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Abstract 

PATH PLANNING FOR UNMANNED AERIAL VEHICLE USING 

VISIBILITY LINE-BASED METHOD 
 

Rosli bin Omar 

This thesis concerns the development of path planning algorithms for unmanned aerial 

vehicles (UAVs) to avoid obstacles in two- (2D) and three-dimensional (3D) urban 

environments based on the visibility graph (VG) method. As VG uses all nodes 

(vertices) in the environments, it is computationally expensive. The proposed 2D path 

planning algorithms, on the contrary, select a relatively smaller number of vertices 

using the so-called base line (BL), thus they are computationally efficient. The 

computational efficiency of the proposed algorithms is further improved by limiting 

the BL’s length, which results in an even smaller number of vertices. Simulation 

results have proven that the proposed 2D path planning algorithms are much faster in 

comparison with the VG and hence are suitable for real time path planning 

applications. While vertices can be explicitly defined in 2D environments using VG, it 

is difficult to determine them in 3D as they are infinite in number at each obstacle’s 

border edge. This issue is tackled by using the so-called plane rotation approach in the 

proposed 3D path planning algorithms where the vertices are the intersection points 

between a plane rotated by certain angles and obstacles edges. In order to ensure that 

the 3D path planning algorithms are computationally efficient, the proposed 2D path 

planning algorithms are applied into them. In addition, a software package using 

Matlab for 2D and 3D path planning has also been developed. The package is designed 

to be easy to use as well as user-friendly with step-by-step instructions. 
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Figure 1.1: Pathfinder UAV used for environmental research. 

 

 

 

 

 

 

Chapter 1 

 

Introduction 

 

1.1 Motivation 

Unmanned Aerial Vehicles (UAVs) are a vital means of performing hazardous 

missions in adversarial environments without endangering human life. They have been 

used for peaceful purposes in civilian applications such as weather forecasting, 

environmental research, search and rescue missions, observation during wildfire 

incidents and traffic control [3]. Fig. 1.1 illustrates a Pathfinder UAV used for 

environmental research. On the other hand, UAVs have also been used for warfare 

such as carrying out aerial reconnaissance and surveillance over the opponent’s area or 

attacking strategic facilities in enemy territory. Fig. 1.2 shows an RQ-1 predator which 

is armed with missiles for combat purposes [1].  
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Since UAV requires no human pilot, there is no loss to human life if it crashes or gets 

attacked during a mission. Besides, UAV also reduce operating costs because it does 

not require a highly trained pilot onboard as a manned aircraft does. The latter is cost-

ineffective often caused by expensive investment needed as part of the pilot’s training 

to cover advanced facilities such as buildings, flight simulators and support equipment 

including instrumentation, the cockpit and ejection systems. Therefore UAVs are by 

far the best way forward. In addition, with no human pilot, a UAV can be designed to 

achieve higher gravitational forces i.e. 50g [2], which results in relatively higher 

manoeuvrability (a human can sustain up to only 9g). A UAV with higher 

manoeuvrability may have better performance such as faster speed, smaller minimum 

turning radius and larger maximum roll angle and hold a higher probability of 

escaping from enemy’s missile attack. 

However, many current UAVs still involve a human-in-the-loop to oversee and control 

the UAVs’ operation [4, 31]. This in turn requires a communication link through radio 

signals between the human operator and the UAV to transmit/receive the 

command/sensory signals over a frequency spectrum, which is often limited. 

Furthermore, the radio signal is vulnerable and might be jammed by opponents. In the 

event of a lost or interrupted signal, as the UAV is dependent on human operators’ 

decisions, it would not be able to execute a mission as desired and to some extent, it 

Figure 1.2: A UAV, RQ-1 predator is equipped with missiles 

PTTA
PERP

UST
AKA
AN 
TUN
KU T

UN 
AMI
NAH



3 
 

may crash. Thus, the dependency on human instructions through a communication link 

needs to be minimised or eliminated if possible. This requires the UAV to have the 

capability of making its own decisions based on the current state and circumstances of 

its surrounding environments. The capability of doing so will greatly enhance the 

autonomy of UAVs.  

1.2 Autonomy in UAV 

Current technologies are capable of operating a UAV in a relatively structured and 

known environment. However, in a dynamic environment where uncertainties exist 

such as obstacles that might pop-up during a mission, the technologies are insufficient 

due to the UAV’s inability to make decisions by itself [32]. This requires a new 

concept called autonomy.  

Autonomy means the capability of a UAV to make its own decision based on the 

information presently available captured by sensors, and potentially covers the whole 

range of the vehicle’s operations with minimal human intervention [5]. Autonomy 

increases system efficiency because all decisions are executed onboard except for 

critical decisions such as launching a missile that have to be made by humans [30]. A 

UAV with autonomy would be able to execute a mission in environments with 

uncertainties. Furthermore, with autonomy, the UAV can perform a long duration 

mission, which is beyond the capability of human (operators). Autonomy covers the 

following areas [6]:  

i. sensor fusion 

ii. communications 

iii. path planning 

iv. trajectory generation 

v. task allocation and scheduling  

vi. cooperative tactics 

 

Additionally, as introduced in [33], there are ten UAV autonomy levels known as 

Autonomous Control Level (ACL). The ACL and trends in UAV autonomy are 

illustrated in Fig. 1.3.  The concept of ACL as a metric to describe the autonomy in 
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UAVs is widely accepted [31]. Readers are referred to [33] for a detailed description 

of ACL. 

However, autonomy technology is still in its early stage, fairly undeveloped [5] and is 

the bottleneck for UAV development in the future [6]. The RQ-1 Predator as shown in 

Fig. 1.1 for example, at present, can perform up to only level 3 of ACL.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The list of autonomy areas included previously, as well as the ACL (Fig. 1.3), have 

shown that onboard path planning and re-planning, which deals with traversing a 

vehicle through obstacles is one of the keys components of autonomy.  

Research on UAV autonomy including path planning have progressed steadily since 

the beginning of this century. For example, [31] has designed and conceptually 

developed a simple UAV path planning mission that is used to reduce the UAV’s 

dependency on human operators, and hence increases the UAV’s autonomy level. The 

so-called Mission Management System (MMS) has been designed, developed and 

flight-tested in [31]. From sensory data, MMS makes decisions and issues high level 

commands which are then executed by the Flight Control Systems (FCS).  

Figure 1.3: UAV autonomy levels and trend (adapted from [33]) PTTA
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As path planning plays an important role in enhancing UAV’s autonomy level, it has 

to be considered in the design of a UAV.   

1.3 Path Planning Overview and Issues 

From a technical perspective, path planning is a problem of determining a path for a 

vehicle in a properly defined environment from a starting point to a target point such 

that the vehicle is free from collisions with surrounding obstacles and its planned 

motion satisfies the vehicle’s physical/kinematic constraints [25]. In a report by [12], 

path planning is associated with a number of terms as follows: 

 

 Motion planning 

This term is frequently associated with manipulator robotics. It involves 

deliberative high level and low level planning of a way to move a robotic 

manipulator.   

 

 Trajectory planning 

It is about planning the next movement of a robot. Trajectory planning is 

similar to motion planning. 

 

 Navigation 

It is a very general term which has several meanings. In general it means 

“getting there from here”. It is also part of path planning, motion planning, 

obstacle avoidance and localisation. 

 

 Global path planning 

The planning is done prior to vehicle movement. It uses the information from 

the surrounding world to reach a target point from a starting point. As the 

information contains global data, the process is slow, but the planned path may 

be optimal.  
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 Local navigation 

It is a process of avoiding obstacles by using only acquired data of the current 

surrounding environment. It is also a process of ensuring the vehicle’s stability 

and safety and runs in real time using a reactive path planning approach. 

 

1.3.1 Criteria of Path Planning 

Path planning related problems have been extensively investigated and solved by 

many researchers [7-10], mostly focusing on ground robotics and manipulators. 

Important criteria for path planning that are commonly taken into account are the 

computational time, path length and completeness. A path planning algorithm with 

less computational time is vital in real time application, which is desirable in dynamic 

environments. The generated optimal path in terms of path length by a path planning 

technique will minimise UAV flight time and hence prolongs the UAV’s endurance 

and life cycle, minimises fuel/energy consumption and reduces exposure to possible 

risks. On the other hand, a path planning approach satisfies the completeness criterion 

if it is able to find a path if one exists.  

However, sometimes, there are trade-offs between such criteria. For example, a path 

planning method has to disregard the path’s optimality in order to increase the 

computational efficiency. It means that finding a slightly longer path with less 

computational time may be preferable. On the other hand, higher computational 

complexity is necessary if an optimal path is required for some reasons. These criteria 

have to be considered before any path planning technique/algorithm design process 

takes place.  

1.3.2 Path Planning Steps 

Typically, path planning of a vehicle A consists of two phases. The first phase is 

called the pre-processing phase in which nodes and edges (lines) are built in the 

environment/workspace W with A and obstacles O. In this phase, it is common to 

apply the concept of a configuration space (C-space) to represent A and O in W [9, 

12]. In C-space, the vehicle’s size is reduced to a point, and accordingly the obstacles’ 

sizes are enlarged according to the size of A. Next, representation techniques are used 
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to generate maps of graphs. Each technique differs in the way it defines the nodes and 

edges.  

The second phase of path planning is termed the query phase in which a search for a 

path from a starting point to a target point is performed using (graph) search 

algorithms.  

However there are path planning methods that can find solutions without graph search 

algorithm such as Mixed Integer Linear Programming (MILP) [4, 105, 116-117] and 

Evolutionary Algorithm (EA) [118-120].  

1.3.3 C-space Representation 

In path planning for an object, there are a number of methods that are commonly used 

to represent the environment including potential field (PF) [21-24], cell decomposition 

(CD) [13-16] and roadmap (RM) [17-20], to name a few. A PF represents the 

environment by modelling the object as a particle, moving under the influence of 

potential fields throughout the C-space. The field’s magnitude at a particular point in 

C-space is determined by the fields generated by starting point pstart, target point ptarget 

and the obstacles O in the C-space. The pstart and O are repulsive surfaces (which 

generate repulsive forces), while the ptarget is the attractive pole which generates 

attractive forces [21]. The path is then calculated based on the resulting potential fields 

from a point with the highest magnitude of the resultant potential field, i.e. pstart, to a 

point with the minimum potential, i.e. ptarget. The PF has several advantages such as 

the planning process is done as the vehicle moves and thus is suitable for real time 

application and the generated path is also smooth. However, conventional PF methods 

suffer from local minima causing the vehicle to become stuck before it reaches ptarget, 

hence it might not satisfy the completeness criterion.  

CD-based are among the most popular methods to represent the environment 

especially for outdoor scenarios [12] as it is the most straightforward technique [29]. 

This is due to the fact that the cells can represent anything such as free space or 

obstacles. The first step in CD is to divide the C-space into simple, connected regions 

termed cells [35]. The cells are regions that might be square, rectangular or polygonal 

in shape. They are discrete, non-overlapping but adjacent to each other. If the cell 
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contains obstacle (or part of obstacle), it is marked as occupied, otherwise it is marked 

as obstacle free. A connectivity graph is then constructed and a graph search algorithm 

is used to find a path throughout the cells from the starting point to the target point. In 

order to increase the quality of the path, the size of the cells has to be made smaller, 

which in turn increases the grid’s resolution, and hence computational time. In the 

literature, there are several variants of CD. These include Approximate Cell 

Decomposition, Adaptive Cell Decomposition and Exact Cell Decomposition.  

Path planning using RM-based methods on the other hand represent the environment 

by constructing graphs or maps from sets of nodes and edges. Path planning methods 

which are specific cases of RM are Voronoi diagrams (VD) and Visibility Graphs 

(VG). The nodes and edges to build a roadmap are defined differently for each 

method. VD defines nodes that are equidistant from all the points’ surrounding 

obstacles. The paths generated from a graph by VD are relatively highly safe due to 

the fact that the edges of the paths are positioned as far as possible from the obstacles. 

However, the paths are inefficient [12] and not optimal in terms of path length. On the 

other hand, VG uses the vertices of the obstacles including the starting and target 

points in the C-space as the nodes. A VG (or visibility lines, VL) network is then 

formed by connecting pairs of mutually-visible nodes by a set of lines E. A pair of 

mutually-visible nodes means that those nodes can be linked by a line/edge     that 

does not intersect with any edge of obstacles in the C-space. Additionally, there is a 

cost associated with each E, possibly in terms of Euclidean distance. One advantage of 

VL is the capability of finding a path with the shortest length if one exists. A standard 

VL’s computational complexity is O(N
3
) to find a path in a C-space with N nodes 

therefore VL is computationally intractable in the C-space with many obstacles. 

1.3.4 Graph Search Algorithms 

It has previously been stated that the second step of path planning is to calculate a path 

using (graph) search algorithms. Two basic search algorithms are Breadth-First Search 

(BFS) and Depth-First Search (DFS). BFS searches paths in a systematic way which 

guarantees that the first solution found will utilise the smallest number of iterations 

[34]. Like BFS, DFS is also systematic but it focuses on one direction and completely 

misses large portions of the C-space as the number of iterations become very large. 
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