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Abstract  

 
The use of electrical signals to restore the function of paralyzed muscles is called 

functional electrical stimulation (FES). FES is a promising method to restore 

mobility to individuals paralyzed due to spinal cord injury (SCI). This thesis is 

concerned with the development of an accurate paraplegic knee joint model and 

control of electrically stimulated muscle. The modelling of musculoskeletal of 

paraplegic’s lower limb is significantly challenging due to the complexity of the 

system.  The first aim of this study is to develop a knee joint model capable of 

relating electrical parameters to dynamic joint torque as well as knee angle for FES 

application. The knee joint is divided into 3 parts; active muscle properties, passive 

knee joint properties and lower limb dynamics Hence the model structure 

comprising optimised equations of motion and fuzzy models to represent the passive 

viscoelasticity and active muscle properties is formulated. The model thus 

formulated is optimised using genetic optimization, and validated against 

experimental data. The results show that the model developed gives an accurate 

dynamic characterisation of the knee joint. The second aim of this study is to 

develop FES-induced swinging motion control. A crucial issue of FES is the control 

of motor function by artificial activation of paralyzed muscles. Major problems that 

limit the success of current FES control systems are nonlinearity of the 

musculoskeletal system and rapid change of muscle properties due to fatigue. Fuzzy 

logic control (FLC) with its ability to handle a complex nonlinear system without 

mathematical model is used. Two FLC strategies; trajectory based control and cycle-

to-cycle control are developed. In the trajectory based control, the controller with 

less energy consumption is developed to reduce muscle fatigue. The ability of this 

controller to minimize the fatigue is proved in the experimental work.  The discrete-

time cycle-to-cycle control strategy is developed without predefined trajectory. This 

strategy is applicable for controlling FES-induced movement with the ability to 

reach full knee extension angle and to maintain a steady swinging of the lower limb 

as desired in the presence of muscle fatigue and spasticity. The performances of the 

controllers are assessed through simulation study and validated through 

experimental work.  
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CHAPTER 1 

 INTRODUCTION 

 

 

1.1 Preamble 

The brain is the most complex organ in the human body and is the centre of the 

nervous system. It produces every human thought, action, feeling and experience of 

the world. The spinal cord is the pathway for impulses from the brain to the body as 

well as from the body to the brain. However, the bounty of this pathway could be 

lost due to spinal cord injury (SCI) and that results in a loss of function especially 

mobility. The effects of SCI depend on the type of injury and the level of the injury. 

For example, paraplegics are those individuals with impairment of both lower 

extremities but have full use of their arms and hands.  

Individuals with SCI do not easily regain their function without the help from 

an artificial device. The improvement or restoration of lost function is one of the 

major issues in the rehabilitation of people with neurological disorder such as those 

caused by SCI (Popovic and Sinkjaer, 2000). One technique is called functional 

electrical stimulation (FES), and can be used in rehabilitation by producing 

controlled contractions in the paralyzed muscle. The ultimate aim for the 

rehabilitation of paraplegic patients is to regain their ability to walk. Walking is a 

cyclical movement (Veltink, 1991) and is divided into 2 phases, the stance phase 

where one leg is static on the ground, and the swing phase, where one leg is off the 

ground swinging forwards to make the next step. A prerequisite for FES-assisted 

walking for paraplegic is to control the swinging motion of the lower limb. 

1 

http://www.newscientist.com/channel/being-human/brain/dn7974
http://en.wikipedia.org/wiki/Nervous_system
http://www.newscientist.com/channel/being-human/brain/mg16221855.300
http://www.newscientist.com/channel/being-human/brain/mg16522294.800
http://www.newscientist.com/channel/being-human/brain/mg17423484.100


Chapter 1 Introduction 

Therefore, in this study the research is mainly on the development of paraplegic’s 

knee joint model and control strategies of FES-assisted swinging motion. 

 SCI also leads to susceptibility to the inactivity related diseases such as 

obesity, insulin resistance, type II diabetes, and coronary heart disease increases 

(Phillips et al., 1998). Physical exercise including the use of electrical stimulation 

devices, in this group of patients is essential in order to prevent diseases associated 

with physical inactivity (Kjaer, 2000). Furthermore, exercise is very beneficial to the 

muscles by strengthening the muscles and increasing their efficiency. The 

possibilities for exercise in people with SCIs are limited, especially to the paraplegic. 

One possible solution is by stimulating their paralysed leg muscles through 

application of FES-assisted exercise such as swinging, cycling and rowing. FES-

assisted swinging leg is the easiest exercise that can be done by paraplegic without 

getting-off from his/her wheelchair.  

 

1.2 Spinal Cord Injury         

SCI is defined as damage or trauma to the spinal cord that results in loss of or 

impaired function and in turn reduced mobility or feeling. A common cause of 

damage to the spinal cord is trauma.  Traumatic SCI may be caused by road traffic 

accidents, falls, sports injuries and gunshot. Road traffic accidents account for the 

largest cause of SCIs worldwide (Liverman et al., 2005). SCI can also be caused by 

so-called ‘non-traumatic’ SCI or disease such as Transverse Myelitis, Polio, Spina 

Bifida and Friedreich's Ataxia (http://www.apparelyzed.com, January 2011). 

Movement in the human body depends on natural electrical currents that flow 

through nerves connecting the brain with the limbs. At the bottom of the skull, a long 

bundle of nerves called the spinal cord joins the brain. Along the spine, smaller nerve 

bundles branch out from the spinal cord to the head, arms, trunk, and legs. The brain 

and spinal cord constitute the central nervous system (http://fescycling.com, January 

2011).  

The American Spinal Injury Association (ASIA) defined an international 

classification based on neurological responses, touch and pinprick sensations tested 

in each dermatome, and strength of ten key muscles on each side of the body 

 2
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(www.asia-spinalinjury.org, 2010) For example, when a person's spinal cord is 

severed or completely cut, it is known as complete or ASIA-A. A complete injury 

means that there is no function below the level of the injury; no sensation and no 

voluntary movement. When it is incompletely cut it is known as an incomplete 

making it ASIA-B. An incomplete injury means that there is some functioning below 

the primary level of the injury. A person with an incomplete injury may be able to 

move one limb more than another, may be able to feel parts of the body that cannot 

be moved, or may have more functioning on one side of the body than the other. The 

higher up the spinal cord is damaged, the less function a person would have.  

The spinal cord is composed of 31 segments: 8 cervical (C), 12 thoracic (T), 

5 lumbar (L), 5 sacral (S), and 1 coccygeal (Co) (Gondim and Thomas, 2009). The 

most vulnerable levels of injury are at the fifth through seventh cervical vertebrae, 

fourth through seventh thoracic vertebrae and tenth thoracic through the second 

lumbar vertebrae (Vaccaro et al., 1995). The positions of these points are illustrated 

in Figure 1.1, where each level is designated by the region in which it lies (cervical, 

thoracic, lumbar or sacral) and the spinal nerve number.  SCI is classified according 

to the person's type of loss of motor and sensory function. The following are the 

main types of classification (www.ohsu.edu, January 2011): 

• quadriplegia - involves loss of movement and sensation in all four limbs 

(arms and legs). It usually occurs as a result of injury at T1 or above. 

Quadriplegia also affects the chest muscles and injuries at C4 or above, and 

require a mechanical breathing machine (ventilator). 

• paraplegia - involves loss of movement and sensation in the lower half of 

the body (right and left legs). It usually occurs as a result of injuries at T1 or 

below. 

• triplegia - involves the loss of movement and sensation in one arm and both 

legs and usually results from incomplete SCI. 

• hemiplegia -is a condition in which the limbs on one side of the body have 

severe weakness. 

SCI is also associated with changes within the central nervous system that 

include problems of muscle activation such as weakness, hyperactive spinal reflexes, 

and loss of sensory function (Thomas et al., 1997). 
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     Figure 1.1: The spinal cord and areas affected at various injury levels 
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1.3 Functional Electrical Stimulation      

In the last 50 years, medical scientists and engineers have invented methods and 

devices based on FES to assist with problems due to loss of mobility. The first 

developed FES was used as an orthotic system to prevent “foot drop” during 

hemiplegic walking (Liberson et al., 1961). Its use in SCI subjects with incomplete 

motor function, where the gait is impaired by weakness of lower limb muscles (Dietz 

et al., 1981; Conard et al., 1985), was first reported by Bajd et al. (1989). FES has 

only been available in the UK since 1995, when it has been provided by the 

Salisbury NHS Trust. Then in 2000, FES was named as a recommended treatment by 

the Royal College of Physicians for improving ankle dorsiflexion and gait 

performance (www.salisburyfes.com, January 2011). 

FES is a promising way to restore mobility to SCI by sending electrical 

signals to restore the function of paralyzed muscles. In this technique, low-level 

electrical current is applied to an individual with disability so as to enhance that 

person’s ability to function and live independently (Kralj and Bajd, 1989). A heart 

pacemaker is one example of an FES system. Other types of FES may restore lost 

abilities such as cycling, standing or grasping.  It is important to understand that FES 

is not a cure for SCI, but it is an assistive device (Jacques, 1998). When there is 

damage only to the central nervous system, the muscle and its nerve supply remain 

healthy. The reason they do not work is that they are cut off from the command 

signals coming from the brain as explained in the previous section. FES applied near 

the muscle or nerve can artificially substitute electrical signals for the missing 

normal motor signals. The artificial impulses make the muscle contract. The main 

components of an FES system are the electrodes and the stimulator unit, and when 

FES is being used to move muscles, current pulses in the electrodes cause the 

weakened or paralyzed muscles to contract.  

The main objective of FES in injuries to the central nervous system is the 

substitution of the absent bioelectric activity with an appropriately formed series of 

electric pulses, generated by a stimulator, or the elimination of the hyperactivity in 

paralysis and spastic paresis (Pasniczek and Kiwerski, 2004). The concept of FES is 

simple, but its realization is challenging. Two electrodes are essential to close the 

current circuit. For FES, and particularly when using surface electrodes; the fewer 
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leads the better (Rushton, 1997). Figure 1.2 shows the basic electrical stimulation 

system. 

 

Figure 1.2: A Basic Electrical Stimulation System 

 

Depending on the application, there are three stimulation methods: 

transcutaneous electrodes, percutaneous electrodes, and implanted electrodes such as 

epimysial and cuff (Popovic and Sinkjer, 2004). Transcutaneous, well known as 

surface electrodes, are electrodes that are placed on the skin surface and they require 

daily placement and removal. A percutaneous electrode means that the electrodes 

placed within a muscle and response to the same stimulus is likely to remain the 

same through the skin each day. In the past, percutaneous electrodes have failed at a 

high rate (Shimada et al., 2001). While epimysial is placed on the surface of the 

muscle and cuff is wrapped around the nerve that innervates the muscle of interest. 
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In the case of implanted electrodes, both the stimulator and the electrodes are 

surgically implanted inside the body and need another operation when the electrodes 

break or move. Hence the surface electrode is the most popular among people with 

SCI because of its simplicity and not painful method. 

FES systems have been developed for restoring function in the upper 

extremity, lower extremity, bladder and bowel, and respiratory system (Peckham and 

Knutson, 2005). With regard to the lower extremity, the initial work was for 

correction of the drop foot. This technique is very mature now (Lyons et al., 2002). 

Other applications in the lower limbs include knee joint movement (Ferarrin et al., 

2001; Jezernik et al., 2004; Previdi et al., 2004), cycling (Hunt et al, 2004; Petrofsky, 

2003), standing up (Davoodi and Andrews, 1998; Riener and Fuhr, 1998), keeping 

body balance (Hunt et al., 2001), and walking (Khang and Zajac, 1989; Kralj and 

Bajd, 1998; Popovic et al., 199; Huq, 2010). According to a survey on FES in 

rehabilitation engineering conducted by Zhang and his colleagues (2007), FES has 

made great progress in the two applications, knee joint movement and cycling as 

well as many good results achieved from real experiments on subjects.  However, 

most of the work based on activity with regard to the motor task such as standing up, 

keeping body balance and walking is still at the simulation stage. 

 

1.4 Aims and Objectives of the Research 

The development of paraplegic knee-joint model and control strategy for FES-

swinging motion are the aims of this research. The developed knee joint model 

should be capable of relating electrical stimulation and knee angle specifically for 

FES control development. To achieve these aims, the objectives of this research are 

formulated as follows:  

i. To develop the equations of motion of lower limb model and to 

optimize the anthropometric inertia parameters for a specific subject 

based on experimental data.  

ii. To develop models of passive joint properties and active muscle 

properties of the paraplegic knee joint based on experimental data 

using fuzzy inference system and genetic optimization. 
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iii. To integrate the equation of motion of the lower limb, the passive 

joint properties and the active muscle properties to form a complete 

knee joint model for control development using the 

MATLAB/Simulink environment. 

iv. To develop trajectory based FES-swinging motion control with 

reduced muscle fatigue within simulation and experimental 

environments. 

v. To develop cycle-to-cycle based FES-swinging motion control, 

without predefined trajectory, within simulation and experimental 

environments. 

 

1.5 Thesis outline  

The organisation of the thesis reflects the sequence of steps taken in the development 

of dynamic modelling of knee joint and control schemes for FES-swinging motion. 

A brief outline of contents of the thesis is given as follows: 

Chapter 1: This chapter describes SCI and introduces the concept of FES in 

paraplegia. Most importantly, the chapter has stated the aims and objectives of this 

research and the contributions of the thesis as well as the list of the publications 

arising from this research work.  

Chapter 2: In this chapter a brief review relating to the musculoskeletal model such 

as segmental dynamics, muscle model and passive joint properties is included. The 

survey of literature in this chapter is intended to highlight the challenges and 

drawbacks related to the forward dynamic model of human lower limb for simulating 

FES applications.   

Chapter 3: This chapter describes a new approach for modelling non-linear passive 

joint properties of the paraplegic. Genetic algorithm (GA) based fuzzy model is 

proposed to represent the passive viscoelasticity of knee joint based on pendulum 

test. It also describes equations of motion and optimization of anthropometric inertia 

parameters using GA based on subject-specific anthropometric data and 

experimental data.   
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Chapter 4: This chapter describes a new modelling method of active properties of 

quadriceps muscle using multi objective genetic algorithm (MOGA) with two 

objectives; to minimize the prediction error to fit the experimental data and the 

weighting factors of the fuzzy rules. A fuzzy model is used to represent the highly 

non-linear active properties of the quadriceps muscle.  

Chapter 5: This chapter presents the development of FES-induced swinging motion 

control with reduced energy consumption based on ‘natural’ trajectory approach. 

Two fuzzy controllers; with and without energy efficiency mechanism are developed 

using MOGA optimisation. The controllers are assessed in simulation studies and 

validated through experimental work. 

Chapter 6: In this chapter a discrete-time cycle-to-cycle control of FES-induced 

swinging motion without predefined trajectory is investigated. The control is able to 

achieve full knee extension angle and to maintain a steady swinging of the lower 

limb as desired in presence of spasticity and muscle fatigue. The developed controls 

are assessed in simulation studies and validated through experimental work. 

Chapter 7: In this chapter the conclusions and recommendations for future work are 

presented. 

 

The thesis has two appendices.  

Appendix A presents steps of derivation and transformation of the double rod 

pendulum based on Kane equations for lower limb as discussed in Chapter 3. 

 

Appendix B describes the muscle model from the work of Reiner and Fuhr (1998) 

for the comparative study as discussed in Chapter 4.  

Part of the work presented in the thesis has been published through several papers. 
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1.6 Thesis Contributions 

The original contributions made in this thesis can be outlined as follows: 

i. The model of a dynamic system of the lower limb is derived using 

Kane’s equations. The anthropometric inertial parameters such as foot 

mass, shank mass, moment of inertia about centre of mass (COM) and 

position of COM along the segmental length of the limb in these 

equations have been optimised using GA based on subject-specific 

anthropometric data ( height and weight) and experimental data.   

ii. A fuzzy model is proposed to estimate the non-linear passive 

viscoelasticity (combination of viscosity and elasticity) of knee joint 

properties as a function of knee angle and knee angular velocity using 

GA optimisation based on experimental data from pendulum test.  

iii. A fuzzy model is proposed to estimate the complex active properties 

of quadriceps muscle using MOGA with two objectives; to minimize 

the prediction error to fit the experimental data and the weighting 

factors of the fuzzy rules. The estimated reduced rule of the fuzzy 

model exhibited good prediction capabilities; it is comparatively less 

burdened compared to the complex mathematical model. 

iv. A novel method of development of FES-induced swinging motion 

control with reduced energy consumption based on ‘natural’ 

trajectory approach has been proposed. In these approaches, fuzzy 

logic controllers are optimized using genetic optimization with multi 

objectives. A new control scheme; controller with energy efficiency 

mechanism is proposed to control paraplegic knee joint with reduced 

energy consumption The time integral of knee torque is taken as the 

optimization criterion to design this controller. The control approach 

has shown up to 10% reduction in energy consumption within 

simulation studies and has shown to minimize muscle fatigue within 

experimental work.   

v. A new control strategy is proposed for FES-swinging motion without 

predefined trajectory. The discrete-time fuzzy logic cycle-to-cycle 

control is applicable to control FES induced movement with the 
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ability to reach full knee extension angle and to maintain steady 

swinging of the lower limb as desired in the presence of muscle 

fatigue and spasticity. The capability of fuzzy control in automatic 

generation of stimulation burst duration is assessed in computer 

simulations using a developed musculoskeletal model. Then, the 

performance of the controller has been validated through 

experimental work. 

vi. Finally, the study proposes approaches involving the stimulation of 

only the quadriceps to obtain steady FES-assisted swinging motion. 

The control strategies thus developed are able to perform steady 

swinging motion within simulation and experimental environments. 

 

1.7 List of publications 
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CHAPTER 2 

A BRIEF REVIEW OF MUSCULOSKELETAL 

MODELLING 

 

 

2.1 Introduction 

Models of the musculoskeletal system are valuable tools in the study of human 

movement. Modelling, and hence a simulation study can greatly facilitate to test and 

tune various FES control strategies. In order to develop a control strategy for the 

FES to move the leg correctly, an accurate model of the stimulated muscle has to be 

used. Accurate models can facilitate the design of stimulation patterns and control 

strategies that will produce the desired force and motion (Perumal et al., 2008). 

The major function of muscle is to produce force. Muscle force is not as 

important as it is in natural systems for FES systems (Jacques, 1998). In classical 

muscle mechanics, researchers usually examine and model the relationship between 

stimulation and force in an isolated muscle. In FES, researchers usually examine and 

model the relation between stimulation and angular displacement of a joint or its 

joint torque. The distinction is important because the limb itself adds inertia, 

stiffness, and damping which arise from the bone and joint but also from other 

muscles crossing the joint (Jacques, 1998). The properties of a joint, rather than a 

muscle, can dominate the relationship of stimulation to displacement (Allin and 

Inbar, 1986). 

Modelling of joint properties of lower limbs in people with SCI is 

significantly challenging for researchers due to the complexity of the system. The 

complexity is due to the combination of complex structural anatomy, complicated 
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movement and dynamics as well as indeterminate muscle function (Ghafari et al., 

2009). Depending on the direction in which the neurophysiological and 

biomechanical processes are represented in the model, one can distinguish direct and 

inverse dynamic models. Direct dynamic models (also called forward dynamic 

models) are used to calculate the internal processes in the same order in which they 

occur in the real system. The inputs in such models are various stimulation 

parameters or complex stimulation patterns, the outputs are usually joint torques or 

limb movements. 

Contrary to the direct dynamic model, an inverse dynamic model describes 

the processes underlying FES-induced movements in the opposite direction: the 

input to the model is a measured or desired movement trajectory, the model then 

predicts the stimulation pattern, or any other internal quantity, which is necessary to 

achieve the predefined movement (Wells, 1967). In the control of FES-induced 

single-joint movements, the use of an inverse dynamic model has been shown to be a 

promising strategy to control joint angle (Quintern et al. 1989; Veltink et al., 1992a). 

However, when a redundant system with more muscles than degrees of freedom is 

considered, a unique solution is no longer possible and additional optimization 

procedures have to be applied.  

On the other hand forward dynamic models of the FES musculoskeletal 

system have been widely developed such as in (Delp et al., 1990; Hatze, 1980; 

Pandy et al., 1990; Veltink et al. 1992b). It is easy to compare the results of 

simulation and experiments in the forward models, as the stimulation input and 

output are the same for both simulation and experiment. In this chapter, various 

components or building blocks of the forward dynamic approach for musculoskeletal 

modelling are briefly surveyed. The main objective of the survey is to review a 

forward dynamic model and identify its drawbacks so that the modelling approach 

can be improved. The main components of the forward joint model consist of 

segmental dynamics, active properties (muscle activation and contraction) and 

passive properties (elasticity and viscosity) as shown in Figure 2.1.   
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Figure 2.1: Main components of the forward dynamics musculoskeletal model 

 

2.2 Body Segmental Dynamics 

The body segmental dynamics are generally modelled as a set of rigid limb 

segments, whose movements relative to each other are defined by the joint 

articulations, i.e. skeletal geometry and ligamentous constraints (Huq, 2009). The 

complexity of a body-segment dynamical model depends on the number and types of 

body segments, the joints connecting the segments, and the interaction among the 

segments and the environment (Bronzino, 2006). The degree-of-freedom (DoF) of 

human body can indicate the different levels of difficulty. The complexity in 

analysing multi-joint structure is often reduced through reducing the number of DoF 

to a manageable level. 

With regard to leg movement control, most FES applications serve for 1-DoF 

movement such as knee joint control and ankle joint control (Yoshida and Horch, 

1996; Hunt et al., 2001). FES application for 2-DoF movement is also very common, 

in which the two segments are represented as thigh and shank (Franken et al., 1995; 

Jonic et al., 1999). For 3-DoF leg movement, the three segments are represented as 
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thigh, shank, and foot (Liu, 2000) in a two-dimensional plane. There are some 

complex movements that involve more than three DoFs such as walking 

(locomotion). The work done by Hatze (1980) contains 42 DoFs, Yamaguchi and 

Zajac (1990) used 8-DoF and Anderson (1999) used a three-dimensional 23-DoF 

model of the skeleton to simulate one cycle of normal walking. Because these 

models have complex structures of too many DoFs and muscles, it is hard to control 

them in reality via FES (Zhang et al., 2007). At present they are only suitable for 

computer simulation and the experimental test is till far away  

Commercial software packages for simulation of mechanical systems such as 

SDFAST (Symbolic Dynamics Inc., USA), ADAMS (Mechanical Dynamics Inc., 

USA), and Visual Nastran (MSC Software Corp., USA) have been used to model 

musculoskeletal systems. These software packages, however, lack the specialized 

components specific to biological systems, such as musculotendinous force 

production and musculoskeletal moment arm (Maleki and Fallah, 2006). Most of the 

visualization software such as Visual Nastran is computationally expensive and lacks 

mathematical description of the model (Huq, 2009). Moreover, these methods need 

to gather multiple software packages and seamlessly link them to each other, that is 

very costly and inconvenient. 

The conventional method of using mathematical modelling has been widely 

used as a simulation tool in biomechanical research specifically to get the dynamical 

equations. The usual approach of mathematical formulation can be adopted easily to 

write computer programs using symbolic computer languages such as LISP, 

PROLOG, and MAPLE and to generate the equations of motion (Winter, 2005). 

Computer programming languages such as C, FORTRAN, or BASIC can also be 

used to develop self-formulating programs generic enough to accept model 

description as an input and provide model response as an output (Huq, 2009). The 

popular computer software package MATLAB, contains a library of standard vector 

and matrix manipulation functions. Most of the computational models of the human 

limb have been developed utilizing a matrix calculation using MATLAB (Barker et 

al., 2007).  

The use of MATLAB has ensured that an easy user interface can be achieved 

with little detailed knowledge of computer programming (Barker et al., 2007). The 

ability to use other in-built or custom-written functions within MATLAB is also 
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advantageous for pre- or post-processing of data. Furthermore, MATLAB is very 

convenient for implementation of complex control strategies by using appropriate 

toolboxes, and real-time interaction with real world can also be established using the 

Real-time Workshop toolbox. Therefore by developing the entire model and control 

in a single software package will help the developer with the costs involved in 

providing several software packages and the difficulties associated with linking them 

together. 

Huston et al. (1976, 1978) developed a general approach for studying a 

human body model using equations based on d’Alembert’s principle. Onyshko and 

Winter (1980) developed a seven link planar model. Equations of motion formulated 

using Lagrangian mechanics, consist of a 7×7 matrix of anthropometric constants 

and segment angles, a vector of the angular accelerations and vector containing the 

torques acting on the segments. Hatze (1980) used the traditional Lagrangian 

approach to define a mathematical model of the total human musculoskeletal system. 

Marshall et al. (1985) used a general Newtonian approach to simulate N-

segment open chain model of the human body. The model simulated planar 

movement using data for joint torques and initial absolute angular displacements and 

velocities for each body segment. These values are used to solve the direct dynamics 

problem, expressed in the form of n simultaneous linear equations, to yield angular 

accelerations. Zajac (1989) has developed a planar computer model to investigate 

paraplegic standing induced by FES. 

Kane’s equations (Kane and Levinson, 1985) with the combination of 

computational advantages of d’Alembert’s principle and Lagrange’s equations have 

been utilized successfully in modelling of complex systems such as in Langer et al. 

(1987), Lesser (1992), Komistek et al. (1998), Tisell (2000) and Yamaguchi (2001). 

Kane’s method of dynamics is a sophisticated mathematical technique that allows 

resolution of a large number of variables through the use of generalized speeds that 

define the motion in the system. Through the use of generalized speeds one is able to 

model the human lower extremity as a first-order set of differential equations 

(Komistek et al., 1998). 
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2.3 Muscle Models 

Different types of muscle model are used for different purposes. The range extends 

from analytical models which are based on physical properties of the muscle, either 

at a microscopic or at macroscopic level, to empirical models which are purely 

mathematical descriptions of the input-output characteristics of the muscle (Huq, 

2009). An extensive review of various modelling approaches can be found in 

Zahalak (1992). Aspects which are particularly relevant to modelling of artificially 

stimulated muscle are discussed in Durfee (1992). Winter and Stark (1987) compare 

model structures based on microscopic analysis, macroscopic analysis and purely 

mathematical models. 

The most widely used microscopic model is the cross bridge model, the basic 

principles of which were developed by Huxley (1974). It aims to describe the muscle 

characteristics at a microscopic level by modelling the processes within a single 

muscle fibre. This type of model is in principle useful to describe all characteristics 

of muscle, as all model parameters are based on physical components, which makes 

it very popular amongst biologists. However, the microscopic approach makes a 

description of the entire muscle very difficult as parameters at the level of muscle 

fibres have to be identified. It also leads quickly to large systems of nonlinear partial 

differential equations which are difficult to handle. Parameters of a Huxley-type 

model are difficult to interpret in terms of the macroscopic muscle characteristics. A 

number of unconventional cross-bridge models have been suggested which make 

different assumptions than those of Huxley, e.g. Hatze (1974). 

The most often cited macroscopic muscle model is based on the description 

by Hill (1938) with a large amount of experimental data and results.. The Hill-based 

muscle models are popular as their parameters describe familiar concepts related to 

the sarcomere structure and they consist of successive equations based on 

experimental results. This makes them more preferable than those that depend on 

theories as it is claimed that they are more accurate (Fung, 1981). However, for the 

identification of parameters of model components special experiments are necessary 

which may not be applicable in all situations. Winters and Stark (1987) developed 

the simplest model with the most apparent success of the structure being its ‘task 

independency’, which has been claimed to be achieved through including nonlinear 

relations for four fundamental model properties such as contractile element torque-
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velocity, serial elastic component, parallel element, contractile element active muscle 

torque-angle. However, this would obviously increase the model complexity.  

The most cited and very comprehensive paper that addresses Hill based 

modelling through exploring muscle-tendon interaction is given by Zajac (1989). 

Hill-based models calculate the muscle force as the product of three independent 

experimentally measured factors, namely the force-length property, the force-

velocity property and the activation dynamics of the neural input. The model has 

been simplified by assuming that the muscle activation and muscle contraction 

dynamics are uncoupled as shown on Figures 2.2. Neural excitation acts through 

activation dynamics (excitation-contraction coupling) to generate an internal muscle 

tissue state (muscle activation). Through muscle contraction dynamics this activation 

energizes the cross-bridges and develops the muscle force. An extensive review of 

various microscopic modelling approaches can be found in Huq (2009). 

 

Figure 2.2 : Hill based muscle model 

 

Most models built on analytical bases are not suitable for FES control 

applications (Massoud, 2007). One way to develop this model for FES control 

application is to use mathematical models. Thus, empirical model strategies, which 

aim to describe the input-output characteristics of muscle (often limited to conditions 

common in FES applications), and whose structure is suitable for the design of 

stimulation controllers, become useful. As a result, many researchers have developed 

mathematical models of electrically stimulated muscle based on Hill-type (Ding, 

2002; Shue and Crago, 1998), Huxley-type (Zahalak and Ma, 1990), analytical 

approaches (Bobet and Stein, 1998, Ferrarin and Pedotti, 2000) and physiology 
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approach (Riener and Fuhr, 1998). A review of empirical modelling approaches for 

muscle is given in Durfee (1992).  

The use of mathematical models can significantly enhance the design and 

evaluation of closed-loop control strategies applied to FES (Riener, 1999). In fact, 

mathematical models can be used to promote an understanding of the system and 

they can be used to predict the behaviour of the system (Zahalak, 1992). Accurate 

models of artificial muscle activation in healthy or paraplegic subjects have been 

developed but the complexities of the system resulting mathematical representation 

have a large number of parameters that make the model identification process 

difficult.  

In fact muscle consists of active and passive properties. In this study, a 

separation is made between the active and the passive muscle properties. So far only 

the active muscle properties have been considered. The passive muscle 

characteristics such as viscosity and elasticity are assigned to the joint as considered 

in (Ferrarin et al., 2001) and are included in the next section. 

 

2.4 Passive Joint Properties 

Muscles produce active forces to generate movements, but they also contain 

collageneous structures which hold the muscle fibres together and resist stretch even 

when muscle is relaxed (Fung, 1993). The joints themselves exhibit resistance to 

movement because of the properties of cartilage and the shapes of the contacting 

articular surfaces. Together all these resistive forces across a joint generate passive 

moment about the joint (Amankwah et al., 2004). Passive joint moments are among 

the properties of the musculoskeletal system involved in controlling movement such 

as locking of the knee at full extension.  

Early studies have shown that the joint angle affects passive moments 

(Agarwal and Gottlieb, 1977, Wright and Johns, 1961), while other studies have 

shown that passive moments can also vary with the angular velocity of the joint 

(Duong et al., 2001; Esteki and Mansour, 1996; Hayes and Hatze, 1977). 

Conventionally, the joint passive resistance is modelled as an elastic element as 

spring and a viscous element like a rotary damper (Lamb et al., 1991). These two 
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resistances are non-linear, but the viscous resistance is often approached as a linear 

function of the joint angular velocity (Chizeck et. al., 1999; Mansour and Audu, 

1986).   

Several groups have investigated passive elastic joint elements and 

implemented these in biomechanical simulation studies (Mansour and Audu, 1986; 

Davy and Audu, 1987; Veltink et al., 1992; Riener et al., 1996; Riener and Edrich 

1999). These models have illustrated that passive structures contribute significantly 

to joint torque during complex movements such as walking (Amankwah et al., 2006; 

Mansour and Audu, 1986; Whittington et al., 2007). However, these studies take 

only the elasticity of the passive properties into account and, thus ignore the velocity 

dependence viscosity elements. 

Elasticity can be considered as an intrinsic property of the tissue to resist 

deformation, while viscosity is related to cohesive forces between adjacent layers of 

tissues. Identifying the parameters of a model that includes viscosity effects is much 

more challenging since this would also require manipulation of the joint velocity 

(Vrahas, et al., 1990; Yoon and Mansour, 1982). Indeed, very few studies have 

modelled both the elastic and viscous components of the passive elements. 

Therefore, some researchers have modelled the passive viscous moment with a linear 

damping function (Stein et al., 1996; Ferrarin et al., 2001). However, these important 

characteristics of passive elements have wrongly been estimated when the 

nonlinearity nature of viscosity has been neglected. Thus, inaccurate modelling of 

this will bias the analysis of the joint.  

Amankwah et al. (2004) have developed a mathematical equation to describe 

the passive nonlinear viscoelastic lower-limb joint moments. The developed model 

was based on Kelvin model with a nonlinear elastic element in parallel with both a 

linear elastic element and a nonlinear viscous element in series. The elastic moment, 

described the nonlinear passive elastic moment and was modelled with a double 

exponential. However, the use of exponential models require accurate kinematic 

measures since a small deviation in joint angle can cause a large change in the 

estimated joint moment, and therefore substantially impact the mechanics attributed 

to passive elements (Silder, 2009).  The power function used to model the viscous 

moment in (Amankwah et al. 2004) does not agree with recent experimental results 

for knee joints indicating the existence of a linear relationship rather than a non-

linear relationship (Nordez et al., 2008).  
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2.5 Whole Musculoskeletal Models 

The whole musculoskeletal model consists of segmental dynamics, active and 

passive properties of muscle as one complete model suitable for control 

development. However, most currently built muscle models are not appropriate for 

control applications, since these models characterize each muscle feature alone, and 

sometimes there is no connection between the modelled features which may prevent 

from modelling the whole muscle as one model (Massoud, 2007). The most 

appropriate complete model that can be used for FES control applications have been 

developed by Riener et al. (1996) and Ferrarin and Pedotti (2000). 

Riener et al. (1996) have developed a model of the human knee based on the 

physiology approach to predict the shank motion induced by functional 

neuromuscular stimulation. The model contains activation dynamics with slightly 

modified version of a discrete-time model proposed by Khang and Zajac (1989), 

while the contraction dynamics have been derived by scaling the generic Hill-based 

model. The passive elasticity and viscosity have been modelled nonlinearly through 

passive pendulum tests. The body segmental dynamics have been modelled as a 

nonlinear 1-DoF equation of motion to take into account the gravitational moments, 

moment of inertia and internal moment that act on the knee joint. The model has 

been found to perform quite well in terms of model prediction tests with passive 

pendulum test, isometric moment vs. pulsewidth and different stimulation patterns 

for freely swinging shank. However, this model requires many individualized 

parameters to be identified and therefore it makes the modelling process more 

complicated  

Ferrarin and Pedotti (2000) have presented a straightforward and a simple 

approach to model the human knee through identification of the relationship between 

stimulation parameter, pulsewidth and active knee joint torque produced by the 

stimulated quadriceps muscles in a non-isometric condition. A mathematical model 

of a first order transfer function obtained by a least squares error method has been 

developed. The gravitational and inertial characteristics of the anatomical segments 

together with the damping and stiffness properties of the knee have been taken into 

account. 
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Kinematics data obtained from passive pendulum tests has been used to 

identify the unknown stiffness and damping parameters. The damping component 

has been considered to consist of a linear term with a constant viscous coefficient, 

while the stiffness component has been modelled nonlinearly with an exponential 

term. Trials of quadriceps stimulation with pulsewidth modulation and 

predetermined pulse-amplitude at different frequencies have been conducted to 

obtain the kinematics data. Thus, the obtained data has been used to compute the 

time course of the active knee torque by substituting pre-identified viscous-elastic 

components into the equation of dynamics equilibrium for the lower limb, which has 

then been optimally modelled as a single pole autoregressive with exogenous terms 

(ARX) model relating pulsewidth (input) and active muscle torque (output). 

However, the accuracy of this model has been criticized as in Ferrarin et al. (2001) 

and Massoud (2007).  

 

2.6 Summary  

An overview of the various modelling approaches investigated for muscle and 

musculoskeletal components has been presented. The survey of literature in this 

chapter is intended to highlight the challenges and problems related to the forward 

dynamic model of human lower limb for simulating FES applications.  In general, a 

model should be kept as simple as possible, that is, its order and number of 

parameters should be as low as possible.  A too simple a model lacks depth of 

understanding the system properties and leads to inaccurate representation of system 

behaviour. Conversely, a too complex a model may lead to an inability to gain 

sufficient insight into system behaviour due to the tendency to get lost in model 

details such as parameter identification. In fact, musculoskeletal systems are 

complex, being inherently higher-order and nonlinear. The traditional way of 

handling such a system with using a mathematical model has ended up with large 

equations. One way of overcoming this problem is by identifying new modelling 

approaches of nonlinear active muscle properties and nonlinear passive joint 

properties.  
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