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V 

A B S T R A C T 

Heart sounds analysis can provide lots of information about heart condition 

whether it is normal or abnormal. Heart sounds signals are time-varying signals 

where they exhibit some degree of non-stationary. Due to these characteristics, 

therefore, two techniques have been proposed to analyze them. The first technique is 

the Time-Frequency Distribution using B-Distribution, used to resolve signal's 

components in the time-frequency domain and specifies the frequency components 

of the signal that changing over time. Another proposed technique is the Mel-

Frequency Cepstrum Coefficient, used to obtain the cepstrums coefficients by 

resolving signal's components in the frequency domain. An experiment is presented 

to extract features of heart sounds using both mentioned techniques and compare 

their performances. Both techniques are discussed in details and tested against ideal 

simulations of 50 heart sound signals including normal and abnormal signals. All 

simulations are done using Matlab software except for MFCC where it has used the 

Microsoft Visual C++ software. A brief description of SVD is included to the 

technique using time-frequency distribution. Also, a brief description of Neural 

Network is used to verify and to compare the performances results of the two 

techniques with regard to the values of hidden node, learning rate and momentum 

coefficient. The results showed that performance of the TFD can be achieved up to 

90% whereas MFCC is only 80%. Therefore, the TFD technique is chosen as the 

best technique to analyze and to extract features o f the non-stationary signals such as 

the heart sounds signals. 
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v i 

A B S T R A K 

Analysis degupan jantung dapat memberikan banyak maklumat tentang 

keadaan jantung sama ada ia normal atau tidak. Isyarat degupan jantung sentiasa 

berubah-ubah, menunjukkan bahawa ia adalah isyarat yang tidak pegun. Disebabkan 

oleh ciri-ciri tersebut, maka dua teknik khas telah disarankan untuk menganalisanya. 

Teknik yang pertama adalah menggunakan taburan masa-frekuensi (TFD) dengan 

jenis taburan-B (B-Distribution) untuk merungkaikan komponen-komponen isyarat 

dalam domain masa-frekuensi. Satu lagi teknik yang disarankan adalah mengunakan 

pekali Mel-Frekuensi Sepstrum (MFCC) bagi mendapatkan pekali sepstrum dengan 

merungkaikan komponen-komponen isyarat dalam domain frekuensi. Satu 

eksperimen telah dilakukan bagi mengekstrak ciri-ciri yang ada pada bunyi degupan 

jantung menggunakan dua teknik tersebut dan membandingkan tahap pencapaian 

yang diperolehi. Kedua-dua teknik telah dibincangkan dengan terperinci dan telah 

diuji dengan mensimulasi sebanyak 50 isyarat degupan jantung yang terdiri daripada 

isyarat normal dan abnormal. Kesemua teknik simulasi tersebut telah dilakukan 

menggunakan perisian Matlab kecuali MFCC menggunakan perisian Microsoft 

Visual C++. Terdapat penerangan ringkas tentang penguraian nilai tunggal (SVD) 

yang digunakan bersama teknik TFD. Juga disertakan huraian mengenai rangkaian 

saraf tiruan (ANN) untuk menentukan pencapaian kedua-dua teknik tersebut 

berdasarkan kepada jumlah lapisan tersembunyi, kadar latihan dan kadar momentum. 

Keputusan telah menunjukkan bahawa pencapaian teknik TFD telah mencecah 90% 

manakala teknik MFCC pula hanya 80%. Jadi, teknik TFD merupakan teknik yang 

terbaik untuk menganalisa dan mengekstrak ciri-ciri yang ada pada isyarat yang tidak 

pegun seperti isyarat degupan jantung. 
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V 

A B S T R A C T 

Heart sounds analysis can provide lots of information about heart condition 

whether it is normal or abnormal. Heart sounds signals are time-varying signals 

where they exhibit some degree of non-stationary. Due to these characteristics, 

therefore, two techniques have been proposed to analyze them. The first technique is 

the Time-Frequency Distribution using B-Distribution, used to resolve signal's 

components in the time-frequency domain and specifies the frequency components 

of the signal that changing over time. Another proposed technique is the Mel-

Frequency Cepstrum Coefficient, used to obtain the cepstrums coefficients by 

resolving signal's components in the frequency domain. An experiment is presented 

to extract features of heart sounds using both mentioned techniques and compare 

their performances. Both techniques are discussed in details and tested against ideal 

simulations of 50 heart sound signals including normal and abnormal signals. All 

simulations are done using Matlab software except for MFCC where it has used the 

Microsoft Visual C++ software. A brief description of SVD is included to the 

technique using time-frequency distribution. Also, a brief description of Neural 

Network is used to verify and to compare the performances results of the two 

techniques with regard to the values of hidden node, learning rate and momentum 

coefficient. The results showed that performance of the TFD can be achieved up to 

90% whereas MFCC is only 80%. Therefore, the TFD technique is chosen as the 

best technique to analyze and to extract features o f the non-stationary signals such as 

the heart sounds signals. 
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A B S T R A K 

Analysis degupan jantung dapat memberikan banyak maklumat tentang 

keadaan jantung sama ada ia normal atau tidak. Isyarat degupan jantung sentiasa 

berubah-ubah, menunjukkan bahawa ia adalah isyarat yang tidak pegun. Disebabkan 

oleh ciri-ciri tersebut, maka dua teknik khas telah disarankan untuk menganalisanya. 

Teknik yang pertama adalah menggunakan taburan masa-frekuensi (TFD) dengan 

jenis taburan-B (B-Distribution) untuk merungkaikan komponen-komponen isyarat 

dalam domain masa-frekuensi. Satu lagi teknik yang disarankan adalah mengunakan 

pekali Mel-Frekuensi Sepstrum (MFCC) bagi mendapatkan pekali sepstrum dengan 

merungkaikan komponen-komponen isyarat dalam domain frekuensi. Satu 

eksperimen telah dilakukan bagi mengekstrak ciri-ciri yang ada pada bunyi degupan 

jantung menggunakan dua teknik tersebut dan membandingkan tahap pencapaian 

yang diperolehi. Kedua-dua teknik telah dibincangkan dengan terperinci dan telah 

diuji dengan mensimulasi sebanyak 50 isyarat degupan jantung yang terdiri daripada 

isyarat normal dan abnormal. Kesemua teknik simulasi tersebut telah dilakukan 

menggunakan perisian Matlab kecuali MFCC menggunakan perisian Microsoft 

Visual C++. Terdapat penerangan ringkas tentang penguraian nilai tunggal (SVD) 

yang digunakan bersama teknik TFD. Juga disertakan huraian mengenai rangkaian 

saraf tiruan (ANN) untuk menentukan pencapaian kedua-dua teknik tersebut 

berdasarkan kepada jumlah lapisan tersembunyi, kadar latihan dan kadar momentum. 

Keputusan telah menunjukkan bahawa pencapaian teknik TFD telah mencecah 90% 

manakala teknik MFCC pula hanya 80%. Jadi, teknik TFD merupakan teknik yang 

terbaik untuk menganalisa dan mengekstrak ciri-ciri yang ada pada isyarat yang tidak 

pegun seperti isyarat degupan jantung. 
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CHAPTER 1 

INTRODUCTION 

1.1 Project Background 

This project is focused on the problem of heart sounds analysis using an 

integration of signal processing techniques and artificial neural networks. This 

includes feature extraction technique, verification technique and estimation of 

performance with related parameters. It has proposed two techniques for feature 

extraction analysis. The first technique is emphasizing on Time-Frequency 

Distributions (TFD). It used to choose a distribution from a group of bilinear time-

frequency distributions that satisfies the TFD properties. In that case, the B-

distribution was chosen because it satisfied the properties of TFD and it performed 

well in reducing the cross-terms. Another technique is using Mel Frequency 

Cepstrum Coefficient where the outputs are in terms of cepstrum coefficients. For 

verification analysis, both of the techniques mentioned above are further simulating 

using neural network and after that the performances were compared between the 

both proposed techniques. 
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1.2 Project Objectives 

The main objective of this work is to choose the best technique to extract 

features of heart sounds signals. This can be achieved by comparing two proposed 

techniques; Time-Frequency Distribution (B-distribution) and Mel Frequency 

Cepstrum Coefficient. The best technique will be chosen according to the 

performance accuracy. 

1.3 Scope of Work 

Different heart sounds were produced when the cardiac system is not in a 

proper manner of working, which will produce the heart irregularities or heart 

diseases. A good technique needs to be used to extract the features of heart sounds in 

order to detect the diseases. Different features will represent different heart diseases. 

This project has proposed two techniques that can be used for feature 

extraction of heart sound signals. Both of them are outperformed their own classes 

compared to others. The first technique is using Time-Frequency Distribution with 

Singular Value Decomposition. The second technique is focusing on the Mel 

Frequency Cepstrum Coefficient. The data used to implement both techniques are 

taken from Centre of Biomedical in UTM, Skudai. They are actually the heart sound 

signals including normal and abnormal signals. The normal heart sounds are taken 

from healthy persons and the abnormal heart sounds are taken from patients that are 

suffering from various kinds of diseases. 

For the first technique, the heart sound signals are transformed into time-

frequency domain using bilinear time-frequency distribution. The transformation is 
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done using B-distribution with some parameters setting and the outputs from that 

particular distribtuion are then dimensionality reduced using Singular Value 

Decomposition. The results after that simulated farther using neural network for 

verification and performance analysis. All simulations are done using Matlab. The 

second technique is different from the first one because the analysis is done based on 

frequency analysis using Mel Frequency Cepstrum Coefficient. The heart sound 

signals are extracted using MFCC with mel-frequency scaled. The simulation is 

done using Microsoft Visual C++. The outputs of MFCC are actually the cepstrum 

coefficients that were going to be simulated further using neural network for 

performance analysis. Lastly, the performances accuracies from both techniques are 

then compared to each other. 

1.4 Heart Sounds 

Figurel.l Heart sound components 

The heart sounds are generated by mechanical vibration of heart and 

cardiovascular where they provide abundant information about them while the 

measurement is noninvasive and low cost. Heart sounds and murmurs are the 

important parameter used in diagnosing the heart condition and it can be captured by 

using phonocardiogram or heart auscultation. Classically the sounds made by a 

healthy heart are conceived as being a nearly periodic signal consisting of four 

components. These four parts are referred to as the first, second, third and fourth 
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heart sounds. The first two heart sounds give rise to the familiar 'lub-dup' beating 

sound of the heart and tend to dominate the Phono-CardioGraphic (PCG) signals. 

The first heart sound is caused by the closure of the mitral and tricuspid valves. The 

second heart sound is due to the closure of the aortic and pulmonary valves. The 

four components of heart sounds are stated below: 

1. First Heart Sound; 

First heart sound is the effect of closing the tricuspid and mitral valve at the 

beginning of ventricle systolic. There are four component of the first heart 

sounds [22]: 

(i) The first component is the effect of ventricular contraction and blood 

movement towards atrio-ventricular valve. This occur at beginning of 

ventricle systolic. 

(ii) The second component is the effect of atrioventricle clossure. 

(iii) The third component is reflected the opening of semilunar valve and 

the beginning of blood ejection. 

(iv) The fourth component represent the maximum blood ejection from 

ventricle to aorta. 

2. Second Heart Sound; 

Second heart sound represents the vibrations as a result from closure of 

semilunar valve at the end of ventricle systolic. Since there are two 

component of semilunar valve, the second heart sound is a combination of 

two components. The aortic valve closed earlier than the closing of 

pulmonary valve. 

3. Third Heart Sound; 

The third heart sound result from vibration setting by early filling of ventricle 

during ventricle diastole. 

4. Fourth Heart Sound; 

The fourth heart sound is caused by rapid filling of ventricle with blood 

during atrium systole. It also marked the end of ventricle diastole. 
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Each beat is separated by an interval of the order of Is, with each heart sound 

having duration of roughly 50ms. The interval between beats varies even in a patient 

at rest because of respiration. Similarly the exact nature of each beat varies from 

beat to beat. The result is a signal which is non-periodic, even though it has a 

repetitive character. 

The heart murmurs occur as the additional components in the PCG signal, 

most often arising in the interval between the first and second heart sound. Heart 

murmurs are the result of turbulent blood flow, which produces a series of many 

vibrations. The murmur signal is often of much smaller amplitude than either of the 

heart sounds. Many murmurs are described as "whooshing" sounds and are believed 

to be derived from flow noise. The heart murmurs will produce the abnormal heart 

sounds. There are four main factor of producing murmurs [17]: 

(i) High rates of flow through normal and abnormal valves 

(ii) Forward flow through a constricted or irregular valve or into dilated vessels. 

(iii) Backward flow through an incompetent valve, septal defect, or patient ductus 

arteriosus. 

(iv) Decreased viscosity, which causes increased turbulent and contributes to the 

production and intensity of murmurs. 

1.5 Time-Frequency Distributions 

Many signals encountered in real-world situations are exhibit some degree of 

non-stationarity where the frequency content changes over time. One of the most 

common applications is heart sound signals processing. Classical signal analysis 

tools, however, do not take this into account, assuming that the signal characteristics 

are stationary. A solution to the problem of representing non-stationary signals is 

found in their joint time and frequency representations which characterized the exact 
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behavior of the time-varying frequency content of the signal. Time-frequency 

analysis methods are capable of detecting heart murmurs and vital information to the 

classification of heart sounds and murmurs. Therefore, Time-Frequency Analysis is 

used to represent the heart sounds in time-frequency domain by mapping the one-

dimensional time-domain signal into a two-dimensional function of time and 

frequency. 

The introduction of time-frequency analysis (TFA) has led to define new 

tools to represent and characterize the time-varying contents of non-stationary 

signals using time-frequency distributions (TFDs) [2, 7, 15], also for removing noise 

and interference from a signal. Among the most studied time-frequency distributions 

are the quadratic distributions. In this paper, a member of the quadratic class of 

TFDs is proposed, referred to as the B-distribution, which can resolve close signals 

in the time-frequency domain that other members fail to do so. In addition to that, 

the B-distribution is shown to outperform existing reduced interference distributions 

in suppressing the cross-terms of a multicomponent signal, while keeping a high 

time-frequency resolution. The performance of this technique is depending on the 

value of smoothing parameter applied to the signal analysis. This condition is 

evaluated using the simulation on the heart sound signals using Matlab. 

1.6 Mel-Frequency Cepstrum Coefficient 

A representation of heart sounds using Mel-Frequency Cepstrum Coefficient 

(MFCC) would be provided by a set of cepstrum coefficients. These coefficients are 

the results of a cosine transform of the real logarithm of the short-term energy 

spectrum expressed on a mel-frequency scale [32]. The MFCC are also an efficient 

method to extract any kind of features [8]. The number of resulting mel-frequency 

cepstrum coefficients is practically chosen relatively low, in the order of 12 to 20 

coefficients. However, in many cases of MFCC analysis, the 0th coefficient of the 
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MFCC cepstrum is ignored because of its unreliability [24], In fact, the Oth 

coefficient can be regarded as a collection of average energies of each frequency 

bands in the signal that is being analyzed. The energy of heart sound signal is also a 

very important feature for pattern recognition. Many experiments have shown that 

the performance can be improved when the energy information is added as another 

model feature in addition to cepstrums. 

Mel Frequency Cepstrum Coefficients (MFCC) is also used as a method that 

analyzes how the Fourier transform extracts frequency components of a signal in the 

time-domain. In addition, it is a representation defined as the real cepstrum of a 

windowed short-time signal derived from the Discrete Fourier Transform (DFT) of 

that signal. The difference from the real cepstrum is that a non-linear frequency, a 

mel-scale is used. The mapping from linear frequency to mel frequency is done 

using an equation as follows: 

Mel(f) = 2595 loglO (1 + f/700) (1.1) 

Basically, the analysis of the signal is done using Frequency Domain Analysis where 

it converts a temporal signal to a frequency domain representation. The keywords 

involve in this analysis as below: 

• Cepstrum: a homomorphic signal processing technique that converts the 

signal into a domain in which short-term and long-term variations in the 

signal can be separated. 

• FourierTransform: implements a variety of techniques for performing Fourier 

Transforms, including the most effective fast transforms 

• Spectrum: an umbrella class that encapsulates most of the frequency domain 

techniques, and provides a uniform interface. This capability is used 

extensively in many of our front end implementations. 
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1.7 Thesis Outline 

This report has been organized into eight chapters. Chapter 1 outlines the 

entire project giving a brief introduction to the time-frequency distribution technique 

and Mel Frequency Cepstrum Coefficient technique. Chapter 2 provides the 

literature reviews where the common references with some information that related 

to the project are collected. Chapter 3 describes the time-frequency technique used 

in this project by specifically elaborate the B-Distribution and its kernel. In addition, 

a brief description about SVD is also included in this chapter. Chapter 4 is an 

explanation about the MFCC principle and the steps involve in getting the MFCC. 

Chapter 5 is having a detail explanation about neural network. The important 

parameters involve in this chapter is explained further in order to get some ideas of 

verification technique used in this project. Chapter 7 presents and explains the 

results of signal processing experiments conducted on heart sound data including 

normal and abnormal based on time-frequency distribution technique and MFCC 

technique. The verification results are also attached to this chapter for performances 

comparison. Chapter 8 is the last chapter of this thesis where it concludes this 

project and provides suggestions for future recommendations and improvement. PTTA
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CHAPTER 2 

LITERATURE REVIEW 

2.1 Time-Frequency Representations/Distributions 

Hlawatsch and Boudreaux-Bartels (1992) have studied that Time-frequency 

representations (TFRs) are powerful tools for the analysis and processing of "non-

stationary" signals for which separate time-domain and frequency-domain analyses 

are not adequate. They have combined time-domain and frequency-domain analyses 

to yield a potentially more revealing picture of temporal localization of a signal's 

spectral components. The TFRs are including both linear and quadratic 

representations. The found that numerous TFRs which have been proposed may be 

interpreted as smoothed versions of the WD, with the type of smoothing determining 

the amount of attenuation of interference terms, loss of time-frequency concentration 

and mathematical properties. Hence, the choice of the "best" TFR depends on the 

nature of the signals to be analyzed. Once a specific TFR has been selected, the user 

often has to select certain TFR parameters. Finally, the analysis result will also 

depend upon the graphical representation of the TFR surface (e.g. 3D plots versus 

contour-line plots). 
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White, Collis and Salmon (1996) have studied the use of time-frequency 

methods in the detection and analysis of heart murmurs in Phono-CardioGraphic 

(PCG) signals. These heart sounds can yield important diagnostic information. An 

abnormality between the heart sounds is genetically termed a murmur. Heart sounds 

are clearly non-stationary signals and hence the natural analysis methods are those of 

time-frequency and time-scale. In this application there is no evidence to suggest 

that the analysis technique would benefit from a multi-resolution type analysis, so 

they concentrated on time-frequency, rather than time-scale, methods. The method 

exploits averaged versions of the Pseudo-Wigner-Ville distribution (PWVD). The 

algorithms were shown to detect two types of heart murmurs and to be able to 

distinguish between them. The general processing strategy they adopted consists of 

initially segmenting the signal into individual beats. This segmentation process can 

be performed in a variety of ways; the success of each approach depends critically on 

the signal to noise ratio (SNR) of the recording under consideration. They have 

presented the results illustrating that time-frequency methods are capable of 

detecting heart murmurs and also of yielding information vital to the classification of 

such murmurs. The methods used involved averaging of time-frequency plots, which 

has intuitive value and can be interpreted in a theoretical fashion exploiting the 

concepts of cyclo-stationarity. 

Haghighi-Mood, and Torry (1997) have addressed the characteristics of heart 

murmurs from signal theory point of view and suggests an appropriate signal 

analysis method which is capable of describing the dynamics of heart murmurs. The 

result of a pilot study using the proposed method indicates a distinctive pattern for 

time-frequency distribution of heart murmurs which is expected to provide 

information of diagnostic importance. The choice of time-frequency method is 

mainly dictated by the time-bandwidth product of the signal under investigation. 

While traditional Time-Frequency methods such as Short Time Fourier Transform 

(STFT) and bank of filters (BoF) are known to be robust for signals of large time-

bandwidth product, their performance degrades when used with signals of fast-

varying spectra and short duration. An alternative approach to study such signals is 

joint Time-Frequency Distribution (TFDs) methods which, unlike traditional 

methods, make no assumption of stationarity at any time interval. For their study, a 
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number of TFD methods belonging to the Cohen class of distributions were applied 

to heart murmurs. They found that the Choi-Williams distribution (CWD) with an 

exponential kernel also can provide the best compromise between spectro-temporal 

resolution and cross-term suppression and therefore the detection of time-frequency 

dynamics of heart murmurs. Considering the generation mechanism and the 

hydrodynamic models proposed for various types of murmurs, it is logical to predict 

that the time-frequency pattern of murmurs contains valuable information which may 

lead to non-invasive diagnosis of certain cardiac diseases such as valvular stenosis 

and ventricular or atrial septal defect. 

Cohen (1989) has presented a review and tutorial of the fundamental ideas 

and methods of joint time-frequency distributions. He has introduced the types of 

distributions and the method to obtain them. The objective of the field is to describe 

how the spectral content of a signal is changing in time, and to develop the physical 

and mathematical ideas needed to understand what a time-varying spectrum is. The 

basic goal is to devise a distribution that represents the energy or intensity of a signal 

simultaneously in time and frequency. The basic idea is to devise a joint function of 

time and frequency, a distribution that will describe the energy density or intensity of 

a signal simultaneously in time and frequency. This review is presented to be 

understandable to the non-specialist with emphasis on the diversity of concepts and 

motivations that have gone into the formation of the field. 

2.2 Cross-terms Elimination (Signal-to-Interference Ratio) 

Daliman and Sha'ameri (2003) have done the analysis of the heart sound and 

murmurs using time frequency distribution method. The reason why they were using 

time-frequency distribution because the heart sound signals are actually non-

stationary signals and time-varying signals that would be best analyzed in time-

frequency domain. The Windowed Wigner-Ville distribution (WWVD) and smooth 
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windowed Wigner-Ville distribution (SWWVD) have been used to obtain the time-

frequency representation of the signal. Determination of parameter setting of 

WWVD and SWWVD will eliminate the cross-terms and improve time-frequency 

representation. The accuracy of time-frequency representation is determined based 

on the mainlobe width and signal-to-interference ratio. By comparing the two types 

of the distributions, they found that the most accurate time-frequency representation 

can be achieved using the SWWVD. 

Sha'ameri and Salleh (2000) have performed an analysis of heart sounds and 

murmur using time-frequency signal analysis. They used the technique using 

Wigner-Ville distribution (WVD) and windowed Wigner-Ville distribution 

(WWVD) that belonged to the bilinear class of time-frequency distribution. They 

developed these techniques to provide high-resolution time-frequency representation 

for time-varying signals. Due to the nonlinear operation involved, interference terms 

were introduced in the time-frequency representation. The signals of interest are 

modeled as multicomponent signals and the characteristics of the signal in time-lag 

plane are observed. From the time-lag plane, the interference components are 

identified, and the appropriate window width is selected in the WWVD to remove 

the interference. Results analyses showed that WWVD produced more accurate 

time-frequency representation compared to the WVD and the signal-to-interference 

is used to quantify the improvement. This happened because the WWVD has used 

the window function to control the amount of interference present in the time-

frequency representation by removing the cross bilinear product terms. 

2.3 B-Distribution 

Sucic, Barkat and Boashash (1999) proved that B-distribution can resolve 

close signals in the time-frequency domain that other members fail to do so. They 

showed that the B-distribution is real, time and frequency shift invariant and its first 
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moment with respect to frequency yields the instantaneous frequency of the signal. 

Using synthetic and real-life multicomponent signals, it has been shown that the B-

distribution achieves a better time-frequency resolution and energy concentration 

around the instantaneous frequency of a signal, while still significantly suppressing 

the cross-terms, than other commonly-chosen distributions for multicomponent 

signals analysis. They have reviewed the fundamental concepts of the cross-terms 

elimination using the ambiguity domain filtering, based on the B-distribution kernel. 

The kernel has been defined in both the time-lag and the Doppler-lag domain and 

they have proved that B-Distribution has satisfied most of the desirable properties 

sought for a time-frequency distribution. 

Boashash and Sucic (2000) have presented two novel results which are 

significant for the application of time-frequency signal analysis techniques to real life 

signals. First, they introduced a measure for comparing the resolution performance 

of TFDs in separating closely spaced components in the time-frequency domain. 

The measure takes into account key attributes of TFDs such as main-lobes, side-

lobes, and cross-terms. The introduction of this measure is an improvement of some 

techniques that rely on visual inspection of plots. The performance comparison of 

quadratic TFDs using the proposed resolution measure shows that the B-distribution 

outperforms existing quadratic TFDs in resolving closely spaced components in the 

time-frequency domain. The second part consists in proposing a methodology for 

designing high resolution quadratic TFDs for the time-frequency analysis of 

multicomponent signals when components are close to each other. By removing 

limitations in the way desirable properties of quadratic TFDs were previously 

chosen, a new set of design criteria has been defined. The combination of these two 

results is an important break-through for the field of time-frequency signal analysis. 

They have concluded that the B-Distribution outperforms other existing distributions 

in terms of time-frequency resolution, as well as cross-terms suppression, when used 

to represent signals with closely-spaced components in the time-frequency domain. 
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2.4 Singular Value Decomposition 

Wall, Rechtsteiner and Rocha (2003) have described SVD methods for 

visualization of gene expression data, representation of the data using a smaller 

number of variables, and detection of patterns in noisy gene expression data. In 

addition, they also described the precise relation between SVD analysis and Principal 

Component Analysis (PCA). Their aimed is actually to provide definitions, 

interpretations, examples, and references that will serve as resources for 

understanding and extending the application of SVD and PCA to gene expression 

analysis. An important capability distinguishing SVD and related methods from 

other analysis methods is the ability to detect weak signals in the data. Even when 

the structure of the data does not allow separation of data points, causing clustering 

algorithms to fail, it may be possible to detect biologically meaningful patterns. 

SVD allows obtaining the true dimensionality of the data, which is the rank r of 

matrix X and a representation is using a reduced number of variables. This property 

of the SVD is commonly referred to as dimensionality reduction. 

2.5 Mel-Frequency Cepstrum Coefficient 

Garcia and Garcia (2003) have done the experiments to present the 

development of an automatic recognition system of infant cry, with the objective to 

classify two types of cry: normal and pathological cry from dear babies. In this 

study, they used acoustic characteristics obtained by the Mel-Frequency Cepstrum 

technique and a feed-forward neural network as a classifier that was trained with 

several learning methods, resulting better the Scaled Conjugate Gradient (SCG) 

algorithm. The SCG method avoids a time consuming line-search per learning 

iteration, which makes the algorithm faster than other second order Conjugate 

Gradient algorithms. This work has shown good results, with the MFCC technique, 

using neural network architecture. 
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Bahoura and Pelletier, (2004) have proposed a new tool based on the cepstral 

analysis as feature extractor and the Gaussian Mixture Model for the classification 

process. The Cepstral analysis is proposed with Gaussian Mixture Models (GMM) 

method to classify respiratory sounds in two categories: normal and wheezing. The 

sound signal is divided in overlapped segments, which are characterized by a reduced 

dimension feature vectors using Mel-Frequency Cepstral Coefficients (MFCC) or 

Subband based Cepstral parameters (SBC). The proposed schema is compared with 

other classifiers: Vector Quantization (VQ) and Multi-Layer Perceptron (MLP) 

neural networks. In order to improve the classification results, they also proposed the 

postprocessing technique. There are also some explanation about two feature 

extractors based on cepstral analysis (MFCC and SBC) are briefly presented in this 

work. The best result is obtained by the MFCCGMM combination and note that the 

postprocessing improves the classification result for all combinations. 

Imai (1983) has presented a new technique of cepstral analysis synthesis on 

the mel frequency scale. The log spectrum on the mel frequency scale (the mel log 

spectrum) is considered to be an effective representation of the spectral envelope of 

speech. This analysis synthesis system uses the mel log spectrum approximation 

(MLSA) filter which was devised for the cepstral synthesis on the mel frequency 

scale. The filter coefficients are easily obtained through a simple linear transform 

from the mel cepstrum that defined as the Fourier cosine coefficients of the mel log 

spectral envelope of speech. The MLSA filter has low coefficient sensitivity and 

good coefficient quantization characteristics. The spectral distortion caused by 

interpolation of the filter parameters of two successive frames is small. Accordingly, 

the data rate of this system is very low. The log spectrum on a mel frequency scale 

(the mel log spectrum) is considered to be a more effective representation of the 

spectral envelope of speech than that on the linear frequency scale. The mel 

cepstrum which is defined as the Fourier transform of a spectral envelope of the mel 

log spectrum has a comparatively low order, hence it is an efficient parameter. The 

Mel cepstrum also has the same good features as those of the conventional cepstrum. 

By using the MLSA filter, a low bit rate mel cepstral analysis synthesis system was 

obtained. In this system, the spectral envelope information is transmitted by the filter 

parameter of the MLSA filter. The filter parameter is obtained by a simple linear 
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transform from the mel cepstrum which is defined as the Fourier cosine coefficients 

of the mel log spectral envelope. The filter parameter has almost the same good 

statistical properties as those of the mel cepstrum. Since the filter parameter 

sensitivity of the mel log spectrum is very small, the filter parameter can be roughly 

quantized. The system has fairly small spectral distortions. 

2.6 Neural Network 

Upadhyaya and Yan (1993) have explained about artificial neural networks 

that are developed to simulate the most elementary functions of neurons in the 

human brain, based on the present understanding of biological nervous systems. 

These network models attempt to achieve good human-like performance such as: 

learning from experiments and generalization from previous samples. A processing 

element (PE) is analogous to a neuron in that it has many inputs from input signals or 

from other PEs and combines (sum up) the values of the inputs, adjusted by their 

weights. This sum is then subjected to a nonlinear transformation, often called a 

transfer function that controls the output in accordance with the prescribed nonlinear 

relationship. Back-propagation neural networks (BPN) were used to develop the 

neural network models for artifact classification and defect parameters estimation. 

There are several issues that need to be considered when utilizing the back-

propagation algorithm to train a neural network such as the selection of hidden layers 

and nodes, and the learning options. The selection of number of hidden layers and 

hidden nodes is one of the most important issues in back-propagation network 

applications. The selection of hidden nodes for a fully-connected, feedforward 

networks with one hidden layer is based on the two types of Rule-of-thumb.The 

important algorithms for backpropagation network training are actually the learning 

coefficient, momentum term that used to smooth the learning, the nonlinear transfer 

function, the learning rule that specifies how connection weights are changed during 
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the learning process and Gaussian noise and RMS threshold value that adds a random 

number within a special range to each node summation value in the layer. 
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CHAPTER 3 

TIME-FREQUENCY DISTRIBUTION TECHNIQUE 

3.1 Introduction 

Time-frequency representations are used to analyze or characterize signals 

whose energy distribution varies in time and frequency. They map the one-

dimensional time-domain signal into a two-dimensional function of time and 

frequency. A time-frequency representation describes the variation of spectral 

energy over time. 

Time-frequency analysis provides time-localized spectral information for a 

non-stationary signal as a distribution function in terms of time and frequency. Non-

stationary signal in this paper implies a signal which has time-varying frequency 

components, not a statistically stationary signal. Due to the uncertainty principle, 

which restricts the resolution in time and frequency, the time-frequency distribution 

functions have been developed for the purpose of analysis. The basic idea is to 

devise a joint function of time and frequency, a distribution, that will describe the 

energy density or intensity of a signal simultaneously in time and frequency. In 

addition, the method of relating a joint time-frequency distribution to a signal will be 

a powerful tool for the construction of signals with desirable properties. 
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3.1.1 Time-Frequency Transforms 

The Fourier Transform has become one of the most widely used signal-

analysis tools across many disciplines of science and engineering. The basic idea of 

the Fourier Transform is that any arbitrary signal (of time, for instance) can always 

be decomposed into a set of sinusoids of different frequencies. The Fourier 

transform is generated by the process of projecting the signal onto a set of basis 

functions, each of which is a sinusoid with a unique frequency. The resulting 

projection values form the Fourier transform (or the frequency spectrum) of the 

original signal. Its value at a particular frequency is a measure of the similarity of 

the signal to the sinusoidal basis at that frequency. Therefore, the frequency 

attributes of the signal can be revealed via the Fourier transform. In many 

engineering applications, this has proven to be extremely useful in the 

characterization, interpretation, and identification of signals. 

While the Fourier transform is a very useful concept for stationary signals, 

many signals encountered in real-world situations have frequency contents that 

change over time. In this case, it is not always best to use simple sinusoids as basis 

functions and characterize a signal by its frequency spectrum. Joint time-frequency 

transforms were developed for the purpose of characterizing the time-varying 

frequency content of a signal. The best-known time-frequency representation of a 

time signal is known as the Short-Time Fourier Transforms (STFT). It is basically a 

moving window Fourier transforms. By examining the frequency content of the 

signal as the time window is moved, a two-dimensional time-frequency distribution 

called the spectrogram is generated. The spectrogram contains information on the 

frequency content of the signal at different time instances. One well-known 

drawback of the STFT is the resolution limit imposed by the window function. A 

shorter time window results in better time resolution, but leads to worse frequency 

resolution, and vice versa. To overcome the resolution limit of the STFT, a wealth of 

alternative time-frequency representations have been proposed. 
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There are various time-frequency transforms developed by researchers in the 

signal processing community. They are broadly divided into two classes: linear 

time-frequency transforms and quadratic (or bilinear) transforms. In this project, the 

discussion is only concentrated on the quadratic time-frequency transform, that is B-

Distribution. 

3.2 General Signal Representations 

Heart sounds are actually generated by mechanical vibration of heart and 

cardiovascular system. Commonly, vibration signals are represented in either the 

time domain or the frequency domain. In general, the time domain representation of 

a signal, 

L^ln'lfMdr 

s(t) = a(t)eM'> = a{t)e^ 0 > (3.1) 

allows a simple characterization of a signal in terms of its (instantaneous) energy, 

E,{f) = a{tf =\s(t)\2=s(t)s*(t) (3.2) 

and instantaneous frequency, 

f . = ± M a (3.3) 
3l In dt 

that is, at time t the signal has an energy density of Eft) at a frequency o f f (t). For 

multicomponent signals (i.e., signals which have more than one frequency at a given 

instance of time) the 'instantaneous frequency' is the average frequency of the signal 

at that time. The frequency domain representation of a signal, 
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S { f ) = A { f ) e ^ f ) = \ s { t y ^ d t (3.4) 

gives a perfect representation of a signal which consist of multiple harmonic 

oscillators (i.e., with no amplitude or frequency modulation). However, it is not an 

adequate representation of non-stationary signals (i.e., signals whose content change 

with time). 

A multicomponent non-stationary signal can be described as the 

superposition of a number of monocomponent non-stationary signals, giving 

(3.5) 

In order to decompose (and understand) a signal of the form given, a joint time-

frequency domain representation of the signal is required. 

3.3 General Form of Time-Frequency Distributions 

In 1966, Cohen developed a generalized form of 'phase-space' distributions 

from which all other time-frequency energy distributions could be derived. The 

general form, which has since become known as Cohen's class of distributions is 

p{t,f) = \\\g{v,T)z 
f X J T 
u + - z* u — 

K 2) 1 < 2) 
jM™-Vt-fT)dvdudr (3.6) 

where g(v, x) is referred to as the kernel function that is used to define the properties 

of the distribution and z(t) is the analytic signal associated with the real one. For 

example, by setting the kernel g(v, x) = 1, equation (3.6) becomes 
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- J 

f X^ 
u — 

v 2 , 

e J M ™ - « ~ f r ) d v d u d T 

z\ t + -
2 , 

t--
\ 

'n*Tdx (3.7) 

which is the Wigner-Ville distribution and setting g(v, x) = |x|pcosh"2p(r) will give the 

B-Distribution as shown below: 

+ ~ \Z * \ U —— W^-^dvdudT 

N t ^ 
U 

v 2 , 
ejl^dudr (3.8) 

Rz (t,x) is used to be the instantaneous autocorrelation function of z(t) and it is defined 

as: 

Rz{t,r) = ' T^ 
t + -

v 2 , 
z* t — (3.9) 

The symmetrical ("Sussman's") ambiguity function (AF), on the other hand, is 

defined as the Fourier transform of Rz (t,x) with respect to time t: 

Az{v,x) = \z\t + T-^ t - L l - j ^ d t (3.10) 

3.3.1 Properties of the Cohen Class of Distributions 

The number of distributions which can be generated from equation (3.6) is 

infinite. Cohen proposed a number of restrictions on the properties of the 
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distributions to be studied and showed that certain constraints could be placed on the 

kernel function, g(v,x) in equation (3.6) to ensure that a distribution meets the 

restrictions. The constraints on the kernel function required to give certain desirable 

properties have been studied and the range of desirable properties and the kernels 

required to meet then is being continuously expended. An extensive range of 

properties is given by [5] and [7]. Some of these are: 

a) The signal energy is preserved 

The signal energy is preserved if g(0,0)=1 

b) The marginal condition in time 

for integration over frequency=energy density in time, g(v,0)=l 

c) The marginal condition in frequency 

for integration over time=energy density in frequency, g(0, x)=\ 

d) Real valued distributions 

the distribution will be real valued if g(v,x)=g* (v,x) 

e) Invariance to time and frequency shifts 

if two signals are identical except for a shift in time or frequency then the 

distributions of the signals should also be identical except for a similar shift 

in time or frequency. Cohen [7] showed this is true as long as the kernel 

function is independent of time and frequency. 

f ) The first moment of the distribution equal the instantaneous frequency and 

group delay 

Boashash [5] showed that the first moment of a distribution in frequency is 

equal to the instantaneous frequency and the first moment in time equals the 

group-delay, 

r ( / ) = _ _ L ^ M (3.11) 
g U ) In df 
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\ f p ( t j ) d f ( f tp(t,f)dt 
(3.12) 

if 

3 g M , _ 1 
ar " = o - ^ r " l v = 0 = 0 ' ( 3 J 3 ) 

g(v, 0) = constant for all v and g(0, x) = constant for all x 

g) Recovery of signal 

Cohen [7] showed that a signal could be recovered up to a constant phase 

factor if kernel function g(v, x) is well defined at every point or has isolated 

zeros but not regions where it is zero. 

h) Finite time support 

a distribution has finite time support if it is zero before the signal starts and 

zero after the signal ends. For a signal to have finite time support the kernel 

must met the condition: 

J'g{v,r)Tj2nvtdv = 0 for |x|<2|t| (3.14) 

3.3.2 Reduced Interference Distributions 

Some of time-frequency distributions posses a number of mathematically 

satisfying properties such as the Wigner-Ville distribution, however, it actually 

produces large cross-terms when applied to multicomponent signals. This can make 

interpretation difficult. Therefore, other type of distribution is used to overcome this 
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