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ABSTRACT

This thesis describes the development of an efficient algorithm for solving
nonlinear stochastic optimal control problems in discrete-time based on the principle
of model-readlity differences. The main idea is the integration of optimal control and
parameter estimation. In this work, a simplified model-based optimal control model
with adjustable parameters is constructed. As such, the optimal state estimate is
applied to design the optimal control law. The output is measured from the model
and used to adapt the adjustable parameters. During the iterative procedure, the
differences between the real plant and the model used are captured by the adjustable
parameters. The values of these adjustable parameters are updated repeatedly. In this
way, the optimal solution of the model will approach to the true optimum of the
original optimal control problem. Instead of solving the original optimal control
problem, the model-based optimal control problem is solved. The algorithm
developed in this thesis contains three sub-algorithms. In the first sub-algorithm, the
state mean propagation removes the Gaussian white noise to obtain the expected
solution. Furthermore, the accuracy of the state estimate with the smallest state error
covariance is enhanced by using the Kalman filtering theory. This enhancement
produces the filtering solution by using the second sub-algorithm. In addition, an
improvement is made in the third sub-algorithm where the minimum output residual
is combined with the cost function. In this way, the rea solution is closely
approximated. Through the practical examples, the applicability, efficiency and
effectiveness of these integrated sub-algorithms have been demonstrated through
solving several practical real world examples. In conclusion, the principle of model-
reality differences has been generalized to cover a range of discrete-time nonlinear
optimal control problems, both for deterministic and stochastic cases, based on the

proposed modified linear optimal control theory.
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ABSTRAK

Tesis ini membincangkan pembangunan algoritma yang berkesan untuk
menyel esaikan masalah kawalan optimum berstokastik tak linear dalam masa diskrit
berasaskan prinsip bezaan mode-rediti. Integrasi kawaan optimum dan
penganggaran parameter merupakan idea utama. Dalam usaha ini, model kawalan
optimum berasaskan model ringkas dibina dengan parameter boleh dilaraskan.
Dengan ini, anggaran keadaan optimum digunakan untuk merekabentuk hukum
kawalan optimum. Keluaran dari model pula digunakan untuk membetulkan
parameter boleh dilaraskan. Dalam prosedur |elaran, nilai bezaan antara loji nyata
dan model diguna diambilkira oleh parameter boleh dilaraskan. Kemudian, nilai-nilai
penyelarasan tersebut dikemaskini secara berulangan. Dengan cara sebegini,
penyelesaian optimum model tersebut akan menghampiri penyelesaian optimum
sebenar bagi masalah kawalan optimum asal. Daripada menyelesa masalah kawalan
optimum yang asal, masalah kawaan optimum berasaskan model diselesaikan.
Algoritma yang dibangunkan dalam tesis ini mengandungi tiga sub-algoritma. Dalam
sub-algoritma pertama, perambatan purata keadaan menyingkirkan hingar putih
Gaussan supaya penyelesaian jangkaan dapat diperolehi. Selanjutnya, ketepatan
anggaran keadaan berkovarian ralat terkecil diatass dalam sub-algoritma kedua
dengan mengguna teori penurasan Kaman. Peningkatan ini  menghasilkan
penyelesaian turasan. Di samping itu, penambahbaikan yang menggabungkan reja
keluaran minimum dengan fungsi kos dilakukan dalam sub-algoritma ketiga. Dengan
cara ini, penyelesaian sebenar dihampiri secara rapat. Akhirnya, melalui kajian
contoh praktik, ciri-ciri kebolehgunaan, kecekapan dan keberkesanan terhadap sub-
algoritma yang dibangun dibuktikan melalui penyelesaian beberapa contoh praktik
dunia nyata. Secara kesimpulan, kegunaan prinsip bezaan model-redliti telah
diperluaskan untuk meliputi sgumlah penyelesaian masalah kawalan optimum tak
linear masa diskrit, termasuk kes berketentuan dan berstokastik, berdasarkan teori

kawalan optimum terubahsuai.
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CHAPTER 1

INTRODUCTION

11 Introduction

Many decision and control problems can be formdlaés optimization
problems, where a decision policy is to be desigsach that some performance
indexes are optimized. However, in real-world aitons, the presence of
disturbances is unavoidable. Because the distadsaare random in nature, they are
unpredictable. Consequently, the solutions of al mystem obtained during
simulation are often corrupted by noise. Thus,déeision policy obtained based on
these distorted solutions is unlikely to be acdelpt# the disturbances are not taken
into consideration. Therefore, the governing systé the real-world problem shall
be formulated as a stochastic dynamical system.th@@nbasis, the decision policy
designed subject to this stochastic dynamical syssemuch more useful in practice.
As clearly mentioned in (Ho and David, 2001), itingpossible to devise a single
general-purpose approach which works the bestliféarals of problems. Different
approaches are needed for different types of pnablby exploring the specific

nature of the problem concerned.

In this thesis, a class of nonlinear discrete-tstuehastic control problems is
considered. To obtain the optimal solution of thantrol problem, a simplified
optimal control model is constructed. It is beeqgplied to developing an efficient
iterative algorithm. In this algorithm, the diféat structures among the real plant

and the model employed are taking into accountaedsin the principle of model-



reality differences (Becerra, 1994; Roberts 199Mgtails of the development of the

algorithm will be elaborating in the following chaps.

Here, a comprehensive introduction is delivered.nitidlly, a brief
introduction to the approach based on model-redhtierences is given. Next, a
general class of stochastic dynamical systemssisudsed. Then, it is followed by
the statements of the objectives of the study.thieamore, the significances of study

are discussed and highlighted. Finally, the ovmof each chapter is given.

1.2 TheModed-Reality Differences Approach: A Brief

The principle of model-reality differences provides new attractive
computational methodology in tackling the integdajgoblem formulation of the
control problem, where the system optimization @ipled with the parameter
estimation. The integrated system optimization pachmeter estimation (ISOPE)
and the dynamic-ISOPE (DISOPE) algorithms are Wedwn in the literature.
Over the past 30 years, these integrated algorittaie matured and they have been
used in developing algorithms for solving optimantol problems, where the

random disturbances are, however, ignored.

1.2.1 Background

The integrated system optimization and parametéimason (ISOPE)
algorithm, which was inspired by Haimes and Wisn(&872), was originally
developed by Roberts (1979) and Roberts and WiHigh®81) for on-line steady-
state optimization of industrial processes. Thénncancept is that the optimization
is achieved through the adjustment of regulatomtrodier set-points. This method
is iterative in nature. It uses the repeated swilubf system optimization and

optimal parameter estimation to calculate the opthm This iterative solution



converges to the real optimum in spite of the déifices that exist between the
model used and the real plant. It is a well kndact that the measurement of the
derivatives of the real process is difficult torgaout. However, this difficulty has
been incorporated within the ISOPE iterative pracedby using the directional
derivative, the methods of finite difference appneation, dual control optimization,
Broydon’s method and a dynamic identification methdé-or details, see (Bréyand
Tatjewski, 2005; Mansour and Ellis, 2003).

The ISOPE algorithm is used daily in an oil proaggsplant in Western
Australia (Becerra, 1994). A number of ISOPE alfpons has been developed,
which includes the centralized and hierarchicabatgms (Robertst al, 1992). The
conditions for the convergence of the algorithme &gorously investigated in
(Brdys and Roberts, 1987). Since the appearance of SPE algorithm, its
extension to the dynamic optimization is suggeskeading to the development of
the DISOPE algorithm by following similar principend philosophy of the ISOPE
algorithm.

In a dynamic optimization problem, a control lawtasbe determined such
that a given cost functional is minimized subjextat dynamic system. It is more
complicated when compared to the optimization steady-state control problem.
Nonetheless, by using the principle of ISOPE atbarj an algorithm, termed as
DISOPE algorithm, is developed to solving a clagscantinuous-time optimal
control problems in (Roberts, 1992). The DISOPBoathm is developed for
solving nonlinear optimal control problenas solving the modified linear quadratic
regulator model iteratively, where the dynamic pasters are updated at each
iteration step. It specifically takes into accotim¢ differences in the structures and
the parameters between the model employed anc#h@lant during the process of

computation.

On the other hand, many control schemes are impidedigitally in
industry, where the control input is altered incdege time steps and it is normally
held constant between samples by a zero-order (8dde, 1977; Vaccaro, 1995;
Leigh, 1992; Ogata 1994; Kirk, 1970). Such conirguts are designed for the



discretized version of a continuous plant. Howetlegre are also processes that are
in discrete nature and can only admit discrete tometrollers. For these types of
problems, a discrete DISOPE algorithm has been lolesd, analysed and
implemented. For details, see, for example, (Bacer994; Becerra and Roberts,
1996; Liet al, 1999).

1.2.2 Evolutionary: Hierarchical, Predictive and Bilinear

The DISOPE algorithm has been introduced to a tacgde system (Becerra
and Robert, 1995; Roberts and Becerra, 2001; Mdamdail, 1999), where it
decomposes the optimal control problem into arr@otenected-subsystem problem.
It is then solved in parallel based on the hieraaihstructure, where each sub-

process is controlled by a separate decision nratparallel processing fashion.

The DISOPE algorithm can also be used to compwergbeding horizon
optimal control in a nonlinear predictive contraloplem (Becerraet al, 1998),
where an estimated optimal control sequence thatnmies a given performance
index is computed based on the prediction of theréuoutput response. The
extended Kalman filtering approach is used fordtade and parameter estimation of
the real plant in the presence of disturbances dBac 1994). In this way, the

nonlinear predictive control problem can be sologdising the DISOPE algorithm.

However, many practical processes in industry ametied as bilinear
models. To apply the DISOPE algorithm to solveséhproblems, it requires much
more numbers of iterations and it may even leadivergence. In view of these
shortcomings, Li and Wan (1999), &ial (2000) and Liet al (2002) proposed a new
version of the DISOPE algorithm based on a bilireadel. They concluded that
the bilinear DISOPE algorithm can also producesdpgmal solution in spite of
model-reality differences, where the number of atiens is reduced and the

convergence is improved when compared with the PIS@lgorithm.



1.2.3 Efficiency, Convergence and Stability

The efficiency of the DISOPE algorithm has beenl|wielcumented. To
improve the rate of convergence, the DISOPE metiaxkd on neural network is
introduced in (Kong and Wan, 1999), while the iingeint DISOPE method based on
the optimal selection of algorithm parameter, moded model parameter is
introduced in (Kong and Wan 2000). Furthermor®I8OPE interaction balance
coordination algorithm is developed in (Kong andniN2001), where the stability of
the algorithm is studied. These works have entdtioe efficiency of the DISOPE

algorithm.

The convergence analysis of the algorithm, whiclargntees the real
optimum to be achieved, is studied based on a 2dlysis by Li and Ma (2004),
Roberts (2002; 2003), and Mohd Ismail and Roha@®07). Furthermore, the
methods of momentum and gradient parallel tangent theen introduced to the
DISOPE algorithm so that the slow convergence israame, leading to a more
efficient DISOPE algorithm after some modificatiofohanin and Mohd Ismail,
2002; Rohanin, 2005).

1.2.4 Applicationsto Optimal Control

The principle of model-reality differences has adted the researchers to
apply the DISOPE algorithm to solving real optin@ntrol problems. These
applications include fed-batch fermentation prod8eserra and Roberts, 1998), and
robot manipulator control problem (ki al, 1999; Rohanin and Mohd Ismail, 2003).
In addition, Zhang and Li (2005) proposed a nowstrithuted model predictive
control scheme based on the DISOPE algorithm farlimear cascaded systems
under network environment. The study of the DISO&gorithm for complex

system under network environment was also carnigdbp Kong and Wan (2003).



Recently, the DISOPE algorithm has been employeddive nonlinear
discrete-continuous hybrid systems for co-statelipten (Huet al, 2006; Huet al,
2008). Furthermore, the study of the linear andlinear discrete-time stochastic
optimal control problems is being carried out byngsthe approach based on the
model-reality differences in (Kek and Mohd Ism&D09; Mohd Ismail and Kek
2009; Mohd Ismaikt al, 2010; Keket al 2010a; Kelat al, 2010b).

1.3  Stochastic Dynamical Systems

A stochastic dynamical system is a dynamic systdmchwis affected by
some kinds of noise. The fluctuation caused byntiise is commonly referred to as
a noisy or stochastic phenomenon (Spall, 2003). this circumstance, the
deterministic trajectories of the system are cdedp Clearly, the disturbances will
cause errors in system behaviour, sensor errorgtiied measurement errors. These
errors are highly undesirable, but they are unalad&l Thus, the noise characteristic

shall be taken into consideration in the methodsnaflysis and design.

Essentially, a dynamical system can be formulated aystem of differential
equations or difference equations (Socha, 2008w&rand Andrews, 2001; Bar-
Shalomet al, 2001). In the presence of noise, these dynansigstiems shall be
modelled by stochastic differential equations ockastic difference equations. An
optimization problem involving a stochastic dynaahisystem is called a stochastic
optimal control problem.

1.3.1 Random Noise Disturbances

Noise is a random variable that fluctuates apecaltyi. This variable takes
on different sets of values during different samglprocesses. Thus, modelling a

dynamical system, which is perturbed by one or nsowgces of noises, is a difficult



and challenging task. However, the assumptionstabe nature of the noise can be
made (Bryson 2002). As such, the accuracy of gsuraptions is assessed by
comparing the results obtained from the predictimdel and the experimental data

measured.

Mathematically, it is assumed that the noise thappeared in the dynamical
system is categorized as follows (Grewal and Andre2001; Bar-Shalonet al,
2001):
€)) Observation noise — it is an additive noispeaped only in the observation

model, and
(b) Parametric noise — it is an additive noiseaamultiplicative noise or both

appeared in the system dynamic.

1.3.2 State-Space Models

Consider a system model given below.

x(k +1) = f (x(k),k) + (k) (1.2)
wherek denotes the discrete time step, the vestér denotes the current state, and
x(k +1) denotes the one-step ahead future stéie(k),k is & vector-valued
continuously differential function, and k ( denotes the process noise. It is assumed
that « k) is the zero-mean white noise sequence, and tifatk),k doey not
depend on the previous valuesx@k—-7 , 1) = 1, ...,k Thus, this process is a
Markov process (Bryson, 2002). The vectoik (s) a state vector and the
conditional probability density function (PDF) forx(k) , denoted by
p(x(k +1) | x(k)) , is sometimes called the hyperstate of the psocedt is

characterized by the mean and the covariance @mr&b94) of the process.

Additional, an observation model is given below.
y(k) = h(x(k),k) + (k) (1.2)



where the vectory(k) denotes a set of observablé$x(k),k is)a vector-valued
continuously differentiable function and the vectdk) denotes the measurement

noise. Itis assumed thatk (i a zero-mean measurement white noise sequence.

From (Bryson, 2002), it is also assumed that

@) nk)andn (j ) are independent i # j, and
(b) x(), a(k) andzn () ) are statistically independent for kland j.

These assumptions assert that
p(x(k + 1) [x(k), y(K)) = p(x(k + 1) | x(K)) .

The coupling of the system model and the obsematiodel is the state-
space model of the stochastic dynamical system. e Bignal-flow graph

representation (Lewis, 1992) of this state-spacdeahis expressed in Figure 1.1.

(k) ! n
fL) [+ = hLD) | — YK

x(kt1)—> zt! —» x(k)i

Figurel.l State-space model, where' denotes time-delay unit



1.3.3 Optimal Control of Stochastic System

Consider the optimal control of a stochastic sysgran below.
x(k +1) = f (x(k),u(k), k) + «(k) (2.3)
y(k) = h(x(k),k) + (k) (1.4)
where the vectomu k( )is the control variable to be determined such ttinest

following cost functional
J(u) = E[¢(X(N),N) +ZL(X(k),U(k),k)] (1.5)

is minimized, whereE denotes the mathematical expectatibris a scalar expected
value, ¢ is the terminal cost aridis the cost measure under summation. Notelthat
is a general time-varying scalar function in tehshe state and control variables at
eachk for k = 0 tok = N — 1. It is assumed thgt andL are continuously

differentiable functions with respect to their resfive arguments.

This is a general class of nonlinear stochastiin@ control problems in
discrete-time, where the probability density fuact{PDF) of the state variables is

unknown, but their error covariance can be caledléBryson, 2002).

1.4  Motivation and Background of the Study

The integrated system optimization and paramet#mason algorithm is a
novel approach. Its efficiency and applicabilitave been well documented, as
described in Section 1.2. However, in real-wonidtems, the presence of random
disturbances is unavoidable. These disturbancell @xcur due to measurement
errors from the sensors, instruments, data trassoni<hannels, or human error. In
most cases, these errors are random in nature.s, Tha original model-reality

differences approach cannot be implemented imibisy environment.
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Furthermore, real-world problems are often miedel as nonlinear
dynamical systems subject to stochastic disturlsancén this thesis, only the
Gaussian white noise is considered. It is knova ghcomplex dynamical system is
difficult to be solved analytically. For matheneaii tractability, it is assumed that
the corresponding functions in the nonlinear systee continuously differentiable
functions. As such, the solution, which is in foems of expectation and filtering, is

to be calculated by using appropriate numericatsts.

By virtue of the efficiency of the model-realityfidirences approach to the
deterministic nonlinear control system, the goaltlot thesis is to develop an
efficient and effective computational approach dase the principle of model-
reality differences to a class of nonlinear diseiténe stochastic optimal control
problems. The principle of model-reality differesds not applicable to continuous-

time nonlinear stochastic control systems. lItfigstare research topic.

15  Objectivesand Scope of the Study

The objective of this study is to develop an eéfitialgorithm for solving the
nonlinear stochastic optimal control problems iscdete-time based on the principle
of model-reality differences. For this, some reswn linear system theory are
revealed and applied to construct the optimal soiubf the discrete-time nonlinear
stochastic control system. These results includegrated optimal control and
parameter estimation. They are obtained basedchemtinciple of model-reality
differences, where the reality is referred to asrdéal plant dynamic of the nonlinear
optimal control problem (also called the real omincontrol problem), while the
model is the linear model involving the linear quant (LQ) optimal control
problem. Clearly, solving only the LQ optimal caoltproblem would not provide
the optimal solution of the real optimal controloplem. Thus, this system
optimization is equipped with the iterative optinfarameter estimates so as to
capture and to be adapted to the behaviour ofdhlkty. Then, the optimum of the
system optimization is updated iteratively in sgitehe model-reality differences.
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Here, we summarize our research objectives asasllo
To review the existing approaches for solving tbalimear stochastic optimal
control problems.
To develop an efficient and effective computatioapproach based on the
principle of model-reality differences for a class nonlinear discrete-time
stochastic optimal control problems.
To apply the optimal state estimate for the nomlirstate estimation.
To design a feedforward-feedback optimal contred $aich that the dynamic of
discrete-time stochastic system can be stabilized.
To propose an effective computational methodology fliscrete-time

stochastic dynamic optimization.

In addition, the scope of our research covers
Linear and nonlinear stochastic optimal contradiscrete-time;
Linear and nonlinear state estimation using Kalfiitering theory;
Minimum output residual with the concept of the giged least-square
approach;
Convergence, optimality and stability for the detertime stochastic dynamic
optimization; and

Stochastic modelling with the Gaussian white noises

Significance of the Study

The computational algorithm derived based on treaidf the integrated

optimal control and parameter estimation develoipethis thesis provides a novel

scheme to the control and optimization of the madr stochastic optimal control

problem in discrete-time. This novel scheme alsoegalizes the model-reality

differences approach to cover a range of discrete-inonlinear optimal control

problems, both for deterministic and stochasticesashased on the proposed

modified linear optimal control theory.
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(b)

(©)
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The significance of this study includes

Comprehensive review of literature
Various computational methods are reviewed. Mdsthe computational
schemes are based on approximation. Others aesl lwas the probability

density function. This literature review leadsaishe study in the thesis.

Algorithm devel opment

A class of integrated optimal control and paramedstimation (IOCPE)
algorithms is developed based on the principle oflehreality differences.
There are three sub-algorithms listed below.

(1) The ICEES algorithm, which looks for the exfaion solution;

(i) The ICEFS algorithm, which computes the filbg solution; and

(i)  The ICERS algorithm, which generates the maput solution.

They are coded in MATLAB version 7.0 (R14) and iempkented in
Microsoft Window XP, Pentium M, 496 MB.

Application of optimal state estimate

In the presence of the random disturbances, theskas estimates are (i) the
expected state when there is no observation; anthé filtered state when

the observation is available. The optimal statémede generated from

Kalman filtering theory is applied instead of usitige extended Kalman

filter. The online calculation of the filter gais avoided during the iterative
procedure. This will save the computation timehef state estimation.

Design of optimal control law

A specific optimal control law, known as the femafard-feedback optimal
control law, is designed. The feedforward contoirects the differences
between the real plant and the model employed,enthi¢ feedback control
takes into consideration of the entire optimalestdtimate. This combined
optimal control law stabilizes the dynamic of thiscdete-time stochastic

system in closed-loop form.
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(e) Computational methodology for optimization
The computational methodology integrates the coatfmut of the adjustable
parameters and the optimization of the modified etdihsed optimal control
problem interactively in a unified framework. Hencthe model-based
optimal control problem is solved instead of safyithe original optimal
control problem. As a result, the true optimalsion of the original optimal
control problem could be obtained in spite of thedel-reality differences.
This methodology is effective for the discrete-tistechastic optimal control

problems.

1.7 Overview of Thesis

In the previous section, comprehensive introdustiom the model-reality
differences approach and the optimal control o€lsstic dynamical systems were
given. In particular, the evolution of the modedlity differences approach was
reported and the discrete-time nonlinear stochaspitmal control problem was
described. The purpose of this thesis is to ptesew algorithms based on the
principle of model-reality differences for solvinthe discrete-time nonlinear
stochastic optimal control problems. The literattgview, the development of these

algorithms and the theoretical analysis are brigéigcribed below.

In Chapter 2, a brief introduction of the prineif model-reality differences
is given. Various types of random processes aserieed and dynamic estimation,
which is carried out from Kalman filtering theong, discussed. In addition, the
relation of smoothing and filtering is revealedurtRermore, the optimal control of a
nonlinear stochastic system is considered, whezestbchastic value function and
the stochastic Hamiltonian function are present&ar a linear stochastic control
system, the dynamic regulator and its optimal adrdre derived. Finally, some

recent results on stochastic control strategieseatiewed.
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In Chapter 3, the principle of model-reality difaces is explained through
introducing an expanded optimal control problemppking the mean propagation
equation to the state dynamic of the stochastitesysthe stochastic control system
is transformed into a nonlinear deterministic cohgystem. On this basis, the
| CEES algorithm with the linear quadratic regulator (LQéptimal control model,
similar to the DISOPE algorithm, is developedcdh then be used to obtain the true

expected solution of the original optimal controbliplem.

In Chapter 4, the observation is considered avigila The optimal state
estimate is derived from Kalman filtering theorfhe off-line computation of the
filter gain and the corresponding state error ciewere is performed before the
iterative procedure begins. The extension of thacple of model-reality
differences is carried out such that ti@EFS algorithm is developed. By using the
linear quadratic Gaussian (LQG) optimal control elod the algorithm proposed,

the true filtering solution of the original optimabntrol problem is obtained.

In Chapter 5, an improvement on the methodologgudised in Chapter 4 is
made. The weighted least-square output residuatrsduced and is combined with
the cost functional of the model-based optimal @rgroblem. Again, applying the
principle of model-reality differences, the corresding version of thd CERS
algorithm is derived. It is important to note thithe weighting matrix with the
smallest value shall be determined. As such, the teal output solution of the
original optimal control problem can be trackedveftually, the minimum output

residual reduces the noisy level of the problem.

In Chapter 6, a theoretical analysis is carrietl deirstly, the optimal state
estimator, which is a modification from Kalman diling theory, is analysed. The
stability, consistency and efficiency of the Kalnfdter are discussed. Secondly, an
analysis of the algorithm implementation is madehe optimality conditions and
their algorithmic mapping are shown. Convergenu stability properties are also
presented. Thirdly, the minimum output residualarelysed. This explains the
advantages of the algorithm developed. At lasipridence interval for the actual

state and the actual output is constructed.
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In Chapter 7, the main contributions of this teeare summarized. The
limitations of the algorithms developed are mergghn Some interesting directions
of the integrated optimal control and parametemegton algorithms for future
research are discussed.



CHAPTER 2

LITERATURE REVIEW

21 I ntroduction

The aim of this chapter is to give a detailed vy of the model-reality
differences approach and the computational issdiestachastic optimal control
problems. On this basis, efficient algorithms @egeloped based on the principle of
model-references for solving nonlinear stochasttineal control problems in

discrete-time.

Firstly, this chapter begins with a discussion loa inodel-reality differences
approach and its application to solve a class oflinear deterministic optimal
control problems, where the true optimal solutidrth@ nonlinear optimal control
problem is obtained without having to solve thegimal optimal control problem.
The resulting algorithm aims to satisfy the necessgtimality conditions, while
solving the parameter estimation problem and optimgi the model-based optimal
control problem iteratively. In this way, the pau@ters are iteratively adapted in
response to the differences between the real pladtthe model used. Then, the

optimal solution of the model-based optimal conpblem is updated iteratively.

Next, the chapter gives a brief description of @asi random processes. The
optimal state estimation is carried out on thedmstochastic systewia Kalman
filtering theory. Furthermore, the optimal contabla nonlinear stochastic system is

presented, where the stochastic value function t#ed stochastic Hamiltonian
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function are discussed. For a linear stochastittrob system, the control law is
derived using the linear quadratic Gaussian teclenand the dynamic programming
approach. The duality of the estimation and thatrob is given through the
separation principle. In addition, some recentilteson stochastic control strategies
are reviewed. Finally, some concluding remarksraaele and a summary showing

the study direction of the thesis is given.

2.2 Nonlinear Optimal Control with M odel-Reality Differences

Generally, applying the linear optimal control mbde solve a nonlinear
optimal control problem is a challenging task. Heer, if the function of the plant
dynamic (also called as reality) is continuouslifedentiable, then a mathematical
model can be formulated from the linearizationhaf plant dynamic. The solution of
the linear optimal control model can be obtaineddily. However, solving the
linear optimal control problem does not provide ¢ipdimal solution to the nonlinear
optimal control problem. It is important to filhé gap by reducing the differences

between the reality and the model employed.

2.2.1 General Nonlinear Optimal Control Problem

Consider a general optimal control problem, refibri@ as the real optimal

control problem (ROP), given below.

mind, (1) =GN N) + 3 L(x(K),u(k). ) @)

subject to
x(k +1) = f (x(K), u(k), k) 2.2)
X0 =%, 3

where x(k)OO" , k=0,---,N, is the real state sequenceyk)OO™ ,

k=0,---,N-1 is the real control sequence, angdO" is a given vector.
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f:O0"x0O"x0 - O" represents the real plant (also called reality), 101 is the

real cost function, whereg¢:0"x0 - O is the terminal cost and

L:0"x0O™x0 - O is the cost under summation. Note that a general time-
varying scalar function in terms of the state aodtiwl variables at eadhfor k = 0
tok =N - 1. Itis assumed that all functions in (2.1§ 48.2) are continuously

differentiable with respect to their respectivelangnts.

The Problem (ROP) is a general deterministic mear optimal control
problem. It satisfies the following necessary dgtads for optimality (Young, 1969;
Pontryagiret al, 1962; Hestenes, 1966; Leitmann, 1981).

OH (k) _ AL (x(k),u(k).K) (9 (x(k),u(k).k) }' ok +1) =0 2.4
du(k) du(k) du(k) '
_OH(K) _ aL(x(K), u(k),k) . ( of (x(k),u(k), k)’
i) = ax(k)  ox(k) +( ax(k) j pc+2) (:5)
_ OH(k) _
x(k +1) = okeD f (x(k), u(k), k) (2.6)

for k =0,---, N — 1, with the boundary conditions

p(N) =W and x(0) = x,.

Here, p(N ) is the final co-state and (O the initial state, and the function
H:O"xO"x0O"x0O - O is the Hamiltonian function defined by
H (k) = H (x(k),u(k), p(k +1),k)
= L(x(K),u(k),k) + p(k +1T f (x(k),u(k),k) (2.7)

Equation (2.4) is called the stationary conditiofhe co-state equation (2.5)
and the state equation (2.6) are coupled differengations that define a two-point

boundary-value problem (TPBVP) with the given mitstatex, and the final co-
state p(N ). These problems are, in general, very difficoltsblve (Lewis and

Syrmos, 1995). Consequently, numerical methodssédving Problem (ROP) are
indispensable (Bryson and Ho, 1975; Lewis, 198@&th, 2008; Kirk, 1970; Ascher
et al, 1988; Bryson, 1999; Butcher 1964; Nocedal andgiyi1999; Bryne, 2008;
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Bazaraeet al, 2006; Hull, 2003). For example, the finite diface method and the
shooting method are common approaches to solve PRE¥ined by (2.5) and (2.6).
The approach proposed in (Tebal, 1991) solves the problem as an optimization
problem. In fact, this approach works for a mueneyal class of problems, where
constraints on the state and the control variadnlesallowed to appear in the problem
formulation. The approach proposed in (Hargraved Raris, 1991) is another
approach to solve Problem (ROP) numerically. Qthaterested approaches are
multiparametric quadratic programming (Tegndel, 2088d Gauss pseudospectral

transcription (Benson, 2005).

2.2.2 Linear Model-Based Optimal Control Problem

Because the structure of the real plant is compdeknear optimal control
problem is constructed and is solved instead ofisglProblem (ROP). This linear
optimal control problem is a linear quadratic regof (LQR) optimal control model,
which is constructed as a simplified model-basetineg control problem (MOP)

given below.

minJ,,(u) =3 X(N)" S(N)X(N) + /(N)

+ NZ__f% (x(k)"Qx(k) +u(k)" Ru(k)) + y(k) (2.8)

subject to
x(k +1) = Ax(k) + Bu(k) + a(k) (2.9)
X(0) = X, (2.10)

where a(k)OO", k=0,---,N-1, and y(k)OOO , k=0,---,N, are the adjustable
parameters, whillADO O™ is a state transition matrix arBlCJO0™™ is a control

coefficient matrix. J,, 00 is the model cost function, whereS(N) OO™ and

QUO™ are positive semi-definite matrices, aRIIO™™ is a positive definite

matrix.
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Notice that the adjusted parameten&) and y k ) are introduced to capture

the nonlinear behavior of the reality and they ased to reduced the differences
between the reality and the model used. When Wadures are zero, Problem (MOP)
is actually a standard linear quadratic regulat®@R) optimal control problem. In
the literature, this linear optimal control problésnwell studied. See, for example,
(Slotine and Li, 1991; Speyer, 1986; Lee and Mas¢ckiB86; Chen, 1984; Kirk,
1970; Walsh, 1975; Bryson and Ho, 1975; Lewis, 1986

The linear optimal control problem is much eastebé¢ solved. It is because
the corresponding TPBVP is a system of linear hamegqus differential equations.
Unlike the general nonlinear TPBVP, it can be sdlbg using the transition matrix
method or the backward sweep method (Bryson andlB65; Lewis, 1986). The
transition matrix method is conceptually easy Inet difficulty may arise during the
computation of the inverse of the transition matic The backward sweep method
is more popular (Te@t al, 1991) due to the assumption of a linear relatigns

between the state and the costate for the compngtefficiency.

2.2.3 Principle of Model-Reality Differences

The structure of the reality in Problem (ROP) islh@ear, while the structure
of the model used in Problem (MOP) is linear. Tethodology which is proposed
to reduce the differences between the reality dednhodel used is known as the
principle of model-reality differences. In thisimmiple, Problem (MOP), instead of
Problem (ROP), is solved in such a way that the solution of Problem (ROP) is
obtained despite model-reality differences by ujpdathe adjustable parameters

iteratively.

To be more specific, an expanded optimal controbj@m (EOP), which
integrates the system optimization with the paramestimation, is introduced as

follows.
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minJ,(u) =3 X(N)S(N)x(N) + y(N)

u(k)

+ Z% (x(k)" Qx(k) + u(k)" Ru(k)) + y(k)

+31, [Ju(k) = vE)IF +, [1x(K) - 2K) I (2.11)
subject to
x(k +1) = Ax(k) + Bu(k) + a(k) (2.12)
X(0) = %, (2.13)
32(N)"S(N)Z(N) + y(N) = #(z(N),N) (2.14)
3(2(K)" Qz(k) +v(k)" Rv(k)) + p(k) = L(z(k), v(k),k) (2.15)
Az(k) + Bv(k) + a(k) = f (z(k), v(k), k) (2.16)
z(k) = x(k) (2.17)
v(k) = u(k) (2.18)

wherev(k)OO™, k=0,---,N-1, and z(k)OO", k=0,---,N, are introduced to
separate the control sequence and the state sequerthe optimization problem
from the respective signals in the parameter estoma The terms appearing with
r,00 andr, 00O are introduced to improve convexity and to aidwewgence of

the resulting iterative algorithm. It is importatot note that the algorithm is to be
designed such that the constraia{k) =u k &nd z(k) = x k ) will be satisfied at

the end of the iterations, assuming that the cayerase is achieved. In this situation,

the statez K )and the control/ K will be used in the computations related to the

reality, which include parameter estimation and ahigty schemes. The
corresponding state sequencé &nd the control sequencek (wjll be reserved

for optimizing the model-based optimal control dewb.
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2.24 Optimality Conditions

Now, let us define the Hamiltonian function of Plevh (EOP) as follows.
H(K) = (x(k)" Qx(K) +u(k)" Ru(k)) + y(k)
+ 30 llu(k) = vK)IF +31, [1x(k) - z(&) I
+ p(k+1)7 (Ax(k) + Bu(k) +a &k ))
—A(K) " uk) - Bk x k) (2.19)
Then, we append the system (2.12) and the additemmestraints (2.14) — (2.18) to

the cost function (2.11), in terms &f, k (, fo define the augmented cost function as
follows.
Jo(Uu) =3 X(N)S(N)X(N) + y(N) + p(0)" x(0) = p(N)" x(N)
+E(N)(P(2(N),N) —32(N)" S(N)Z(N) - y(N))
+T T (X(N) - z(N))

+ Z H.(k) = p(k)" x(k) +A(K)"v(K) + B(K)" z(k)

+ E(K)(L(2(k), v(K), k) — 3 (2(K)" Qz(k) + v(k)" Rv(K)) ~ y(k))

+ u(K)" (F (2(k), v(K), k) = Az(k) = Bv(k) - a(k)) (2.20)
where A(k)OO™, k=0,---,N-1, B(kk)OO", k=0,---,N-1, rOO", &k)oo,
k=0,---,N, and w(k)dOO" , k=0,---,N-1 are the appropriate Lagrange

multipliers.

According to the Lagrange multiplier theory, thestiorder variationdd, of
the augmented cost functiadj, with respect to all variables shall be zero at a

constrained minimum (Bryson and Ho, 1975; LewisB@®Becerra, 1994). That is,

0J.=0. Hence, the variational calculus technique idiaggo the augmented cost

function (2.20) for deriving the necessary optirtyationditions and these conditions

are given below.



(@)

(b)

(€)

(d)

(e)

(f)

(9)

Stationary condition
OyHe(k) =0:

Ru(k) + B" p(k +1) = A(k) + r,(u(k) = v(k)) =0

Co-state equation
P(K) = Uy He(k):

p(k) = Qx(K) + A"p(k +1) = B(K) +r,(x(K) - z(K))

State equation
X(k+1) = U pyHe(k) :
x(k +1) = Ax(k) + Bu(k) + a(k)

Boundary conditions
P(N) = S(N)x(N) +TI and x(0) = x,

Parameter estimation equations

#(z(N),N) =32(N)" S(N)z(N) - y(N) =0

L(z(k), v(k), k) =3 (z(k)" Qz(k) + v(k)" Rv(k)) = y(k) =0

f (z(k), v(K), k) - Az(k) - Bv(k) - a(k) = 0

Modifier equations
Oy~ S(N)Z(N) T =0

of

A(K) + (0, L = Rv(k)) + (T(k)

—BJ p(k+1) =0

of
z(k)

,G(k)+(mz(k)L—Qz(k»+( —Aj B(k+1) =0

with &(k) =1 and u(k) = p(k + 1).

Separation of variables
v(k) =u(k), z(k) = x(k), p(k) = p(k)

23

(2.21)

(2.22)

(2.23)

(2.24a)

(2.24D)
(2.24¢)

(2.25a)

(2.25h)

(2.25c)

(2.26)
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2.25 Reevant Problemsfrom Integration

After satisfying the optimality conditions of Preloh (EOP) defined by (2.21)

— (2.26), the modified model-based optimal conprablem (MMOP) is obtained as
follows.

minJ,p, (u) =3 X(N)TS(N)X(N) + y(N) + T "x(N)

#3397 Qx(K) + u(k) Ru(K)) + 1K)

+ 31 llu(k) =vE)IF +31, lIx(k) = zK)If

—A(K) u(k) - BK) x k) (2.27)

subject to
x(k +1) = Ax(k) + Bu(k) + a(k) (2.28)
X(0) = x, (2.29)

with the specifieda K ) y(k), AKk), BKk), I, v(k) and z k) that are being
calculated.

In addition, (2.24) defines the parameter estinmafwoblem. From this
problem, the adjustable parameters are determiped b

y(N) = #(z(N),N) =4 z(N)" S(N)z(N) (2.30a)
y(k) = L(z(k),v(k),k) —4(z(k)" Qz(k) +u(k)" Ru(k)) (2.30b)
a(k) = f (z(k), v(k),k) - Az(k) - Bv(k) (2.30c)

and from the multipliers computation defined by28), the multipliers are calculated
from

M =0,n% —S(N)z(N) (2.31a)

A(k) ==(0,»L —Rv(k)) - (%:k) - B] p(k+1) (2.31b)

BK) = (0,4, L - Qz(K)) -(%—A} B(k+1) (2.310)
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