic simulation of the test system is carried out for various types of disturbances. Islanded mode of operation is considered in this study. Fast Voltage Stability Index (FVSI) and voltage stability analysis have been successfully implemented and analysed.
ABSTRAK

2.3.2 Microgrid islanding 9
2.3.3 Environmental benefits of microgrid system 9
2.3.4 Stability problems in Microgrid system 10
2.4 Previous studies 11
2.5 Powers-voltage (PV) analysis 12
2.6 Voltage stability index (VSI) 12
2.7 PV Curve of a Two-Bus System 13
2.8 Standard Newton-Raphson method 16

CHAPTER 3 METHODOLOGY 17
3.1 Introduction 17
3.2 Description of project phases 17
3.2.1 Phase 1: Literature review on previous works in voltage stability in microgrid system 18
3.2.2 Phase 2: Modeling distributed generation and microgrid system 18
3.2.3 Phase 3: calculate voltage stability index 18
3.2.3.1 Fast Voltage Stability Index (FVSI) calculation 18
3.2.4 Phase 4: Simulation tools 21
3.2.4.1 Bus 22
3.2.4.2 Transmission Line 22
3.2.4.3 Transformers 23
3.2.4.4 Slack generator data 24
3.2.4.5 PQ Load 24
3.2.4.6 PV generator 25
3.2.4.7 Wind turbine 26
3.2.4.8 Turbine Governor 27
3.2.4.9 Automatic voltage regulator 28
3.2.4.10 Fault 29
3.2.4.11 Breaker 29
3.2.5 Phase 5: Analysis and result 30

3.3 Flow Charts 31

CHAPTER 4 MODELLING AND SIMULATIONS RESULTS 33

4.1 Case study 33

4.2 Fast Voltage Stability Index (FVSI) Calculation 38

4.2.1 Case 1: changing in reactive power at Bus 3 38

4.2.2 Case 2: changing in reactive power at Bus 9 40

4.3 Voltage Stability Analysis of the Microgrid in Islanded Mode 43

4.3.1 Load switching disturbance 43

4.3.1.1 Load increment at bus 3 by 10% 44

4.3.1.2 load increment at bus 14 by 50% 49

4.3.2 Partial line outage 52

4.3.2.1 Line outage between bus 2 and bus 3 52

4.3.2.2 Line outage between bus 2 and bus 3 with reclosing effect 56

4.3.3 Fault Analysis 59

4.3.3.1 Three phase short circuit fault at Bus 5 59

4.3.3.2 Three phase short circuit fault at Bus 12 64

CHAPTER 5 CONCLUSION AND FUTURE WORK 69

5.1 Conclusion 69

5.2 Future work 71

REFERENCES 72

APPENDICES A-B 75-78
LIST OF TABLES

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>3. 1</td>
<td>Bus data format (Bus.con)</td>
</tr>
<tr>
<td>3. 2</td>
<td>Line data format (Line.con)</td>
</tr>
<tr>
<td>3. 3</td>
<td>Transformer data format (Line.con)</td>
</tr>
<tr>
<td>3. 4</td>
<td>Slack generator data (Sw.con)</td>
</tr>
<tr>
<td>3. 5</td>
<td>PQ load data format (PQ.con)</td>
</tr>
<tr>
<td>3. 6</td>
<td>PV generator data format (PV.con)</td>
</tr>
<tr>
<td>3. 7</td>
<td>Doubly fed induction generator data format (dfig.con)</td>
</tr>
<tr>
<td>3. 8</td>
<td>Turbine governor data format (Tg.con)</td>
</tr>
<tr>
<td>3. 9</td>
<td>Exciter data format (Exc.con)</td>
</tr>
<tr>
<td>3. 10</td>
<td>Fault data format (Fault.con)</td>
</tr>
<tr>
<td>3. 11</td>
<td>Breaker data format (Breaker.con)</td>
</tr>
<tr>
<td>4. 1</td>
<td>Result of fvasi analysis with changing in reactive power at bus 3</td>
</tr>
<tr>
<td>4. 2</td>
<td>Result of fvasi analysis with changing in reactive power at bus 9</td>
</tr>
<tr>
<td>4. 3</td>
<td>The disturbances applied to the islanded microgrid system</td>
</tr>
</tbody>
</table>
LIST OF FIGURES

1. 1 Voltage and loads characteristic 2
1. 2 Classification of voltage stability 3
2. 1 Centralized generation and distributed generation 7
2. 2 Microgrid operations 10
2. 3 Two-bus power system model 13
2. 4 PV curve for two-bus system 15
3. 1 Single line of 2-bus power system model 19
3. 2 Transmission line 22
3. 3 Wind turbine 26
3. 4 Flow chart for vsi calculation 31
3. 5 Flow chart of voltage stability analysis with applied faults 32
4. 1 Microgrid test system (ieee 14 bus test system) 35
4. 2 Voltage profile in steady state condition 36
4. 3 Voltage magnitudes in sparse matrix visualization 37
4. 4 Voltage stability index analysis for case 1 40
4. 5 Voltage stability index analysis for case 2 42
4. 6 Islanded microgrid system with load switching fault at bus 3 45
4. 7 Voltage at bus 3, 6, 9, and bus 14 in normal condition 46
4. 8 Voltage at bus 3 for a 10% load increment at bus 3 46
4. 9 Voltage at bus 14 for a 10% load increment at bus 3 47
4. 10 Voltage bus 6 for a 10% load increment at bus 3 47
4. 11 Voltage bus 9 for a 10% load increment at bus 3 48
4. 12 Reactive power at buses 6-8 for a 10% load increment at bus 3 48
4. 13 Reactive power at buses 6-8 for a 50% load increment at bus 14 49
4. 14 Voltage bus 11 for a 50% load increment at bus 14 50
4. 15 Voltage bus 1 for a 50% load increment at bus 14 50
4. 16 Voltage bus 3 for a 50% load increase at bus 14
4. 17 Voltage bus 8 for a 50% load increase at bus 14
4. 18 Islanded microgrid system with line outage between bus 2 and bus 3
4. 19 Voltage at bus 3 for a line outage between bus 2 and bus 3
4. 20 Voltage at bus 1 for a line outage between bus 2 and bus 3
4. 21 Voltage at bus 9 for a line outage between bus 2 and bus 3
4. 22 Voltage at bus 12 for a line outage between bus 2 and bus 3
4. 23 Q at buses 1, 2, and 3 for a line outage between bus 2 and bus 3
4. 24 Voltage at bus 1 for a line outage between bus 2 and bus 3
4. 25 Voltage at bus 4 for a line outage between bus 2 and bus 3
4. 26 Voltage at bus 8 for a line outage between bus 2 and bus 3
4. 27 Voltage at bus 13 for a line outage between bus 2 and bus 3
4. 28 Three phase short circuit fault at bus 5
4. 29 Voltage at bus 5 for a 3-phase short circuit fault at bus 5
4. 30 Voltage at bus 8 for a 3-phase short circuit fault at bus 5
4. 31 Voltage at bus 2 for a 3-phase short circuit fault at bus 5
4. 32 Voltage at bus 11 for a 3-phase short circuit fault at bus 5
4. 33 Reactive power at buses 2 for a 3-phase short circuit fault at bus 5
4. 34 Reactive power at bus 1, 3 for a 3-phase short circuit fault at bus 5
4. 35 Three phase short circuit fault at bus 12
4. 36 Voltage at bus 12 for a 3-phase short circuit fault at bus 12
4. 37 Voltage at bus 1 for a 3-phase short circuit fault at bus 12
4. 38 Voltage at bus 6 for a 3-phase short circuit fault at bus 12
4. 39 Reactive power at bus 2 for a 3-phase short circuit fault at bus 12
4. 40 Reactive power at bus 1, 3 for a 3-phase short circuit fault at bus 12
A. 1 IEEE 14 bus test system
LIST OF SYMBOLS AND ABBREVIATIONS

\(\delta \) - Angle difference between sending and receiving buses

DG - Distributed generation

MG - Microgrid

P - Active power

PQ - Load Buses

PV - Generation Buses

Q - Reactive power

S - Apparent power

X - Line reactance

AVR - Automatic Voltage Regulator

FVSI - Fast Voltage Stability Index

PSAT - Power System Analysis Toolbox

VSI - Voltage Stability Index
LIST OF APPENDICES

<table>
<thead>
<tr>
<th>APPENDIX</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Microgrid System Parameters</td>
<td>75</td>
</tr>
<tr>
<td>B</td>
<td>Gantt Charts</td>
<td>78</td>
</tr>
</tbody>
</table>
CHAPTER 1

INTRODUCTION

1.1 Project background

Since the increase of power demand is stressing the transmission and generation system capabilities that might lead to frequent power outages, engineers around the world are developing different methods to improve the reliability, protection and security of the electrical power system. These frequent power outages due to the overloaded grid will cost millions of Dollars per year. Newer technologies authorise the production of electrical energy in an efficient, reliable and secure way, causing fewer damages to the environment. One of the significant solutions is to build generation closer to the power consumption areas. This is known as distributed generation (DG) [1]. The reforms in distribution sector have given major scope for employment of DG resources which will boost the system performance. Usually, the main concentration of generation stations is near to the load or biggest demand of power. If this condition does not happen and the load is far away from the generation stations, consumers will face outage problems and drop in voltage as well.

The advantages of distributed generation can be only granted by choosing the proper size of the DG and connecting it at the appropriate location in the system. DG has significant impact on the voltage profile of the system. Voltage profile is defined as the change in the voltage of the system as the load changes which are shown in the Figure 1.1 [2]- [3].
A microgrid has on-site power generation and operates as a single controllable unit in parallel to the main grid. During power outage or any disturbance, microgrids can island themselves and retain power availability, avoiding blackouts and lost productivity. Although microgrid system has advantages, it also causes some problems. Microgrid stability problem is the major issue can be faced. This issue may lead the over or under voltages and frequencies deviations as well [4]. There are three main categories of power system stability which are voltage stability, frequency stability and rotor angle stability. Figure 1.2 illustrates further on voltage stability category.
1.2 Problem statements

The large interconnected power system made the electricity distribution reliable and economical. This interconnection of multi areas exposed the entire system to be more vulnerable to various stability problems [5]. This problem is not only due to the complexity of the interconnection in a system but also due to the intermittent distributed generations and integration of other emerging technology in order to meet exponential growth of load demand beyond thermal and electrical limit of the system. The planning and operation using new ideas and new methods in solving challenging problems need to be done in fast and dependable mode. High penetrations of DGs affect the steady-state and the dynamics of the distribution system. These impacts mostly consist of power quality disturbances for customers and electricity suppliers such as voltage regulation, voltage flicker, harmonic distortion and short circuit level.
However, voltage instability problem in a microgrid network is one of the most harmful disturbances on power system. A microgrid is not a robust system when compared to a grid system. Hence, additional control strategies should be implemented for a successful operation of a microgrid. Most of the DGs (such as wind, fuel cells, PV arrays, microturbines) cannot produce reactive power. Thus, they cannot support voltage stability during dynamic state. Proper voltage controllers should be designed to maintain the voltage stability of the microgrid. Therefore, it is necessary to consider voltage stability constraints for planning and operation of distribution systems. In addition, this can be simplified by studying islanded microgrid system to see the influence of distributed generation on the system.

1.3 Project objectives

The main objective of this project is to present a simulation approach to study voltage stability in a microgrid system.

The following are the measurable objectives of this project:

i. To model microgrid and DG system for voltage system stability studies.

ii. To analyse the impacts of DG penetration on voltage stability.

1.4 Project Scopes

i. This project is only focus on the modelling of an islanded microgrid with different types of DGs (wind and diesel).

ii. A single line diagram of the standard IEEE 14 bus test system will be used as a case study.

iii. Three disturbances on the microgrid which are load switching, partial line outage, and three phase short circuit fault will be simulated by using Power System Analysis Toolbox (PSAT), which is a MATLAB toolbox.
CHAPTER 2

LITERATURE REVIEW

In the following section, a detailed literature review on the voltage stability, distributed generation concept, microgrid stability problems, and voltage stability index are introduced. Section 2.1 describes a general idea of voltage stability. Section 2.2 discusses the distributed generation. The concept of microgrid is discussed in 2.3. Some previous studies are presented in 2.4. Power-voltage (PV) analysis is defined in section 2.5. Literature on voltage stability index (VSI) is presented in 2.6. Section 2.7 discusses PV Curve of a two-bus system. Finally, standard Newton-Raphson method is highlighted in 2.8.

2.1 Concept of Voltage Stability

Voltage stability analysis is currently one of the most significant fields of research in the power systems area. In the last few years, many contributions to a better knowledge of the various aspects of voltage problems have been reported in the literature, where the problem has been explored from many different points of view [6]. Voltage collapse in addition, has been an active subject of research for years [7]-[8].

In general, power system stability is the ability of an electric power system, for a given initial operating condition, to regain a state of operating equilibrium after
being subjected to a physical disturbance, with most system variables bounded so that practically the entire system remains intact [2].

Voltage stability is the ability of a power system to maintain steady state voltage at all buses in the system under normal operating condition and after the occurrence of a disturbance [9]. The main factor contributing to voltage instability is usually the voltage drops that limit the capacity of transmission networks to transfer power between buses. Increased voltage drops could be associated with the change of rotor angles. Voltage instability occurs when load dynamics try to restore power consumption beyond the capability of the transmission system and the connected generation [9].

2.2 Distributed generation

Various technologies are being developed to generate electrical energy close to the consumption areas (load centers). This modality is called generation IN-SUIT, disperse generation or distributed generation [10]. Distributed generation is a small scale generation or storage of electrical energy at the customer side, which permits the option of selling and buying energy to and from the electrical system, while taking advantage of the maximum efficiency of energy production [10]. Generally, the capacity range of distributed generation is between 100 kW and 10 MW. Figure 2.1 shows the differences between centralised generation and distributed generation.
2.2.1 Disadvantages of distributed generation

Although DG has some advantages, it also has disadvantages and negative impacts to the power system. The disadvantages of DG are as follows:

(a) Increased short circuit current
(b) Increased the protection cost
(c) Possibility of islanding is increased
(d) Possibility of overvoltage
(e) Possibility of voltage flicker
2.3 Concept of microgrid

Microgrid (MG) system can be defined as a low voltage (LV) network having loads with small modular generation systems, power electronic devices and controllers, which can ensure stable operation during faults and various network disturbances. Therefore, MG is one of the alternative in improving the stability and reliability of the overall power system.

2.3.1 Unbalanced voltages in microgrids

In the last two decades, several blackouts have been demonstrated with voltage instability and voltage collapse problems. It is believed that most of these blackouts occurred due to the voltage instability problems. Insufficient reactive power margin to supply the load is a major cause for voltage instability problems. A voltage decrease may lead to a reactive power consumption increase and then causing more drops in voltage. Voltage drop below an acceptable limit counteracts the process of boosting voltage by increasing reactive power. Since voltage collapse is related to system maximum load-ability limit thus, obtaining the load-ability limit or the point of collapse determination becomes essential.

Voltage unbalance can be defined as unequal voltage magnitudes at fundamental system frequency (under-voltages and over-voltages), fundamental phase angle deviation and unequal levels of harmonic distortion between the phases [11]. The voltage unbalance exists because of various reasons such as the spacing of the overhead transmission lines, three-phase loads with unbalanced impedances or a fault in the power system [12].
2.3.2 Microgrid islanding

Islanded microgrid refers to a small area which is disconnected from the main grid. Some distributed generations are responsible to supply the system or the loads with sufficient power. Microgrid islanding is the future of efficient and fast restoration of the power system. It allows the high penetration of distributed generation into the power system. For a microgrid to operate in autonomous mode, the islanding control strategies are very important. Two kinds of islanding control strategies for voltage source inverter (VSI) were developed for many studies, i.e. the PQ inverter control and VSI inverter control [13].

Therefore, many studies have been carried out to improve the voltage stability in microgrid power system. Moreover, this phenomenon has become one of the major challenges for the power system planners and engineers. The high penetration of distributed generation in microgrid has brought new technical challenges to the system. Some of the main problems are related to steady state and transient voltages and frequencies, protection malfunctions, increase in short circuit levels and power quality problems during events like islanding, network changes, faults and other disturbances to the system [10]. Several microgrid based research projects and test beds are currently being undertaken by Consortium for Electric Reliability Technology Solutions (CERTS) and California Energy Commission. The CERTS has an unique conception of the microgrid. In this concept, a minimum of overview control is needed for the generators. Instead, the generators are each programmed with control characteristics that allow them to function well together to provide a high quality source of power to the microgrid under a range of operating conditions [14] - [15].

2.3.3 Environmental benefits of microgrid system

In a microgrid, the power generation and the loads are closer to each other. So, the waste heat generated during power generation, which is generally wasted in a large
power generating station, can now be used for heating purposes. Thus, the microgrids operate at high efficiencies as illustrated in Figure 2.2 [16].

![Figure 2.2: Microgrid operations](image)

2.3.4 Stability problems in Microgrid system

When any disturbances of load in system or DGs islanding changes in parameter in grid, inequality in the power generation and demand or different type of faults are occurred, microgrid stability issues might be appeared and may change the voltage and system frequency.

Studies focused on one type of distributed generator connected to microgrid should be carried out together with the investigation on several expected disturbances that might be occurred. In addition, finding the optimal size and location of DGs to maximise the grid stability is also a common study in this area.
2.4 Previous studies

A three phase continuation power flow for voltage stability analysis of distribution systems has been developed by Mississippi State University in 2008 [17]. The IEEE 13 nodes and IEEE 37 nodes feeders are selected as test systems because these feeders are highly unbalanced and they are closely represent actual terrestrial distribution systems. This work aimed at finding the optimal size and location of DG based on voltage support and stability. The equality constraints of the formulation are power flow equations and the inequality constraints were the voltage limits, power supplied by the DG as well as load limits at all nodes. Functions have been developed to address voltage support and voltage stability. Power flow analysis has been performed on these test cases with DG connected and it has observed that as the size of the DG is increased, the voltage profile of the system is improved. The voltages at the downstream nodes which are close to lower limit (0.95pu) have been improved; hence this increases the voltage stability margin of the system [18].

Power system stability analysis with a high penetration of distributed generation is another research in McGill University [19], clarified the impact of DG on the stability of the system and explained the various power quality problems which affected voltage stability. The approach of study is to operate DG at unity power factor for economic reasons. However, the study revealed the followings:

(a) It is more beneficial to have DGs operating at a lagging power factor for long-term voltage stability because it improves the voltage security margin by increasing the distance to voltage collapse.

(b) When DG operates at a leading power factor, the short-term voltage stability is generally improved because the voltage dips are reduced.

(c) Utilities should therefore try to convince owners to let the utilities control the DGs in order to improve the stability of the system.

In 2009, a study was presented on an optimisation technique in determining the optimal capacity and location of DG [20] in order to improve system stability during and after a disturbance in the electrical system [17]. The IEEE 14 Bus Test System and the Electrical System of Puerto Rico have been used as models in the simulations.
The conclusion made for this study is increased in DG penetration improved the stability response of the electrical system. When a disturbance known to be critical without DG was applied to the electrical system, the DG supported the network and avoided the collapse of the system. DG penetration can improve the stability of the electrical system during and after a disturbance and thus reducing the rotor and voltage oscillations. Although this study does not focus on a particular area, it discussed how important to connect and improve the DG in any system in order to recover voltage stability when any disturbance occurs.

2.5 Power-voltage (PV) analysis

PV analysis is a widely used method, and very useful in theoretical analysis of voltage stability. The active power \(P \) can either represent the total active power load in an area or the power flow across an interconnection between two areas and the state variable, \(V \) is the voltage at a certain bus. The PV curve is obtained by increasing the load demand and solving the new power flow.

2.6 Voltage stability index (VSI)

With the increased loading and exploitation of the existing power structure, the probability of occurrence of voltage collapse are significantly greater than before and the identification of the nodes which prone to the voltage fluctuations have attracted more attention for the transmission as well as the distribution systems. For operating a power system in a safe and secure manner, all unsecure operating states must be identified well in advance to facilitate corrective measures to overcome the threat of possible voltage collapse [21].

Voltage stability, instability and collapse are well defined in [2] and these issues have been the focus of a great deal of research recently. Dynamic analysis has been used to conduct voltage stability since voltage instability is a dynamic phenomenon. Nevertheless, static voltage stability analysis is widely used in voltage
stability research, as static analysis is not overly complex, and requires lower calculation time. Static analysis provides an accurate analysis method for handling mostly short disturbances while dynamic analysis is used to analyse heavy load disturbances [22].

Recently, a number of researchers have been using the voltage stability/instability analysis to calculate voltage collapse [23] as some established new methods, whereas others improved existing methods or proposed some hybrid methods.

2.7 PV Curve of a Two-Bus System

Consider a two-bus system connected to a source and single load, as shown in Figure 2.3.

\[\bar{V} = \bar{E} - jX \bar{I} \quad (2.1) \]

The voltage at the load bus can be described as:

\[\bar{V} = \bar{E} - jX \bar{I} \]

The appearance power can be written as:
\[S = \bar{V} I^* = \bar{V} \left(\frac{E - \bar{V}}{jX} \right) \quad (2.2) \]

\[S = -\frac{EV}{X} \cos \theta - \frac{V^2}{X} \quad (2.3) \]

From equation 2.3 we get:

\[P = -\frac{EV}{X} \sin \theta \quad (2.4) \]

\[Q = \frac{EV}{X} \cos \theta - \frac{V^2}{X} \quad (2.5) \]

By solving equations (2.4) and (2.5) in removing \(\theta \) the voltage can be rewritten as:

\[V = \sqrt{\frac{E^2}{2} - QX \pm \sqrt{\frac{E^2}{4} - X^2 P^2 - X E^2 Q}} \quad (2.6) \]

By plotting the equation (2.6), we get the PV curve as presented in Figure 2.4.

With the following parameters:

\(Q = 0pu \), \(X = 1pu \), \(E = 1pu \)
The maximum load P_{max} can be obtained by equating the followings from equation (2.6) to zero.

$$\frac{E^2}{4} - X^2 P^2 - X E^2 Q = 0 \quad (2.7)$$

$$P_{\text{max}} = \sqrt{\frac{E^2}{4} - X E^2 Q} \quad X \quad (2.8)$$

From equation (2.8), it is clear that by reducing the reactive power Q and/or the reactance X, the maximum loadability P_{max} is increased. Reactive compensation improves the voltage stability of the system. It should be noted that voltage overcompensation can lead to a voltage increase that can trigger over-voltage relays that protect the equipment [21].
2.8 **Standard Newton-Raphson method**

The standard Newton-Raphson method for solving the power flow problem is described in many articles and books [24]. The Newton-Raphson method is using the bus admittance matrix of the buses in power system in either first- or second-order expansion of Taylor series that has been evaluated as a best solution for the reliability and the rapid convergence. The Newton-Raphson solution is a preferred algorithm for nonlinear equations solved on workstation or personal computer systems [25].

The algorithm for the power flow calculation based on the Newton’s method in optimisation allows to find a solution for the situation when initial data are outside the existence domain and to pull the operation point onto the feasibility boundary by an optimal path. Also, it is possible to estimate a static stability margin by utilising Newton’s method in optimisation.
CHAPTER 3

METHODOLOGY

3.1 Introduction

This chapter discusses about the methodology approach in simulating the IEEE bus test system using proper software. The main objective of this project is to present a simple simulation approach to study voltage stability in microgrid system, in order to analyses the impact of distributed generation on islanded microgrid system. The phases of the project are described in detailed and presented in section 3.2. Flow charts of the project are displayed in 3.3. Gantt charts are displayed in appendix B.

3.2 Description of project phases

There are five phases of development that use to complete the project:-

(a) Phase 1 literature reviews
(b) Phase 2 modelling microgrid system and distributed generations
(c) Phase 3 calculate voltage stability index
(d) Phase 4 software development
(e) Phase 5 result and analysis
3.2.1 Phase 1: Literature review on previous works in voltage stability in microgrid system

The impact of distributed generation on microgrid system is important for this study. Therefore, studying the analyses and the impacts of DG penetration on voltage stability is significant to access to the problem formulation.

3.2.2 Phase 2: Modeling distributed generation and microgrid system

The standard IEEE 14 bus test system is used as a model. Different types of DGs (wind and diesel) are installed in the microgrid system. The simulation is run by using MATLAB and PSAT software.

3.2.3 Phase 3: calculate voltage stability index

Distribution networks experience distinct change from a low to high load level every day. Hence, a major concern in power distribution networks, which have surfaced fairly, recently is the problem of voltage stability [26]. A formula for calculating the voltage stability index (VSI) can be generated to calculate the VSI in every line in the system. Power flow study must be done in order to determine the steady-state operation of an electric power system. It calculates the voltage drop on each feeder, the voltage at each bus, and the power flow in all branch and feeder circuits.

3.2.3.1 Fast Voltage Stability Index (FVSI) calculation

Figure 3.1 illustrates a 2-bus power system model where the proposed FVSI is derived from.
Figure 3.1: Single line of 2-bus power system model

The symbols used are explained as follows: V_1, V_2 = voltage on sending and receiving buses P_i, Q_i = active and reactive power on the sending bus P_2, Q_2 = active and reactive power on the receiving bus. S_i, S_2 = apparent power on the sending and receiving buses. δ = angle difference between sending and receiving buses.

\[\delta = \delta_1 - \delta_2 \] \hspace{1cm} (3.1)

The line impedance is noted as $Z = R + jX$ with the current that flows in the line is given by:

\[I = \frac{V_1 \angle 0 - V_2 \angle \delta}{R + jX} \] \hspace{1cm} (3.2)

V_1 is taken as the reference, and therefore the angle is shifted into 0. The apparent power at bus 2 can be written as:

\[S_2 = V_2 I^* \] \hspace{1cm} (3.3)

\[I^* = \left(\frac{S_2}{V_2} \right)^* = \frac{P_2 - jQ_2}{V_2 \angle -\delta} \] \hspace{1cm} (3.4)

Equating (3.2) and (3.4) will obtain the followings,

\[\frac{V_1 \angle 0 - V_2 \angle \delta}{R + jX} = \frac{P_2 - jQ_2}{V_2 \angle -\delta} \] \hspace{1cm} (3.5)
\[V_1 V_2 \angle -\delta - V_2^2 \angle 0 = (R + jX)(P_2 - jQ_2) \]
(3.6)

By separating the real and imaginary parts of equation (3.6),

\[(V_1 V_2 \cos \delta - V_2^2) = (RP_2 + jXQ_2) \]
(3.7)

And,

\[(-V_1 V_2 \sin \delta) = (XP_2 + jRQ_2) \]
(3.8)

Solve equations (3.7) and (3.8) yields a quadratic equation of \(V_2 \) as follows,

\[V_2^2 - V_1 V_2 \left(\frac{R}{X} \sin \delta + \cos \delta \right) + Q_2 \left(X + \frac{R^2}{X} \right) = 0 \]

\[V_2 = \frac{(\frac{R}{X} \sin \delta + \cos \delta) V_1 \sqrt{\left(\frac{R}{X} \sin \delta + \cos \delta \right) V_1^2 - 4Q_2 \left(X + \frac{R^2}{X} \right)}}{2} \]
(3.9)

To obtain the real roots for \(V_2 \), the discriminant is set greater than or equal to 0,

\[\left(\frac{R}{X} \sin \delta + \cos \delta \right) V_1^2 - 4Q_2 \left(X + \frac{R^2}{X} \right) \geq 0 \]

\[\frac{4XZ^2 Q_2}{V_1^2 (R \sin \delta + X \cos \delta)^2} \leq 1 \]
(3.10)

Since \(\delta \) is normally very small then,

\(\delta = 0 \), so that \(R \sin \delta = 0 \) and \(X \cos \delta = X \)

Taking the symbols \(i \) as the sending bus and \(j \) as the receiving bus. Thus, the fast voltage stability index, FVSI is derived as:
\[FVSI = \frac{4Z^2 Q_j}{V_i^2 X} \]

(3.11)

Where:
- \(Z \) = line impedance
- \(X \) = line reactance
- \(Q_j \) = reactive power at the receiving end
- \(V_i \) = sending end voltage

The value of FVSI from equation (3.11) that is evaluated close to 1.00 indicates that the particular line is closed to its instability point which may lead to voltage collapse in the entire system. To maintain a secure condition the value of FVSI should be maintained well below 1.00.

3.2.4 Phase 4: Simulation tools

To simplify the study, PSAT will be used to obtain the power flow results. PSAT is a MATLAB toolbox for electric power system analysis and control. PSAT includes power flow, continuation power flow, optimal power flow, small signal stability analysis, and time domain simulation. All operations can be assessed by means of graphical user interfaces (GUIs) and a Simulink-based library provides a user friendly tool for network design [27].

This section defines the bus components, which are used for defining network topology, as well as the basic components for power flow analysis which are transmission line, generator, transformer, constant power load (PQ), and constant admittance.
3.2.4.1 Bus

The network topology is defined by "bus" components, whose data format is described in table 3.1. [27]

<table>
<thead>
<tr>
<th>Column</th>
<th>Variable</th>
<th>Description</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>-</td>
<td>Bus number</td>
<td>int</td>
</tr>
<tr>
<td>2</td>
<td>V_b</td>
<td>Voltage base</td>
<td>kV</td>
</tr>
<tr>
<td>3</td>
<td>V_0</td>
<td>Voltage amplitude initial guess</td>
<td>p.u.</td>
</tr>
<tr>
<td>4</td>
<td>θ_0</td>
<td>Voltage phase initial guess</td>
<td>p.u.</td>
</tr>
<tr>
<td>5</td>
<td>A_i</td>
<td>Area number (not used yet...)</td>
<td>int</td>
</tr>
<tr>
<td>6</td>
<td>R_i</td>
<td>Region number (not used yet...)</td>
<td>int</td>
</tr>
</tbody>
</table>

3.2.4.2 Transmission Line

Figure 3.2 shows a simple transmission line as described in many power system text books [28].

![Transmission line diagram]

Figure 3.2: Transmission line

Table 3.2 depicts the data format of transmission lines in PSAT.
Table 3.2: Line data format (Line.con)

<table>
<thead>
<tr>
<th>Column</th>
<th>Variable</th>
<th>Description</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>k</td>
<td>From Bus</td>
<td>int</td>
</tr>
<tr>
<td>2</td>
<td>m</td>
<td>To Bus</td>
<td>int</td>
</tr>
<tr>
<td>3</td>
<td>S_n</td>
<td>Power rating</td>
<td>MVA</td>
</tr>
<tr>
<td>4</td>
<td>V_n</td>
<td>Voltage rating</td>
<td>kV</td>
</tr>
<tr>
<td>5</td>
<td>f_n</td>
<td>Frequency rating</td>
<td>Hz</td>
</tr>
<tr>
<td>6</td>
<td>r</td>
<td>Resistance</td>
<td>p.u.</td>
</tr>
<tr>
<td>7</td>
<td>x</td>
<td>Reactance</td>
<td>p.u.</td>
</tr>
<tr>
<td>8</td>
<td>b</td>
<td>Susceptance</td>
<td>p.u.</td>
</tr>
</tbody>
</table>

3.2.4.3 Transformers

Table 3.3 shows the data format of transformers in PSAT.

Table 3.3: Transformer data format (Line.con)

<table>
<thead>
<tr>
<th>Column</th>
<th>Variable</th>
<th>Description</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>k</td>
<td>From Bus</td>
<td>int</td>
</tr>
<tr>
<td>2</td>
<td>m</td>
<td>To Bus</td>
<td>int</td>
</tr>
<tr>
<td>3</td>
<td>S_n</td>
<td>Power rating</td>
<td>MVA</td>
</tr>
<tr>
<td>4</td>
<td>V_n</td>
<td>Voltage rating</td>
<td>kV</td>
</tr>
<tr>
<td>5</td>
<td>f_n</td>
<td>Frequency rating</td>
<td>Hz</td>
</tr>
<tr>
<td>6</td>
<td>-</td>
<td>not used</td>
<td>-</td>
</tr>
<tr>
<td>7</td>
<td>k_T</td>
<td>Primary and secondary voltage ratio</td>
<td>kV/kV</td>
</tr>
<tr>
<td>8</td>
<td>r</td>
<td>Resistance</td>
<td>p.u.</td>
</tr>
<tr>
<td>9</td>
<td>x</td>
<td>Reactance</td>
<td>p.u.</td>
</tr>
<tr>
<td>10</td>
<td>-</td>
<td>not used</td>
<td>-</td>
</tr>
<tr>
<td>11</td>
<td>a</td>
<td>Fixed tap ratio</td>
<td>p.u./p.u.</td>
</tr>
<tr>
<td>12</td>
<td>ϕ</td>
<td>Fixed phase shift</td>
<td>deg</td>
</tr>
<tr>
<td>13</td>
<td>I_{max}</td>
<td>Current limit</td>
<td>p.u.</td>
</tr>
<tr>
<td>14</td>
<td>P_{max}</td>
<td>Active power limit</td>
<td>p.u.</td>
</tr>
<tr>
<td>15</td>
<td>S_{max}</td>
<td>Apparent power limit</td>
<td>p.u.</td>
</tr>
</tbody>
</table>
3.2.4.4 Slack generator data

Slack generators are modelled as fixed voltage magnitude and phase buses, as follows:

\[V = V_0 \]
\[\theta = \theta_0 \]

The phase \(\theta_0 \) is presumed to be the reference angle of the system. Table 3.4 describes the slack generator data in PSAT.

Table 3.4: slack generator data (SW.con)

<table>
<thead>
<tr>
<th>Column</th>
<th>Variable</th>
<th>Description</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>-</td>
<td>Bus number</td>
<td>int</td>
</tr>
<tr>
<td>2</td>
<td>(S_n)</td>
<td>Power rating</td>
<td>MVA</td>
</tr>
<tr>
<td>3</td>
<td>(V_n)</td>
<td>Voltage rating</td>
<td>kV</td>
</tr>
<tr>
<td>4</td>
<td>(V_0)</td>
<td>Voltage magnitude</td>
<td>p.u.</td>
</tr>
<tr>
<td>5</td>
<td>(\theta_0)</td>
<td>Reference Angle</td>
<td>p.u.</td>
</tr>
<tr>
<td>(^\dagger) 6</td>
<td>(Q_{\text{max}})</td>
<td>Maximum reactive power</td>
<td>p.u.</td>
</tr>
<tr>
<td>(^\dagger) 7</td>
<td>(Q_{\text{min}})</td>
<td>Minimum reactive power</td>
<td>p.u.</td>
</tr>
<tr>
<td>(^\dagger) 8</td>
<td>(V_{\text{max}})</td>
<td>Maximum voltage</td>
<td>p.u.</td>
</tr>
<tr>
<td>(^\dagger) 9</td>
<td>(V_{\text{min}})</td>
<td>Minimum voltage</td>
<td>p.u.</td>
</tr>
<tr>
<td>(^\dagger) 10</td>
<td>(P_0)</td>
<td>Active power guess</td>
<td>p.u.</td>
</tr>
<tr>
<td>(^\dagger) 11</td>
<td>(\gamma)</td>
<td>Loss participation coefficient</td>
<td>-</td>
</tr>
</tbody>
</table>

3.2.4.5 PQ Load

PQ loads are modelled as constant active and reactive powers as follows:

\[P = P_L \]
\[Q = Q_L \]

Table 3.5 shows PQ Load data format in PSAT.
REFERENCES

20. A. R Masanna Gari, "optimizing the size and location of distributed generators to maximize the grid stability," Mississippi State University, MS, 2008.

