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ABSTRACT 

The Darrieus H-rotor has gained much interest in the last few decades as among the 

reliable devices for wind energy conversion techniques, for their relatively simple 

structure and aerodynamic performance. In the present work, development and 

aerodynamic performance predictions of a unique contra-rotating VAWT have been 

studied through experimental and computational approaches as it has yet to be applied 

to a VAWT. The main purpose of this study is to develop and investigate the 

practicality of employing the contra-rotating concept to a VAWT system while 

enhancing its conversion efficiency. The simulation study was performed using three-

dimensional computational fluid dynamics (CFD) models based on K-omega shear 

stress transport (SST) model. The computational work covers a wider range of 

simulation processes compared to the experiment which includes a parametric study 

based on the axial distance between the two rotors and blade height. The performance 

evaluations of the current models were established in terms of key aerodynamic 

parameters such as torque and power. The systematic analysis of these quantities 

showed the usefulness of the contra-rotating technique on a VAWT system and the 

ability to extract additional more than threefold power over the entire operating wind 

speeds covered. The system has also improved the inherent difficulties of the Darrieus 

rotor to self-start. The results also demonstrated a significant increase in terms of 

conversion efficiency for both power and torque compared to a single-rotor system of 

a similar type. A maximum of 43% and 46% of power and torque coefficients were 

respectively possible with the current dual-rotor system. The simulation results 

indicate that smaller axial distance tends to enhance the performance output of the 

system relatively better compared to a larger distance. However, in terms of the blade 

height, longer blades generated the highest amount of power. It is anticipated that this 

current technique could revolutionize wind energy harvesting strategies and would 

find applications in a wide range of sites that are characterized by low and moderate 

wind regimes and particularly be useful in the urban environment where turbulence is 

high. 
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ABSTRAK 

Darrieus H-rotor telah mendapat banyak minat dalam beberapa dekad yang lalu 

sebagai antara alat yang boleh dipercayai untuk teknik penukaran tenaga angin, kerana 

strukturnya yang sederhana dan prestasi aerodinamik. Kajian yang dijalankan ini 

melibatkan proses kerja ramalan perkembangan dan aerodinamik turbin angin paksi 

menegak kontra-berputar unik (VAWT) yang telah dikaji secara eksperimen dan 

kaedah komputasi. Tujuan utama kajian ini adalah untuk membangun dan menyiasat 

keberkesanan penggunaan konsep kontra-berputar kepada sistem VAWT sambil 

meningkatkan kecekapan penukarannya, kerana sehingga kini ia masih belum 

diaplikasikan untuk digunakan pada VAWT. Kajian secara komputasi dilakukan 

dengan menggunakan model dinamik bendalir tiga dimensi (CFD) berdasarkan 

Persamaan K-omega shear stress transport (SST). Kerja komputasi merangkumi 

pelbagai proses simulasi yang lebih meluas berbanding eksperimen yang merangkumi 

kajian parametrik berdasarkan jarak paksi antara kedua-dua rotor serta ketinggian 

bilah. Penilaian prestasi bagi model kajian ini diperkukuhkan dari segi prestasi 

aerodinamik utama dalam parameter seperti tork dan kuasa. Analisis secara sistematik 

melalui pendekatan eksperimen dan komputasi telah menunjukkan keberkesanan 

teknik kontra-berputar pada sistem VAWT dan keupayaanya untuk mengekstrak 

tambahan lebih daripada tiga kali ganda kuasa seluruh kelajuan angin yang beroperasi. 

Sistem ini juga telah berupaya mengurangkan kesulitan yang dihadapi oleh pemutar 

Darrieus untuk mula berputar sendiri. Hasilnya juga menunjukkan peningkatan ketara 

dari segi kecekapan penukaran untuk kedua-dua kuasa dan tork berbanding dengan 

sistem satu-pemutar dari jenis yang sama. Maksimum 43% dan 46% pekali kuasa dan 

tork masing-masing mungkin dengan sistem dwi-rotor semasa. Keputusan simulasi 

komputer menunjukkan bahawa jarak paksi yang lebih kecil cenderung untuk 

meningkatkan output prestasi sistem yang lebih baik berbanding dengan jarak yang 

lebih besar. Walau bagaimanapun, jika dibandingkan dari segi ketinggian bilah, 

didapati bahawa bilah yang lebih panjang menjana kuasa yang lebih tinggi. 

Diharapkan teknik ini akan merevolusikan strategi penuaian tenaga angin dan akan 
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dapat diaplikasikan dalam pelbagai kawasan yang mempunyai tiupan angin perlahan 

dan sederhana, dan khususnya berguna di persekitaran bandar di mana terdapat 

intensiti pergolakan tinggi angin. 
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CHAPTER 1 

INTRODUCTION 

1.1     Research Background  

The generation of electricity has commonly been accomplished through the 

combustion of fossil fuels. However, fossil fuels power plants to some extent pollute 

the environment by producing contaminating emissions and the supplies of these 

energies have been predicted to finish in a few decades of time.  Thus, the use of fossil 

fuels has to be limited and the use of renewable energies should be encouraged.  

Renewable energies such as the wind, solar, wave and thermal are abundant and will 

always be there as long as the world exists.  The usage of these energies does not 

contribute significantly to the pollution problems or to the extinction of the Earth 

natural resources. As such, their implementation is highly favorable for the purpose of 

saving the world while serving human beings. 

 Wind power, in particular, has been proven to be a promising sustainable 

alternative energy future, due to its free availability and clean character. Hence, it has 

drawn more attention recently in response to numerous environmental and social 

challenges (Sutherland, Berg, Ashwill, 2012). Many studies including Delucchi & 

Jacobson (2011) suggest that in order to address the current significant problems such 

as climate change, greenhouse gas (GHG) emission and energy insecurity, there needs 

to be a major change to energy infrastructure, i.e. from fossil fuel based to renewables. 

Consequently, the recent years witnessed a rapid development of wind power all over 

the world. A total of 456 GW wind power capacity was achieved across the globe by 

mid of 2016 and expected to reach 666.1 GW by the end of 2019 (Tummala et al., 

2016; WWEA, 2016). Furthermore, a recent projection made by International Energy 

PTTA
PERPUS

TAKAAN
 TUNKU

 TUN A
MINAH



2 

 

Agency (IEA) also reported that renewable energy sources surpassed the coal sources 

in 2015 and became the largest source of electricity capacity in the world (IEA, 2016). 

  The fast growing population in developing countries and their lack of access 

to electricity supply particularly in rural or remote areas cause some of these nations 

face the challenge to generate more energy sources and to establish a new form of 

energy supply structure in an effort to meet current and future increasing electricity 

demands. Permanent electricity supply is considered as one of the major factors 

responsible for sustainable economic and social development of a nation (Mohammed, 

Mustafa, and Bashir,  2013). Thus, currently, a great deal of extensive research on 

wind energy is taking place almost all over the world for the exceptional benefits that 

wind energy could offer. 

Currently, there are two main typical trends stand out towards wind energy 

generation mechanism. The first one is being established predominantly in developed 

countries where a trend towards offshore wind energy harvesting is taking place. In a 

response to the emerging needs towards the replacement of the conventional power 

plants to 100% renewable energy based sources in the coming few decades. While the 

other is largely found in developing countries where wind energy is yet to be fully 

regarded as a source of reliable energy. In the latter case, the trend is pertaining to a 

low-speed wind turbine (LSWT) due to the lower strength of the wind in most of those 

regions. Particularly in the equatorial countries, unlike the solar energy, the strength 

of the wind decreases near the equator. 

Another reason behind adopting LSWT is owed to the fact that the current 

existing European wind turbine is not feasible in all regions across the globe, typically 

the equatorial zones such as Malaysia, Chad, etc. for its high designed cut-in speed of 

more than 5 m/s, in order to be adequate commercially (Wahab et al., 2008) . The 

equatorial regions are characterized with an annual average wind speed of less than 5 

m/s. Nevertheless, wind energy could successfully be harnessed in almost every corner 

of the world if a proper siting and an appropriate wind turbine design for such locality 

are made (Wahab, Ramli and Tong,  1997; Wahab, Ramli and Tong, 2008).  

Although there exist numerous techniques to harvest wind energy, the current 

study seeks to adopt the counter rotating technology (Figure 1.1) which requires two 

sets of rotors that are eventually rotating in opposite direction to each other while 

harvesting the kinetic energy from the air. One of the advantages of this system is more 
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energy could be generated compared to a single-rotor wind turbine (SRWT) (Appa 

2002; Shen et al., 2007; Habash et al., 2011).  

 

Figure 1.1: Typical counter-rotating HAWT 

Prior to fabricating the prototype of the current counter rotating wind turbine, 

a computational model is designed first using a CAD modeler (SOLIDWORKS), and 

then simulation process is undertaken using ANSYS FLUENT in an effort to verify 

the feasibility and reliability of the model and to decide the appropriate geometrical 

features of the proposed prototype. Next, the prototype is built and tested so as to verify 

and evaluate its effectiveness and output performance. The performance analysis of 

the counter rotating wind turbine (CRWT) from the two distinct study methods (lab 

experiment and numerical simulation) is established, which includes the output of the 

model in terms of aerodynamic coefficients such as power coefficient and torque 

coefficient. At the end, a comparison between the simulated results and that from the 

lab tests is performed for validation purposes.   
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1.2     Research problem statement  

Fossil fuel has been the source of energy and satisfying the need for electrical energy 

demand for centuries. However, the current increasing energy demand more than ever 

before and the problems associated with the fossil fuels such as finite amount, 

greenhouse gas (GHG) emissions, climate change, high cost, air pollution, land surface 

damage, etc. have triggered stakeholders to look for other sources of sustainable 

energy. Wind energy, in particular, is one of the fastest growing and widely used 

renewable sources today to produce electricity for its clean, freely available, 

renewable, highly efficient and economically viable characteristics. 

Today, wind energy conversion technologies development is growing rapidly 

all over the world so as to realize all the advantages that wind energy could serve. 

However, the existing successful European wind turbine is not feasible for some 

regions or countries. That is due to the operating speed this wind turbine is designed 

for. The annual average wind speed in many countries including the equatorial region 

is in the range of 3-6 m/s which is far less than the minimum wind speed the European 

wind turbine operates.  

Moreover, high oil price in some countries forces the majority of the population 

to rely upon wood for fuel particularly in rural areas, which is very polluting. This is 

partly because it is not economically viable for governments to provide electric supply 

grid in the rural areas where population distribution is scattered. As a result, an 

adequate wind turbine for such locations is needed in order to satisfy people’s demand 

for low-cost energy without polluting the environment. It is envisaged that by building 

a suitable wind turbine, wind energy could be used as a source of generating electricity 

in the region with relatively lower cost compared to the leading existing propeller-type 

horizontal axis wind turbine (HAWT).   

Furthermore, the conventional single-rotor turbine can extract only about one-

third of the available wind energy which is far behind the Betz limit (59.3%) and 

increase to 64% for dual-rotor system, according to the momentum theory by 

(Newman, 1983). These limits are independent of the design of the wind turbine and 

cannot be exceeded; provided that the rotor is non-shrouded (Schubel & Crossley, 

2012). The remaining huge amount of energy escapes without being harnessed. Thus 

the counter-rotating and contra-rotating are typically used to extract the amount of 

wind stream at the wake that escaped from a SRWT.  
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Over the years, some of the efforts or strategies embraced by researchers to 

enhance the performance of a SRWT were achieved by improving blade design, 

generator performance, increasing rotor size and/or tower size to access greater wind 

speeds at higher altitudes or by incorporating gearbox and lubrication in the system 

rather than looking for new innovative techniques to increase the efficiency of the wind 

turbine. Despite studies for such parameters are already well established and been put 

in place. Not to mention the associated high engineering cost involved, as the rotor 

alone constitutes almost 80% of the total cost of a wind turbine, let alone the visual, 

acoustic, radar and environmental impacts. 

Large rotors also create several problems such as blade surface stresses, 

vibratory loads, loading noise due to aerodynamical and gravitational loads and require 

wide space and strong wind to operate. Thus in the current study, a new concept is 

being adopted which is believed to increase the rotational speed by incorporating a 

contra-rotating system that does not implicate any of the aforementioned techniques 

while improving the performance of a wind energy converter. 

While the application of the counter rotating technique is widely spread on 

HAWT, to the best of author’s knowledge no known work has been found on vertical 

axis wind turbine (VAWT) thus far. This study is therefore set out to develop and 

evaluate the performance of a new design of a counter-rotating VAWT through wind 

tunnel testing and numerical simulations. Unlike the leading/existing counter rotating 

HAWT, the current design is an alternative type which is a VAWT.  

A Wind turbine with vertical-axis rotation is believed to operate in a lower 

wind speed range compared to the HAWT. It can also accommodate wind from any 

direction while coping with the turbulence. Moreover, the novelty and innovation of 

the current design revolve around the fact that the mechanism of operation in the 

present contra-rotating design is, it spins in the vertical axis and does not require two 

shafts or a contra-rotating generator to achieve opposite rotation of the two rotors, but 

one of the shafts is attached to the generator itself so that both; the generator and the 

rotor spin together in a counterclockwise direction, while the other (main) rotor is 

attached to the shaft in order to rotate in a clockwise direction.  

As the main rotor turns the shaft, the second rotor spins the generator so that 

the magnetic coil (stator winding) inside the generator receives more rotational speed 

relative to the shaft since both rotors rotate in two opposite directions. Maintaining 

opposite rotation of the two rotors is of paramount importance in order to avoid zero 
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output due to the fact that the torque produced from the two rotors may cancel out each 

other if they operated in the same direction. The proposed concept is somewhat similar 

to the contra-rotating helicopter; however, in this case, the torque is generated solely 

by the wind alone and not from the generator/motor as in the helicopter.  

1.3     Research objectives  

The aim of this study is to propose and develop an effective, easy to fabricate and low-

cost contra-rotating wind turbine with vertical axis for electricity generation. Thus, this 

thesis embarks on the following objectives while achieving the aim of this research: 

(i) To study the practicality of employing the contra-rotating technique on a 

VAWT in terms of power and torque outputs, 

(ii) To design and fabricate a VAWT with a contra-rotating concept, 

(iii) To characterize the variations of wind on the performance of a contra-rotating 

VAWT in term of aerodynamic coefficients and self-start characteristics, 

(iv) To determine the most appropriate axial distance between the two counter-

rotating rotors as a means of enhancing wind energy conversion efficiency of 

the proposed system. 

1.4     Scope of the research  

The scopes of this research are set forth as follows: 

(i) The counter rotating rotors’ model is a vertical-axis type,  

(ii) The airfoil profile is a symmetrical NACA four-digit i.e. NACA 0021 series 

airfoil, 

(iii) Semicircle tubes are used to enable the self-start characteristics of the airfoil, 

(iv) The diameter of the proposed prototype model is 80 cm for both counter-

rotating rotors,  

(v) The 3D geometrical models are developed using the CAD modeler; 

SOLIDWORKS, 

(vi) The computational simulations are performed using ANSYS FLUENT v16.1, 

(vii) The hybrid K-omega shear stress transport (SST) model is used as the 

turbulence viscosity model, 
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(viii) For validation:  the simulated and experimental results are compared.

1.5     Research significance 

This study significantly embarks in an effort to utilize wind energy for electricity 

generation through a novel design of a counter rotating wind turbine.  As the majority 

of the existing studies on wind turbines are focused more on either, improving the 

blade parameters such as the solidity, chord length, thickness etc. or on the generator 

performance, rather than looking for new innovative techniques to enhance the 

performance of the wind turbine. Thus, a novel wind turbine design especially meant 

for improving the performance efficiency of VAWTs is established which is expected 

to contribute to the enhancement of the traditional harvesting techniques. This 

particular CRWT would be the first of its kind to come up with two sets of blades; one 

rotates clockwise and the other in a counter-clockwise direction while maintaining the 

shaft to rotate in only one direction.  

Furthermore, this research also significantly contributes to the utilization of 

green technology energy resources. As wind turbines are believed to be in an excellent 

position to offer clean and efficient power generation which conventional heat engines 

find it difficult to compete. The proposed new technique also contributes to the 

provision of a new knowledge/approach of harvesting wind energy through the 

rotation of the generator itself alongside one of the rotors while maintaining the shaft 

to rotate in only one direction. The interesting part of the current concept is that the 

existing VAWT could also easily adapt this technique to enhance the conversion 

efficiency of their system since it does not require the provision of another generator. 

Thus, it is anticipated that this current approach would revolutionize the wind 

energy harvesting strategies and could find application in a wide range of wind turbine 

sites that are characterized by relatively low and moderate wind speed regimes and 

particularly be useful in the urban environment where turbulence intensity is high. 

Thus, the research entitled “Experimental and simulation study on the aerodynamic 

performance of a counter rotating vertical axis wind turbine” is crucial. 
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1.6     Research structure outline  

The proposed outline of this research is presented in this section. The overall structure 

of the thesis comprises six main chapters, including this introductory chapter. The 

detailed elements of this study have been documented in these six chapters as 

presented below: 

(i) Chapter 1: Introduction: This chapter while giving a background of the 

research equally establishes the research problem and coin the research problem, 

aim and objectives. Furthermore, the scopes as well as the significance of the 

research are also contextualized in this chapter. 

 

(ii) Chapter 2: Literature Review: This chapter provides a brief look on the 

previous studies pertaining to the classification of wind turbine technology in 

general while focusing more on the standing studies in VAWT. Subsequently, 

the chapter discusses the counter rotating concept and common airfoil designs 

and their selection criteria on VAWT applications and other topical issues such 

power curve. Each of these issues is discussed in detail before contextualizing it 

to suit this particular research. The chapter closes with an important method of 

wind turbine performance analysis which is the computational fluid dynamic 

(CFD) approach. Furthermore, justifications for any contextualization made are 

also established in the comprehensive summary provided in the final part of the 

chapter. 

 

(iii) Chapter 3: Research Methodology: This chapter is set out to design the overall 

methodological process required for this research in the experimental approach. 

It basically presents the methods, approach, and strategy and/or research 

procedure, theory and calculation method. It then goes on to provide the 

appropriate experimental apparatus used while building the counter rotating 

prototype and the suitable equipment needed to evaluate its performance. 

 

(iv) Chapter 4: Computational Simulation: Chapter 4 brings together the second 

approach adopted throughout the methodology of this work since there are two 

types of research methods undertaken in this research which are the experimental 
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