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ABSTRACT 

 

This thesis describes the development of an efficient algorithm for solving 

nonlinear stochastic optimal control problems in discrete-time based on the principle 

of model-reality differences. The main idea is the integration of optimal control and 

parameter estimation. In this work, a simplified model-based optimal control model 

with adjustable parameters is constructed. As such, the optimal state estimate is 

applied to design the optimal control law. The output is measured from the model 

and used to adapt the adjustable parameters. During the iterative procedure, the 

differences between the real plant and the model used are captured by the adjustable 

parameters. The values of these adjustable parameters are updated repeatedly. In this 

way, the optimal solution of the model will approach to the true optimum of the 

original optimal control problem. Instead of solving the original optimal control 

problem, the model-based optimal control problem is solved. The algorithm 

developed in this thesis contains three sub-algorithms. In the first sub-algorithm, the 

state mean propagation removes the Gaussian white noise to obtain the expected 

solution. Furthermore, the accuracy of the state estimate with the smallest state error 

covariance is enhanced by using the Kalman filtering theory. This enhancement 

produces the filtering solution by using the second sub-algorithm. In addition, an 

improvement is made in the third sub-algorithm where the minimum output residual 

is combined with the cost function. In this way, the real solution is closely 

approximated. Through the practical examples, the applicability, efficiency and 

effectiveness of these integrated sub-algorithms have been demonstrated through 

solving several practical real world examples. In conclusion, the principle of model-

reality differences has been generalized to cover a range of discrete-time nonlinear 

optimal control problems, both for deterministic and stochastic cases, based on the 

proposed modified linear optimal control theory.  
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ABSTRAK  

 

Tesis ini membincangkan pembangunan algoritma yang berkesan untuk 

menyelesaikan masalah kawalan optimum berstokastik tak linear dalam masa diskrit 

berasaskan prinsip bezaan model-realiti. Integrasi kawalan optimum dan 

penganggaran parameter merupakan idea utama. Dalam usaha ini, model kawalan 

optimum berasaskan model ringkas dibina dengan parameter boleh dilaraskan. 

Dengan ini, anggaran keadaan optimum digunakan untuk merekabentuk hukum 

kawalan optimum. Keluaran dari model pula digunakan untuk membetulkan 

parameter boleh dilaraskan. Dalam prosedur lelaran, nilai bezaan antara loji nyata 

dan model diguna diambilkira oleh parameter boleh dilaraskan. Kemudian, nilai-nilai 

penyelarasan tersebut dikemaskini secara berulangan. Dengan cara sebegini, 

penyelesaian optimum model tersebut akan menghampiri penyelesaian optimum 

sebenar bagi masalah kawalan optimum asal. Daripada menyelesai masalah kawalan 

optimum yang asal, masalah kawalan optimum berasaskan model diselesaikan. 

Algoritma yang dibangunkan dalam tesis ini mengandungi tiga sub-algoritma. Dalam 

sub-algoritma pertama, perambatan purata keadaan menyingkirkan hingar putih 

Gaussan supaya penyelesaian jangkaan dapat diperolehi. Selanjutnya, ketepatan 

anggaran keadaan berkovarian ralat terkecil diatasi dalam sub-algoritma kedua 

dengan mengguna teori penurasan Kalman. Peningkatan ini menghasilkan 

penyelesaian turasan. Di samping itu, penambahbaikan yang menggabungkan reja 

keluaran minimum dengan fungsi kos dilakukan dalam sub-algoritma ketiga. Dengan 

cara ini, penyelesaian sebenar dihampiri secara rapat. Akhirnya, melalui kajian 

contoh praktik, ciri-ciri kebolehgunaan, kecekapan dan keberkesanan terhadap sub-

algoritma yang dibangun dibuktikan melalui penyelesaian beberapa contoh praktik 

dunia nyata. Secara kesimpulan, kegunaan prinsip bezaan model-realiti telah 

diperluaskan untuk meliputi sejumlah penyelesaian masalah kawalan optimum tak 

linear masa diskrit, termasuk kes berketentuan dan berstokastik, berdasarkan teori 

kawalan optimum terubahsuai.   
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CHAPTER 1 

 

INTRODUCTION 

 

1.1 Introduction 

 

Many decision and control problems can be formulated as optimization 

problems, where a decision policy is to be designed such that some performance 

indexes are optimized.  However, in real-world situations, the presence of 

disturbances is unavoidable.  Because the disturbances are random in nature, they are 

unpredictable.  Consequently, the solutions of a real system obtained during 

simulation are often corrupted by noise.  Thus, the decision policy obtained based on 

these distorted solutions is unlikely to be acceptable if the disturbances are not taken 

into consideration.  Therefore, the governing system of the real-world problem shall 

be formulated as a stochastic dynamical system.  On this basis, the decision policy 

designed subject to this stochastic dynamical system is much more useful in practice.   

As clearly mentioned in (Ho and David, 2001), it is impossible to devise a single 

general-purpose approach which works the best for all kinds of problems.  Different 

approaches are needed for different types of problems by exploring the specific 

nature of the problem concerned.  

 

In this thesis, a class of nonlinear discrete-time stochastic control problems is 

considered.  To obtain the optimal solution of this control problem, a simplified 

optimal control model is constructed.  It is being applied to developing an efficient 

iterative algorithm.  In this algorithm, the different structures among the real plant 

and the model employed are taking into account as stated in the principle of model-
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reality differences (Becerra, 1994; Roberts 1992).  Details of the development of the 

algorithm will be elaborating in the following chapters.    

 

Here, a comprehensive introduction is delivered.  Initially, a brief 

introduction to the approach based on model-reality differences is given.  Next, a 

general class of stochastic dynamical systems is discussed.  Then, it is followed by 

the statements of the objectives of the study.  Furthermore, the significances of study 

are discussed and highlighted.  Finally, the overview of each chapter is given.        

 

1.2 The Model-Reality Differences Approach: A Brief 

 

The principle of model-reality differences provides a new attractive 

computational methodology in tackling the integrated problem formulation of the 

control problem, where the system optimization is coupled with the parameter 

estimation.  The integrated system optimization and parameter estimation (ISOPE) 

and the dynamic-ISOPE (DISOPE) algorithms are well-known in the literature.  

Over the past 30 years, these integrated algorithms have matured and they have been 

used in developing algorithms for solving optimal control problems, where the 

random disturbances are, however, ignored.  

 

1.2.1 Background  

 

The integrated system optimization and parameter estimation (ISOPE) 

algorithm, which was inspired by Haimes and Wismer (1972), was originally 

developed by Roberts (1979) and Roberts and Williams (1981) for on-line steady-

state optimization of industrial processes.  The main concept is that the optimization 

is achieved through the adjustment of regulatory controller set-points.  This method 

is iterative in nature.  It uses the repeated solution of system optimization and 

optimal parameter estimation to calculate the optimum.  This iterative solution 
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converges to the real optimum in spite of the differences that exist between the 

model used and the real plant.  It is a well known fact that the measurement of the 

derivatives of the real process is difficult to carry out.  However, this difficulty has 

been incorporated within the ISOPE iterative procedure by using the directional 

derivative, the methods of finite difference approximation, dual control optimization, 

Broydon’s method and a dynamic identification method.  For details, see (Brdyś and 

Tatjewski, 2005; Mansour and Ellis, 2003).  

 

The ISOPE algorithm is used daily in an oil processing plant in Western 

Australia (Becerra, 1994).  A number of ISOPE algorithms has been developed, 

which includes the centralized and hierarchical algorithms (Roberts et al, 1992).  The 

conditions for the convergence of the algorithms are rigorously investigated in 

(Brdyś and Roberts, 1987).  Since the appearance of the ISOPE algorithm, its 

extension to the dynamic optimization is suggested, leading to the development of 

the DISOPE algorithm by following similar principle and philosophy of the ISOPE 

algorithm.  

 

In a dynamic optimization problem, a control law is to be determined such 

that a given cost functional is minimized subject to a dynamic system.  It is more 

complicated when compared to the optimization of a steady-state control problem.  

Nonetheless, by using the principle of ISOPE algorithm, an algorithm, termed as 

DISOPE algorithm, is developed to solving a class of continuous-time optimal 

control problems in (Roberts, 1992).  The DISOPE algorithm is developed for 

solving nonlinear optimal control problems via solving the modified linear quadratic 

regulator model iteratively, where the dynamic parameters are updated at each 

iteration step.  It specifically takes into account the differences in the structures and 

the parameters between the model employed and the real plant during the process of 

computation.   

 

On the other hand, many control schemes are implemented digitally in 

industry, where the control input is altered in discrete time steps and it is normally 

held constant between samples by a zero-order hold (Sage, 1977; Vaccaro, 1995; 

Leigh, 1992; Ogata 1994; Kirk, 1970).  Such control inputs are designed for the 
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discretized version of a continuous plant.  However, there are also processes that are 

in discrete nature and can only admit discrete time controllers.  For these types of 

problems, a discrete DISOPE algorithm has been developed, analysed and 

implemented.  For details, see, for example, (Becerra, 1994; Becerra and Roberts, 

1996; Li et al, 1999).  

 

1.2.2 Evolutionary: Hierarchical, Predictive and Bilinear 

 

The DISOPE algorithm has been introduced to a large-scale system (Becerra 

and Robert, 1995; Roberts and Becerra, 2001; Mohd Ismail, 1999), where it 

decomposes the optimal control problem into an interconnected-subsystem problem.  

It is then solved in parallel based on the hierarchical structure, where each sub-

process is controlled by a separate decision unit in a parallel processing fashion. 

  

The DISOPE algorithm can also be used to compute the receding horizon 

optimal control in a nonlinear predictive control problem (Becerra et al, 1998), 

where an estimated optimal control sequence that minimizes a given performance 

index is computed based on the prediction of the future output response.  The 

extended Kalman filtering approach is used for the state and parameter estimation of 

the real plant in the presence of disturbances (Becerra, 1994).  In this way, the 

nonlinear predictive control problem can be solved by using the DISOPE algorithm.   

     

However, many practical processes in industry are modelled as bilinear 

models.  To apply the DISOPE algorithm to solve these problems, it requires much 

more numbers of iterations and it may even lead to divergence.  In view of these 

shortcomings, Li and Wan (1999), Li et al (2000) and Li et al (2002) proposed a new 

version of the DISOPE algorithm based on a bilinear model.  They concluded that 

the bilinear DISOPE algorithm can also produces the optimal solution in spite of 

model-reality differences, where the number of iterations is reduced and the 

convergence is improved when compared with the DISOPE algorithm.   
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1.2.3 Efficiency, Convergence and Stability 

 

The efficiency of the DISOPE algorithm has been well documented.  To 

improve the rate of convergence, the DISOPE method based on neural network is 

introduced in (Kong and Wan, 1999), while the intelligent DISOPE method based on 

the optimal selection of algorithm parameter, model and model parameter is 

introduced in (Kong and Wan 2000).  Furthermore, a DISOPE interaction balance 

coordination algorithm is developed in (Kong and Wan, 2001), where the stability of 

the algorithm is studied.  These works have enhanced the efficiency of the DISOPE 

algorithm. 

 

The convergence analysis of the algorithm, which guarantees the real 

optimum to be achieved, is studied based on a 2-D analysis by Li and Ma (2004), 

Roberts (2002; 2003), and Mohd Ismail and Rohanin (2007).  Furthermore, the 

methods of momentum and gradient parallel tangent have been introduced to the 

DISOPE algorithm so that the slow convergence is overcome, leading to a more 

efficient DISOPE algorithm after some modifications (Rohanin and Mohd Ismail, 

2002; Rohanin, 2005).    

 

1.2.4 Applications to Optimal Control  

 

The principle of model-reality differences has attracted the researchers to 

apply the DISOPE algorithm to solving real optimal control problems.  These 

applications include fed-batch fermentation process (Becerra and Roberts, 1998), and 

robot manipulator control problem (Li et al, 1999; Rohanin and Mohd Ismail, 2003).  

In addition, Zhang and Li (2005) proposed a novel distributed model predictive 

control scheme based on the DISOPE algorithm for nonlinear cascaded systems 

under network environment.  The study of the DISOPE algorithm for complex 

system under network environment was also carried out by Kong and Wan (2003).  
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Recently, the DISOPE algorithm has been employed to solve nonlinear 

discrete-continuous hybrid systems for co-state prediction (Hu et al, 2006; Hu et al, 

2008).  Furthermore, the study of the linear and nonlinear discrete-time stochastic 

optimal control problems is being carried out by using the approach based on the 

model-reality differences in (Kek and Mohd Ismail, 2009; Mohd Ismail and Kek 

2009; Mohd Ismail et al, 2010; Kek et al 2010a; Kek at al, 2010b).  

 

1.3 Stochastic Dynamical Systems 

 

A stochastic dynamical system is a dynamic system which is affected by 

some kinds of noise.  The fluctuation caused by the noise is commonly referred to as 

a noisy or stochastic phenomenon (Spall, 2003).  In this circumstance, the 

deterministic trajectories of the system are corrupted.  Clearly, the disturbances will 

cause errors in system behaviour, sensor errors and other measurement errors.  These 

errors are highly undesirable, but they are unavoidable.  Thus, the noise characteristic 

shall be taken into consideration in the methods of analysis and design.  

 

Essentially, a dynamical system can be formulated as a system of differential 

equations or difference equations (Socha, 2008; Grewal and Andrews, 2001; Bar-

Shalom et al, 2001).  In the presence of noise, these dynamical systems shall be 

modelled by stochastic differential equations or stochastic difference equations.  An 

optimization problem involving a stochastic dynamical system is called a stochastic 

optimal control problem.   

 

1.3.1 Random Noise Disturbances  

 

Noise is a random variable that fluctuates aperiodically.  This variable takes 

on different sets of values during different sampling processes.  Thus, modelling a 

dynamical system, which is perturbed by one or more sources of noises, is a difficult 
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and challenging task.  However, the assumptions about the nature of the noise can be 

made (Bryson 2002).  As such, the accuracy of the assumptions is assessed by 

comparing the results obtained from the prediction model and the experimental data 

measured.  

 

Mathematically, it is assumed that the noise that is appeared in the dynamical 

system is categorized as follows (Grewal and Andrews, 2001; Bar-Shalom et al, 

2001):  

(a)  Observation noise – it is an additive noise appeared only in the observation 

model, and  

(b)  Parametric noise – it is an additive noise or a multiplicative noise or both 

appeared in the system dynamic.  

 

1.3.2 State-Space Models  

 

Consider a system model given below. 

         )()),(()1( kkkxfkx ω+=+             (1.1) 

where k denotes the discrete time step, the vector )(kx  denotes the current state, and 

)1( +kx  denotes the one-step ahead future state, )),(( kkxf  is a vector-valued 

continuously differential function, and )(kω  denotes the process noise.  It is assumed 

that )(kω  is the zero-mean white noise sequence, and that )),(( kkxf  does not 

depend on the previous values of )( τ−kx , τ  = 1, …, k.  Thus, this process is a 

Markov process (Bryson, 2002).  The vector )(kx  is a state vector and the 

conditional probability density function (PDF) for )(kx  , denoted by  

))(|)1(( kxkxp +  , is sometimes called the hyperstate of the process.  It is 

characterized by the mean and the covariance (Torsten, 1994) of the process.   

 

Additional, an observation model is given below. 

 )()),(()( kkkxhky η+=             (1.2) 
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where the vector )(ky  denotes a set of observables, )),(( kkxh  is a vector-valued 

continuously differentiable function and the vector )(kη  denotes the measurement 

noise.  It is assumed that )(kη  is a zero-mean measurement white noise sequence.  

 

From (Bryson, 2002), it is also assumed that  

(a)  )(kη  and )(jη  are independent if jk ≠ , and  

(b)  )(kx , )(kω  and )(jη  are statistically independent for all k and  j.  

These assumptions assert that  

))(|)1(())(),(|)1(( kxkxpkykxkxp +=+ . 

 

The coupling of the system model and the observation model is the state-

space model of the stochastic dynamical system.  The signal-flow graph 

representation (Lewis, 1992) of this state-space model is expressed in Figure 1.1. 

 

 

 

Figure 1.1 State-space model, where z –1 denotes time-delay unit 
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1.3.3  Optimal Control of Stochastic System  

  

Consider the optimal control of a stochastic system given below.  

     )()),(),(()1( kkkukxfkx ω+=+             (1.3) 

 )()),(()( kkkxhky η+=             (1.4) 

where the vector )(ku  is the control variable to be determined such that the 

following cost functional  

      ∑
−

=

+=
1

0

)]),(),(()),(([)(
N

k

kkukxLNNxEuJ ϕ            (1.5) 

is minimized, where E  denotes the mathematical expectation, J  is a scalar expected 

value, ϕ  is the terminal cost and L is the cost measure under summation.  Note that L 

is a general time-varying scalar function in terms of the state and control variables at 

each k for k = 0 to k = N – 1.  It is assumed that ϕ  and L are continuously 

differentiable functions with respect to their respective arguments.   

 

 This is a general class of nonlinear stochastic optimal control problems in 

discrete-time, where the probability density function (PDF) of the state variables is 

unknown, but their error covariance can be calculated (Bryson, 2002).     

 

1.4 Motivation and Background of the Study  

 

The integrated system optimization and parameter estimation algorithm is a 

novel approach.  Its efficiency and applicability have been well documented, as 

described in Section 1.2.  However, in real-world problems, the presence of random 

disturbances is unavoidable.  These disturbances could occur due to measurement 

errors from the sensors, instruments, data transmission channels, or human error.  In 

most cases, these errors are random in nature.  Thus, the original model-reality 

differences approach cannot be implemented in this noisy environment.  
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   Furthermore, real-world problems are often modelled as nonlinear 

dynamical systems subject to stochastic disturbances.  In this thesis, only the 

Gaussian white noise is considered.  It is known that a complex dynamical system is 

difficult to be solved analytically.  For mathematical tractability, it is assumed that 

the corresponding functions in the nonlinear system are continuously differentiable 

functions.  As such, the solution, which is in the forms of expectation and filtering, is 

to be calculated by using appropriate numerical schemes.  

 

By virtue of the efficiency of the model-reality differences approach to the 

deterministic nonlinear control system, the goal of this thesis is to develop an 

efficient and effective computational approach based on the principle of model-

reality differences to a class of nonlinear discrete-time stochastic optimal control 

problems.  The principle of model-reality differences is not applicable to continuous-

time nonlinear stochastic control systems.  It is a future research topic.  

 

1.5 Objectives and Scope of the Study  

 

The objective of this study is to develop an efficient algorithm for solving the 

nonlinear stochastic optimal control problems in discrete-time based on the principle 

of model-reality differences.  For this, some results on linear system theory are 

revealed and applied to construct the optimal solution of the discrete-time nonlinear 

stochastic control system.  These results include integrated optimal control and 

parameter estimation.  They are obtained based on the principle of model-reality 

differences, where the reality is referred to as the real plant dynamic of the nonlinear 

optimal control problem (also called the real optimal control problem), while the 

model is the linear model involving the linear quadratic (LQ) optimal control 

problem.  Clearly, solving only the LQ optimal control problem would not provide 

the optimal solution of the real optimal control problem.  Thus, this system 

optimization is equipped with the iterative optimal parameter estimates so as to 

capture and to be adapted to the behaviour of the reality.  Then, the optimum of the 

system optimization is updated iteratively in spite of the model-reality differences.  
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Here, we summarize our research objectives as follows. 

• To review the existing approaches for solving the nonlinear stochastic optimal 

control problems. 

• To develop an efficient and effective computational approach based on the 

principle of model-reality differences for a class of nonlinear discrete-time 

stochastic optimal control problems. 

• To apply the optimal state estimate for the nonlinear state estimation.  

• To design a feedforward-feedback optimal control law such that the dynamic of 

discrete-time stochastic system can be stabilized. 

• To propose an effective computational methodology for discrete-time 

stochastic dynamic optimization. 

 

In addition, the scope of our research covers  

• Linear and nonlinear stochastic optimal control in discrete-time; 

• Linear and nonlinear state estimation using Kalman filtering theory;  

• Minimum output residual with the concept of the weighted least-square 

approach;  

• Convergence, optimality and stability for the discrete-time stochastic dynamic 

optimization; and  

• Stochastic modelling with the Gaussian white noises.   

  

1.6 Significance of the Study 

  

The computational algorithm derived based on the idea of the integrated 

optimal control and parameter estimation developed in this thesis provides a novel 

scheme to the control and optimization of the nonlinear stochastic optimal control 

problem in discrete-time.  This novel scheme also generalizes the model-reality 

differences approach to cover a range of discrete-time nonlinear optimal control 

problems, both for deterministic and stochastic cases, based on the proposed 

modified linear optimal control theory. 
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 The significance of this study includes  

 

(a) Comprehensive review of literature 

Various computational methods are reviewed.  Most of the computational 

schemes are based on approximation.  Others are based on the probability 

density function.   This literature review leads us to the study in the thesis.    

 

(b) Algorithm development  

A class of integrated optimal control and parameter estimation (IOCPE) 

algorithms is developed based on the principle of model-reality differences.  

There are three sub-algorithms listed below.  

(i)  The ICEES algorithm, which looks for the expectation solution;  

(ii)  The ICEFS algorithm, which computes the filtering solution; and  

(iii)  The ICERS algorithm, which generates the real output solution. 

They are coded in MATLAB version 7.0 (R14) and implemented in 

Microsoft Window XP, Pentium M, 496 MB.    

 

(c) Application of optimal state estimate   

In the presence of the random disturbances, the best state estimates are (i) the 

expected state when there is no observation; and (ii) the filtered state when 

the observation is available.  The optimal state estimate generated from 

Kalman filtering theory is applied instead of using the extended Kalman 

filter.  The online calculation of the filter gain is avoided during the iterative 

procedure.  This will save the computation time of the state estimation.  

 

 (d) Design of optimal control law  

 A specific optimal control law, known as the feedforward-feedback optimal 

control law, is designed.  The feedforward control corrects the differences 

between the real plant and the model employed, while the feedback control 

takes into consideration of the entire optimal state estimate.  This combined 

optimal control law stabilizes the dynamic of the discrete-time stochastic 

system in closed-loop form.  
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(e) Computational methodology for optimization 

The computational methodology integrates the computation of the adjustable 

parameters and the optimization of the modified model-based optimal control 

problem interactively in a unified framework.  Hence, the model-based 

optimal control problem is solved instead of solving the original optimal 

control problem.  As a result, the true optimal solution of the original optimal 

control problem could be obtained in spite of the model-reality differences.  

This methodology is effective for the discrete-time stochastic optimal control 

problems. 

 

1.7 Overview of Thesis  

  

In the previous section, comprehensive introductions to the model-reality 

differences approach and the optimal control of stochastic dynamical systems were 

given.  In particular, the evolution of the model-reality differences approach was 

reported and the discrete-time nonlinear stochastic optimal control problem was 

described.  The purpose of this thesis is to present new algorithms based on the 

principle of model-reality differences for solving the discrete-time nonlinear 

stochastic optimal control problems.  The literature review, the development of these 

algorithms and the theoretical analysis are briefly described below.  

 

 In Chapter 2, a brief introduction of the principle of model-reality differences 

is given.  Various types of random processes are described and dynamic estimation, 

which is carried out from Kalman filtering theory, is discussed.  In addition, the 

relation of smoothing and filtering is revealed.  Furthermore, the optimal control of a 

nonlinear stochastic system is considered, where the stochastic value function and 

the stochastic Hamiltonian function are presented.  For a linear stochastic control 

system, the dynamic regulator and its optimal control are derived.  Finally, some 

recent results on stochastic control strategies are reviewed.    
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 In Chapter 3, the principle of model-reality differences is explained through 

introducing an expanded optimal control problem.  Applying the mean propagation 

equation to the state dynamic of the stochastic system, the stochastic control system 

is transformed into a nonlinear deterministic control system.  On this basis, the 

ICEES algorithm with the linear quadratic regulator (LQR) optimal control model, 

similar to the DISOPE algorithm, is developed.  It can then be used to obtain the true 

expected solution of the original optimal control problem.    

 

 In Chapter 4, the observation is considered available.  The optimal state 

estimate is derived from Kalman filtering theory.  The off-line computation of the 

filter gain and the corresponding state error covariance is performed before the 

iterative procedure begins.  The extension of the principle of model-reality 

differences is carried out such that the ICEFS algorithm is developed.  By using the 

linear quadratic Gaussian (LQG) optimal control model in the algorithm proposed, 

the true filtering solution of the original optimal control problem is obtained.  

 

 In Chapter 5, an improvement on the methodology discussed in Chapter 4 is 

made.  The weighted least-square output residual is introduced and is combined with 

the cost functional of the model-based optimal control problem.  Again, applying the 

principle of model-reality differences, the corresponding version of the ICERS 

algorithm is derived.  It is important to note that the weighting matrix with the 

smallest value shall be determined.  As such, the true real output solution of the 

original optimal control problem can be tracked.  Eventually, the minimum output 

residual reduces the noisy level of the problem.      

 

 In Chapter 6, a theoretical analysis is carried out.  Firstly, the optimal state 

estimator, which is a modification from Kalman filtering theory, is analysed.  The 

stability, consistency and efficiency of the Kalman filter are discussed.  Secondly, an 

analysis of the algorithm implementation is made.  The optimality conditions and 

their algorithmic mapping are shown.  Convergence and stability properties are also 

presented.  Thirdly, the minimum output residual is analysed.  This explains the 

advantages of the algorithm developed.  At last, a confidence interval for the actual 

state and the actual output is constructed.        
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 In Chapter 7, the main contributions of this thesis are summarized.  The 

limitations of the algorithms developed are mentioned.  Some interesting directions 

of the integrated optimal control and parameter estimation algorithms for future 

research are discussed.  

 



CHAPTER 2 

 

LITERATURE REVIEW 

 

2.1 Introduction  

 

 The aim of this chapter is to give a detailed overview of the model-reality 

differences approach and the computational issues of stochastic optimal control 

problems.  On this basis, efficient algorithms are developed based on the principle of 

model-references for solving nonlinear stochastic optimal control problems in 

discrete-time.   

 

Firstly, this chapter begins with a discussion on the model-reality differences 

approach and its application to solve a class of nonlinear deterministic optimal 

control problems, where the true optimal solution of the nonlinear optimal control 

problem is obtained without having to solve the original optimal control problem.  

The resulting algorithm aims to satisfy the necessary optimality conditions, while 

solving the parameter estimation problem and optimizing the model-based optimal 

control problem iteratively.  In this way, the parameters are iteratively adapted in 

response to the differences between the real plant and the model used.  Then, the 

optimal solution of the model-based optimal control problem is updated iteratively.    

 

Next, the chapter gives a brief description of various random processes.  The 

optimal state estimation is carried out on the linear stochastic system via Kalman 

filtering theory.  Furthermore, the optimal control of a nonlinear stochastic system is 

presented, where the stochastic value function and the stochastic Hamiltonian 
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function are discussed.  For a linear stochastic control system, the control law is 

derived using the linear quadratic Gaussian technique and the dynamic programming 

approach.  The duality of the estimation and the control is given through the 

separation principle.  In addition, some recent results on stochastic control strategies 

are reviewed.  Finally, some concluding remarks are made and a summary showing 

the study direction of the thesis is given.             

 

2.2 Nonlinear Optimal Control with Model-Reality Differences  

 

Generally, applying the linear optimal control model to solve a nonlinear 

optimal control problem is a challenging task.  However, if the function of the plant 

dynamic (also called as reality) is continuously differentiable, then a mathematical 

model can be formulated from the linearization of the plant dynamic.  The solution of 

the linear optimal control model can be obtained readily.  However, solving the 

linear optimal control problem does not provide the optimal solution to the nonlinear 

optimal control problem.  It is important to fill the gap by reducing the differences 

between the reality and the model employed.  

 

2.2.1 General Nonlinear Optimal Control Problem  

  

Consider a general optimal control problem, referred to as the real optimal 

control problem (ROP), given below.   

       )),(()(min
)(

NNxuJ p
ku

ϕ= ∑
−

=

+
1

0

)),(),((
N

k

kkukxL             (2.1) 

subject to          

)),(),(()1( kkukxfkx =+              (2.2) 

0)0( xx =                (2.3) 

where nkx ℜ∈)( , ,,,0 Nk L=  is the real state sequence, mku ℜ∈)( , 

,1,,0 −= Nk L  is the real control sequence, and 0
nx ∈ℜ  is a given vector.  
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nmnf ℜ→ℜ×ℜ×ℜ:  represents the real plant (also called reality).  ℜ∈pJ  is the 

real cost function, where ℜ→ℜ×ℜn:ϕ  is the terminal cost and 

ℜ→ℜ×ℜ×ℜ mnL :  is the cost under summation.  Note that L is a general time-

varying scalar function in terms of the state and control variables at each k for k = 0 

to k = N – 1.  It is assumed that all functions in (2.1) and (2.2) are continuously 

differentiable with respect to their respective arguments.   

 

 The Problem (ROP) is a general deterministic nonlinear optimal control 

problem.  It satisfies the following necessary conditions for optimality (Young, 1969; 

Pontryagin et al, 1962; Hestenes, 1966; Leitmann, 1981). 
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for ,1,,0 −= Nk L with the boundary conditions  
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 and 0)0( xx = . 

Here, )(Np  is the final co-state and )0(x  is the initial state, and the function 

ℜ→ℜ×ℜ×ℜ×ℜ nmnH :  is the Hamiltonian function defined by  

)),1(),(),(()( kkpkukxHkH +=  

         )),(),(()1()),(),(( kkukxfkpkkukxL T++=             (2.7) 

 

Equation (2.4) is called the stationary condition.  The co-state equation (2.5) 

and the state equation (2.6) are coupled difference equations that define a two-point 

boundary-value problem (TPBVP) with the given initial state 0x  and the final co-

state )(Np .  These problems are, in general, very difficult to solve (Lewis and 

Syrmos, 1995).  Consequently, numerical methods for solving Problem (ROP) are 

indispensable (Bryson and Ho, 1975; Lewis, 1986; Chapra, 2008; Kirk, 1970; Ascher 

et al, 1988; Bryson, 1999; Butcher 1964; Nocedal and Wright, 1999; Bryne, 2008; 
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Bazaraa et al, 2006; Hull, 2003).  For example, the finite difference method and the 

shooting method are common approaches to solve TPBVP defined by (2.5) and (2.6).  

The approach proposed in (Teo et al, 1991) solves the problem as an optimization 

problem.  In fact, this approach works for a much general class of problems, where 

constraints on the state and the control variables are allowed to appear in the problem 

formulation.  The approach proposed in (Hargraves and Paris, 1991) is another 

approach to solve Problem (ROP) numerically.  Others interested approaches are 

multiparametric quadratic programming (Tøndel, 2003) and Gauss pseudospectral 

transcription (Benson, 2005).     

  

2.2.2 Linear Model-Based Optimal Control Problem 

 

 Because the structure of the real plant is complex, a linear optimal control 

problem is constructed and is solved instead of solving Problem (ROP).  This linear 

optimal control problem is a linear quadratic regulator (LQR) optimal control model, 

which is constructed as a simplified model-based optimal control problem (MOP) 

given below. 

)()()()()(min 2
1

)(
NNxNSNxuJ T

m
ku

γ+=  

        ∑
−

=

+++
1

0
2
1 )())()()()((

N

k

TT kkRukukQxkx γ             (2.8) 

subject to         

     )()()()1( kkBukAxkx α++=+              (2.9) 

0)0( xx =             (2.10) 

where nk ℜ∈)(α , ,1,,0 −= Nk L  and ℜ∈)(kγ , ,,,0 Nk L=  are the adjustable 

parameters, while nnA ×ℜ∈  is a state transition matrix and mnB ×ℜ∈  is a control 

coefficient matrix.  ℜ∈mJ  is the model cost function, where  nnNS ×ℜ∈)(  and 

nnQ ×ℜ∈  are positive semi-definite matrices, and mmR ×ℜ∈  is a positive definite 

matrix. 
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 Notice that the adjusted parameters )(kα  and )(kγ  are introduced to capture 

the nonlinear behavior of the reality and they are used to reduced the differences 

between the reality and the model used.  When their values are zero, Problem (MOP) 

is actually a standard linear quadratic regulator (LQR) optimal control problem.  In 

the literature, this linear optimal control problem is well studied.  See, for example, 

(Slotine and Li, 1991; Speyer, 1986; Lee and Marckus, 1986; Chen, 1984; Kirk, 

1970; Walsh, 1975; Bryson and Ho, 1975; Lewis, 1986). 

 

The linear optimal control problem is much easier to be solved.  It is because 

the corresponding TPBVP is a system of linear homogeneous differential equations.  

Unlike the general nonlinear TPBVP, it can be solved by using the transition matrix 

method or the backward sweep method (Bryson and Ho, 1975; Lewis, 1986).  The 

transition matrix method is conceptually easy but the difficulty may arise during the 

computation of the inverse of the transition matrices.  The backward sweep method 

is more popular (Teo et al, 1991) due to the assumption of a linear relationship 

between the state and the costate for the computational efficiency.     

 

2.2.3 Principle of Model-Reality Differences 

 

The structure of the reality in Problem (ROP) is nonlinear, while the structure 

of the model used in Problem (MOP) is linear.  The methodology which is proposed 

to reduce the differences between the reality and the model used is known as the 

principle of model-reality differences.  In this principle, Problem (MOP), instead of 

Problem (ROP), is solved in such a way that the true solution of Problem (ROP) is 

obtained despite model-reality differences by updating the adjustable parameters 

iteratively.  

 

To be more specific, an expanded optimal control problem (EOP), which 

integrates the system optimization with the parameter estimation, is introduced as 

follows.   
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   )()()()()(min 2
1

)(
NNxNSNxuJ e

ku
γ+=  

)())()()()((
1

0
2
1 kkRukukQxkx

N

k

TT γ+++∑
−

=

 

           2
22

12
12

1 ||)()(||||)()(|| kzkxrkvkur −+−+           (2.11) 

subject to         

      )()()()1( kkBukAxkx α++=+            (2.12) 

0)0( xx =              (2.13) 

)),(()()()()(2
1 NNzNNzNSNz T ϕγ =+           (2.14) 

   )),(),(()())()()()((2
1 kkvkzLkkRvkvkQzkz TT =++ γ          (2.15) 

)),(),(()()()( kkvkzfkkBvkAz =++ α           (2.16) 

)()( kxkz =              (2.17) 

)()( kukv =             (2.18) 

where mkv ℜ∈)( , ,1,,0 −= Nk L  and nkz ℜ∈)( , ,,,0 Nk L=  are introduced to 

separate the control sequence and the state sequence in the optimization problem 

from the respective signals in the parameter estimation.  The terms appearing with 

ℜ∈1r  and ℜ∈2r  are introduced to improve convexity and to aid convergence of 

the resulting iterative algorithm.  It is important to note that the algorithm is to be 

designed such that the constraints )()( kukv =  and )()( kxkz =  will be satisfied at 

the end of the iterations, assuming that the convergence is achieved.  In this situation, 

the state )(kz  and the control )(kv  will be used in the computations related to the 

reality, which include parameter estimation and matching schemes. The 

corresponding state sequence )(kx  and the control sequence )(ku  will be reserved 

for optimizing the model-based optimal control problem. 
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2.2.4 Optimality Conditions   

 

Now, let us define the Hamiltonian function of Problem (EOP) as follows.   

         )())()()()(()( 2
1 kkRukukQxkxkH TT

e γ++=  

2
22

12
12

1 ||)()(||||)()(|| kzkxrkvkur −+−+  

            ))()()(()1( kkBukAxkp T α++++  

          )()()()( kxkkuk TT βλ −−             (2.19) 

Then, we append the system (2.12) and the additional constraints (2.14) – (2.18) to 

the cost function (2.11), in terms of )(kH e , to define the augmented cost function as 

follows.  

)()()()()( 2
1 NNxNSNxuJ e γ+=′ )()()0()0( NxNpxp TT −+  

))()()()()),(()(( 2
1 NNzNSNzNNzN T γϕξ −−+  

))()(( NzNxT −Γ+  

∑
−

=

−+
1

0

)()()(
N

k

T
e kxkpkH )()( kvk Tλ+ )()( kzk Tβ+  

))())()()()(()),(),(()(( 2
1 kkRvkvkQzkzkkvkzLk TT γξ −+−+  

))()()()),(),((()( kkBvkAzkkvkzfk T αµ −−−+           (2.20) 

where mk ℜ∈)(λ , ,1,,0 −= Nk L  nk ℜ∈)(β , ,1,,0 −= Nk L  nℜ∈Γ , ℜ∈)(kξ , 

,,,0 Nk L=  and nk ℜ∈)(µ , ,1,,0 −= Nk L  are the appropriate Lagrange 

multipliers.  

 

According to the Lagrange multiplier theory, the first-order variation eJ ′δ  of 

the augmented cost function eJ ′  with respect to all variables shall be zero at a 

constrained minimum (Bryson and Ho, 1975; Lewis, 1986; Becerra, 1994).  That is, 

0eJδ ′ = .  Hence, the variational calculus technique is applied to the augmented cost 

function (2.20) for deriving the necessary optimality conditions and these conditions 

are given below. 
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(a) Stationary condition  

0)()( =∇ kH eku : 

0))()(()()1()( 1 =−+−++ kvkurkkpBkRu T λ           (2.21) 

 

(b) Co-state equation  

)()( )( kHkp ekx∇= : 

)()1()()( kkpAkQxkp T β−++= ))()((2 kzkxr −+           (2.22) 

 

(c) State equation 

)()1( )1( kHkx ekp +∇=+ : 

)()()()1( kkBukAxkx α++=+             (2.23) 

 

(d) Boundary conditions 

)()()( NxNSNp = Γ+  and 0)0( xx =      

 

(e) Parameter estimation equations  

0)()()()()),(( 2
1 =−− NNzNSNzNNz T γϕ          (2.24a) 

0)())()()()(()),(),(( 2
1 =−+− kkRvkvkQzkzkkvkzL TT γ        (2.24b) 

0)()()()),(),(( =−−− kkBvkAzkkvkzf α          (2.24c) 

 

(f) Modifier equations 

0)()()( =Γ−−∇ NzNSNz ϕ            (2.25a) 

0)1(ˆ
)(

))(()( )( =+






 −
∂

∂+−∇+ kpB
kv

f
kRvLk

T

kvλ        (2.25b) 

))(()( )( kQzLk kz −∇+β 0)1(ˆ
)(

=+






 −
∂

∂+ kpA
kz

f
T

        (2.25c) 

with 1)( =kξ  and )1(ˆ)( += kpkµ . 

 

(g) Separation of variables  

)()( kukv = , )()( kxkz = , )()(ˆ kpkp =            (2.26) 
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2.2.5 Relevant Problems from Integration  

 

After satisfying the optimality conditions of Problem (EOP) defined by (2.21) 

– (2.26), the modified model-based optimal control problem (MMOP) is obtained as 

follows.   

)()()()()(min 2
1

)(
NNxNSNxuJ T

mm
ku

γ+= )(NxTΓ+  

∑
−

=

+++
1

0
2
1 )())()()()((

N

k

TT kkRukukQxkx γ  

2
22

12
12

1 ||)()(||||)()(|| kzkxrkvkur −+−+  

           )()()()( kxkkuk TT βλ −−             (2.27) 

subject to          

      )()()()1( kkBukAxkx α++=+            (2.28) 

 0)0( xx =               (2.29) 

with the specified )(kα , )(kγ , )(kλ , )(kβ , Γ , )(kv  and )(kz  that are being 

calculated.  

  

In addition, (2.24) defines the parameter estimation problem.  From this 

problem, the adjustable parameters are determined by 

)),(()( NNzN ϕγ = )()()(2
1 NzNSNz T−           (2.30a) 

)),(),(()( kkvkzLk =γ  ))()()()((2
1 kRukukQzkz TT +−         (2.30b) 

)),(),(()( kkvkzfk =α )()( kBvkAz −−           (2.30c) 

and from the multipliers computation defined by (2.25), the multipliers are calculated 

from 

 )()()( NzNSNz −∇=Γ ϕ             (2.31a) 

 )1(ˆ
)(

))(()( )( +






 −
∂

∂−−∇−= kpB
kv

f
kRvLk

T

kvλ          (2.31b) 

))(()( )( kQzLk kz −∇−=β )1(ˆ
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 −
∂

∂− kpA
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f
T

         (2.31c) 
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