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Abstract

Misalignment in the lower limb prosthesis can cause great discomfort in the stump-

socket interface and disturbance to gait function. In the long run, it could deteriorate

the musculoskeletal system. In practice, the assessment still depends heavily on the

verbal feedback of an amputee and experiences of a prosthetist. Moreover it is

inconsistent amongst the prosthetists.

Prosthetic alignment involves the adjustment of the prosthetic components

relative to the gait quality. Some methods were proposed, including symmetry

index, variation in a step-to-step transition, stability within the zone of integrated

balance, matching roll-over shape (ROS) to an ideal ROS and etc. It is not clear if

the optimum alignment could be achieved. These methods exhibit a few limitations,

i.e. limited use of gait variables in a single comparison and non-uniform results

when different gait variables are applied. There is a need to provide an objective

assessment method that processes high dimensional gait variables and presents them

in a simple form. In addition, it could be impractical and expensive clinically to

spend excessive time on a patient. An ambulatory gait measurement system could

achieve this objective to a certain extent.

This research investigates a potential engineering solution that is able to

provide an assistive and objective assessment of the lower limb prosthetic alignment

that provides optimal gait quality.

The effort includes a development of a low-cost ambulatory gait

measurement system which could be reliably used during indoor and outdoor trials.

Human walking trials using the designed ambulatory system are designed and

performed to justify the proposed solution. A novel gait analysis method using

Principle Component Analysis and Self-Organizing Feature Map is proposed to

process high dimensional gait data into a simple plot and a decision guide. The

proposed methodology could help to collect sufficient gait data during indoor and

outdoor gaits and could provide an objective gait assessment during the application

of lower limb prosthetic alignments.
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CHAPTER 1

INTRODUCTION

1.1 Background

Misalignment in lower limb prostheses could cause serious skin issues and damages

to the musculoskeletal system if not corrected. Undesired pressure distribution in

the stump/socket interface [1-7] would result in great discomfort, and continuous

mechanical abrasion will eventually cause tissue breakdown, bruise, irritation,

stump pain and skin problems. Stump skin damages are serious and should be

avoided. Furthermore, heavy and consistent dependency on the sound limb would

cause undesired pressure distribution to the rest of musculoskeletal system [8] and

hence increase in the prevalence of degenerative changes in the lumbar spines and

knee.

Currently, there is no agreement amongst practitioners and researchers

regarding the parameters and objective methodologies of gait performance

assessment to identify the optimum alignment for lower limb prosthesis. Some

researchers believe that symmetry [3, 9] is the key in searching for the optimum

alignment. They tried to look for the symmetry between the sound leg and the

prosthetic leg. Others [10] believe that the assessment should look into the variation

in between steps. Meanwhile, another group of researchers believes in stability and

minimum energy expedition [11-13]. Recently some researchers [14, 15] have

proposed that matching roll over shape (ROS) as close as possible to an ideal ROS

shape of the foot is the key to a priori alignment. Somehow none of the researchers

have claimed confidently that they have found the key of the optimum alignments.

Above all, Zahedi [1] proved that the amputees are highly capable to adapt

themselves to a broad range of optimum alignments in level walking. He also

suggested a set of alignment definitions for both transtibial and transfemoral
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prosthesis. Later, Sin [16] re-examined the accepted range and found that a non-

level walking test could constraint the acceptable range into a smaller set.

Instrumental gait analysis is crucial for providing a scientific view of

walking performance with reported error margins. These instruments provide

measurements in temporal, kinematic or kinetic properties of the gait. A gait

analysis laboratory may consist of commercial gait measurement instruments such

as a vision motion capture system to acquire temporal and kinematic gait data,

while using a force plate to measure the ground reaction force within a step.

Examples of a vision motion capture system and a force plate are Vicon and Kistler

respectively. The commercial motion capture systems provide reliable measurement

consistency and accuracy which are reported in their datasheets. In practice, they

are expensive and stationary in a confined room.

On the other hand, an ambulatory gait measurement system provides a

choice for portable and continuous gait measurements outside a gait laboratory. A

number of sensory units that feature light-weight and small in size could be used for

direct measurements. A Micro-Electro-Mechanical System (MEMS) type Inertial

Measurement Unit (IMU) is light-weight and small in size, relatively cheap, reliable

and accurate. An IMU could measure kinematic properties of the limb segments in

multiple axes. Commercial MEMS IMUs from Xsens, MEMSense, MicroStrain,

MotionNode etc. for example, give a broad range of selections such as types and

number of transducers (accelerometer, gyroscope and magnetometer) incorporated,

number of degree of freedom (dof) per transducer, signal choices (USB, SPI, I2C,

RS232 or analogue voltage) as well as the calibration and analytical software. Off-

the-shelf IMUs for gait measurement are rather expensive as compared to their

electronic components. An example of MEMS IMU is the integration of ADXL335

(3-axis accelerometer, Analog Devices, Inc.) and IDG500 (2-axis gyroscope,

InvenSence, Inc.). However, skilled circuitry development to assemble these ICs is

required. The IMU needs to be calibrated before applying it for motion data

acquisition.

Controversy on the lower limb alignment might be due to disagreements in

gait-alignments assessments. The disagreements could be categorized in two major

groups. Firstly the algorithms of assessment and secondly choices of measured gait

parameters. Many algorithms are suggested, including symmetry index, variation in

a step-to-step transition and ROS as explained above. However limited choices of
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gait parameters are suggested to be weighted via these algorithms since these

algorithms are mathematically incapable to handle high dimensional data at once.

Nowadays, gait data are easily available in high dimensions. It may be an irrational

sense just to limit to a number of choices. Since walking is a series of voluntary

controlled motions, the gait data should map to a distribution with a centre

tendency. The gait data are postulated to form the gait patterns as the results of

alignments and other restrictions. Next, the challenge would be to present the multi-

dimensional data in a simple form that displays the centre tendency. In practice, a

prosthetist spends limited time in monitoring the patient’s gait. Short gait

monitoring time might possibly result in insufficient observation as the patient

leaves the clinic. It is envisaged that an ambulatory system instead of a stationary

system would provide a longer observation and collect sufficient gait data.

1.2 Motivation

Some methods were proposed, including symmetry index [5, 9, 16, 17], variation in

a step-to-step transition [10, 18], stability within zone of integrated balance [11]

and matching roll-ever shape (ROS) to an ideal ROS [14, 15] (see arguments of

these methods in Chapter 2). These reported methods for lower limb prosthetic

alignment assessment still exhibit a few limitations as listed.

1. The first limitation is the limited use of gait variables in a single

comparison. For example, a symmetry index would compare the stride

speed of the left leg and the right leg. In another example, variations of

thigh moments in a step-to-step transition are calculated and plotted to

justify the quality of an alignment.

2. The second limitation is the non-uniform sensitivity of the methods when

different gait variables are applied. Non uniform results could be produced

when different gait variables are applied in the reported methods. This is

especially true for the symmetry index and variation in a step-to-step

transition. The above methods do not consider compound gait variables at a

time. If there are n-sets of gait parameters, there could be n-sets of unequal

assessment results. Certain gait parameters are sensitive to the changes of

the alignment while certain are not.
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3. The third limitation is inadequate observation time during an alignment

session. From the prescription point of view, it could be impractical and

costly in clinical practices to spend excessive time on a patient. Gait

observation during a schedule gait trial could be insufficient to provide

adequate gait data for analysis. The amputee would adapt to a new gait

pattern over the long run upon any alignment updates. An ambulatory gait

measurement system which could continuously collect sufficient amount of

gait data out of the clinic could achieve this objective to a certain extent.

It is arguable that the lower limb prosthetic assignment and its assessment

must be limited to a pre-scheduled clinical session and must be confined within a

certain types of gait variables and must investigate the sensitivity of certain gait

variables with regard to the alignment. To date, a typical instrumental gait

measurement would easily generate many gait variables. Simple plots and statistical

analysis focused on a limited number of gait variables may be insufficient to reveal

the ‘true’ gait quality. It could be a waste of information by discarding part of the

gait variables without proper justification. Since human walking involves a high

synchronization of falling and supporting of the body controlled by the lower limbs,

repeated gait variables measured from predefined body segments could possibly

reveal crucial gait patterns due to the alignment. There is a need to provide an

objective assessment method for the application of lower limb prosthetic alignment,

that acquires sufficient amount of gait data and processes high dimensional gait

variables and presents them in a simple form.

1.3 Aims and Objectives

1.3.1 Aims

1. To design a low cost portable mechatronic system that is able to monitor

gait in lower limb segments during normal walking.

2. To propose a simple gait analysis solution as an objective assessment during

lower limb prosthetic alignments.
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1.3.2 Objectives

1. To develop an ambulatory system for gait data collection. The system

should be portable and low cost.

2. To calibrate the ambulatory system including the datalogger and the sensors.

The efforts should specify the system and provide margin of errors.

3. To collect gait data using the ambulatory system under several walking

restrictions.

4. To propose a procedure of gait data processing. The procedure involves

multi-stages of signal processing and conditioning.

5. To propose a simple presentation of gait data that could provide essential

visual aids and guides during lower limb prosthetic alignments.

1.4 The Scope of this Research

The project could cover many stages of research and development phases before

reaching a clinically proven solution. However, at this early stage, this project is

intended to provide a potential solution to the problem and is limited into these

scopes.

1. To develop a low-cost ambulatory gait measurement system that could be

used indoors and outdoors.

2. To propose a novel assessment method that consider a compound set of gait

variables

3. To use healthy subjects to validate the proposed solution

1.5 Contributions of this research

As a contribution to the body of knowledge, part of the thesis are published in peer-

reviewed conferences. The development of the ambulatory system as reported in

Chapter 3 is published in The 2011 International Conference of Mechanical

Engineering, July 6-8, London, UK, 2011. Different techniques of static calibration

of an triaxial accelerometer and the comparison of these techniques as reported in

Chapter 4 are published in:

 The Eighth IASTED International Conference on Biomedical Engineering,

February 16 – 18, Innsbruck, Austria, 2011.
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 The 2011 International Conference of Mechanical Engineering, July 6-8,

London, UK, 2011.

From the same chapter, the dynamic calibration of a gyroscope using a simple

pendulous rig and a statistical method is published in The 14th International

Conference on Climbing and Walking Robots and the Support Technologies for

Mobile Machines (CLAWAR2011), September 6-8, Paris, France, 2011. Further

works and findings from the research will be published in peer-reviewed journals.

The citations of the publications are listed in Appendix D.

Further contributions of this research work can be summarized as:

1. Proposing the development consideration of an ambulatory system. This

includes the embedded system design and the recommendation of IMU sensory

axes conversion according to the body axes at predefined body landmarks.

2. Revising and comparing several IMU static calibration methods. The

comparison reveals the advantages and disadvantages of each method. An

innovative procedure using 6/12 known positions and the iterative mathematical

solution proves to be useful and easy to apply.

3. Proposing an innovative dynamic calibration for a gyroscope using a pendulous

system.

4. Proposing a validation method for IMU dynamic performance using a

pendulous system. The IMU actual outputs are compared with the theoretical

models formulated from the principle of circular motions.

5. Proposing a novel set of cross-designed experiments to investigate the effect of

a crucial alignment factor (ankles) and the walking level to the gait quality.

6. Proposing an innovative procedure to systematically process the collected gait

data into a structure of normalized and linear interpolated gait cycles.

7. Proposing a novel gait assessment algorithm that provides a visual aid and a

decision guide using PCA and SOFM. The solution is envisaged to serve as an

easy-to-use gait assessment tool for the prosthetists during dynamic alignment

or more generally, for normal and pathological gait analysis.
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1.6 Organization of the Thesis

The thesis is divided into seven chapters. Chapter 2 reviews the problem

background of the research. A general knowledge on human waking and

biomechanics is reviewed. This includes essential definitions regarding walking and

crucial concepts for gait analysis. The review also investigates specially on the

issues regarding lower limb prosthetic alignments. These issues include the

importance and the need for the alignments, reviews on many alignment

methodologies, tools and their arguments. Lastly, contribution of this research to

the body of knowledge are mentioned.

Chapter 3 presents the design and development of an ambulatory system

which consists of a customized embedded datalogger, five units of inertial

measurement units (IMUs) and straps to hold the devices.

Chapter 4 describes the procedures for both static calibration and dynamic

calibration of an IMU. The accelerometers are calibrated using several static

calibration techniques and these techniques are compared. A pendulous system is

recommended for the dynamic calibration. A frequency distribution method is

proposed to calibrate the gyroscope. Finally dynamic performances of an IMU are

verified by comparing its theoretical models and the actual measurements in the

pendulous system.

Chapter 5 reports the procedures of human walking trials and their results.

The experiments are cross-designed using two walking restriction factors that

influence the gait. The factors are the ankle and the walking level. The experiments

received an ethical approval from the Research Support Unit of the University of

Leeds and consents from the participants. The procedure for gait feature extraction

is demonstrated. It includes multi-stages of signal processing and conditioning

techniques, gait events identification, gait features selection and extraction out of

processed gait data. The reliability of the ambulatory system (see Chapter 3) is

justified using a statistical method called test-retest reliability.

Chapter 6 proposes a potential objective assessment for the lower limb

alignments. Correlation and dimensionality are emphasized to be the issues in

multi-variants gait data processing. The proposed solution applies Principle

Component Analysis (PCA) and Self-Organizing Feature Map (SOFM) to resolve

the above issues. The algorithms generates visual aids and guides that map the gait
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patterns in low dimensional plots. By means of a 2D or 3D plot, both PCA and

trained SOFM are able to show clear clusters of gait performances under different

walking restrictions. A trained SOFM could determine the class of a gait pattern in

future applications.

Chapter 7 summarizes the work reported in this thesis, highlights the main

findings and outlines future works.
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CHAPTER 2

LITERATURE REVIEW

2.1 Introduction

This chapter reviews the background knowledge regarding the study of human

locomotion and lower limb prosthetic alignments. In a broader view, the review

would give a general understanding about the studies of human locomotion and

their relevant discoveries. In specific, the review would provide a deeper

understanding regarding the researches in the lower limb prosthetic alignments and

their relevant discoveries. Lastly, the contributions of this research to the body of

knowledge are mentioned.

The review starts with fundamental concepts and terminologies in the study

of human locomotion. They include formal definitions of walking, anatomical

geometry, motions in lower limbs in kinematic and kinetic terms. These definitions

form the background knowledge necessary for gait analysis. All studies in human

locomotion cannot leave without gait data collection with reliable gait measurement

instruments. A review of these instruments and their limitations are provided.

Next, a few human walking models are reported. Each model emphasizes on

different key variants that determine gait quality. The classical human walking

model, the six determinants, has gone through several challenges and is seriously

questioned. However, it still describes well about human walking. The model,

dynamic walking, utilizes the law of conservation of energy to model the walking

actions. Meanwhile, the model, rocker based inverted pendulum, utilizes the

geometry of roll-over shape (ROS) to anticipate the virtual leg length. Optimal

values of ROS radius and virtual leg length are suggested.

It is a great clinical concern to provide optimal prosthetic alignments. The

concerns include both dermatological and musculoskeletal reasons. The alignment

must at least provide a certain extent of proper gait function and comfort. Key
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