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September 2006 

Chairman: Associate Professor Adznan Jantan, PhD 

Faculty: Engineering 

Automated surveillance system has been the subject of much research recently. A 

completely automated system means a computer will perforin the entire task from low 

level detection to higher level motion analysis. Since conventional system practically 

using human power to monitor and did not applicable for a long hour monitoring, thus 

automated system had been created to replace the conventional system. This thesis 

focuses on a method to detect and classify a moving object that pass through the 

surveillance area boundary. Moving object is detected by using combination of two 

frame differencing and adaptive image averaging with selectivity. Technically, this 

method estimate the motion area before updates the background by taking a weighted 

average of non-motion area of the current background altogether with non-motion area 

of the current frame of the video sequence. This step had created a focus of attention for 

higher level processing and it helps to decrease computation time considerably. The 

output of a motion-based detector is essentially a collection of foreground that might 

correspond to the moving objects. But usually the output image produced from this 
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process contaminated with noise and shadow. As a solution, morphological operation 

has been employed as an approach to remove noise from the foreground object. Mutual 

shadow that exists with the object had been abolished by combining chromatic colour 

values with lightness variable. Then, standardized moment invariant is employed to 

extract the features for each moving blobs. To recognize these blobs, the calculated 

moment values are fed to a support vector machine module that is equipped with trained 

extracted moment values for human and vehicle silhouettes. The system operates on 

colour video imagery from a stationary camera. It can handle object detection in outdoor 

environments and under changing illumination conditions. The applied post processing 

module capable to remove noise and shadow from the detected objects with less than 1% 

of error. Finally, classification algorithm that makes use of the extracted moment values 

from the detected objects successfully categorize objects into pre-defined classes of 

human and vehicle with 89.08% of accuracy. All the methods have been tested on video 

data and the experimental results have demonstrated a fast and robust system 
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Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia sebagai 
memenuhi keperluan untuk ijazah Master Sains 

PENGESANAN DAN KLASIFIKASI OBJEK-OBJEK BERGERAK UNTUK 
SISTEM PENGAWASAN AUTOMATIK 

Oleh 

MOHD RAZALI BIN MD TOMARI 

September 2006 

Pengerusi: Profesor Madya Adznan Bin Jantan, PhD 

Fakulti: Kejuruteraan 

Sistem pengawasan automatik telah menjadi antara bidang penyelidikan yang utama 

ketika ini. Sistem pengawasan automatik menyeluruh bermakna komputer melakukan 

semua kerja daripada peringkat terendah pengesanan hingga ke peringkat tinggi analisa 

pergerakan. Oleh kerana sistem sedia ada menggunakan manusia , ia tidak sesuai dan 

berkualiti untuk pegawasan dalam tempoh waktu yang lama, maka sistem automatik ini 

merupakan alternatif terbaik menggantikan sistem konvensional tersebut. Tesis ini 

memfokuskan kaedah untuk mengesan dan mengklasifikasi objek bergerak yang 

merentasi kawasan pengawasan. Objek bergerak dikesan menggunakan kombinasi 

teknik pembezaan dua kerangka dan teknik purata imej suai dengan pemilihan, dimana 

secara teknikalnya, kaedah ini menganggar kawasan pergerakan sebelum mengemaskini 

latarbelakang dengan mengambil kira purata piksel pemberat diluar kawasan pergerakan 

daripada latarbelakang dan kerangka terkini daripada susunan video. Langkah ini 

memfokuskan kepada kawasan yang lebih khusus dan keci! untuk proses yang lebih 

tinggi .dengan itu secara tidak langsung mengurangkan masa untuk pengiraan. Hasil 
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daripada pengesan pergerakan ini ialah koleksi penting latar depan yang merupakan 

objek bergerak. Namun biasanya hasil imej daripada proses ini dicemari dengan hingar 

dan bayang-bayang. Sebagai langkah penyelesaiannya, operasi morfologi dipilih sebagai 

eara untuk membersibkan hingar daripada objek latar depan. Bayang-bayang yang 

terdapat pada objek pula dihapuskan dengan kombinasi nilai warna kromatik dan 

pembolehubah cahaya. Selepas itu piawaian momen tak varian digunakan untuk 

mengekstrak ciri daripada objek bergerak. Untuk mengecam objek ini, nilai momen 

yang telah dikira dihantar ke modul mesin penyokong vektor yang sebelum itu 

dilengkapkan dengan pemahaman tentang ekstrak nilai momen daripada bebayang 

bentuk manusia dan kenderaan. Sistem ini beroperasi menggunakan video warna 

daripada kamera yang dalam keadaan pegun. la boleh mengesan objek di persekitaran 

luar dan dalam keadaan perubahan keamataan cahaya. Modul pemprosesan pasca 

mampu menghapuskan hingar dan bayang-bayang daripada objek yang dikesan dengan 

ralat kurang daripada 1%. Akhir sekali, algoritma pengelasan menggunakan nilai 

momen yang telah diekstrak daripada objek yang dikesan berjaya mengkategorikan 

objek samada manusia atau kenderaan dengan ketepatan 89.08%. Semua kaedah ini 

telah diuji pada data video dan keputusan eksperimen membuktikan bahawa sistem ini 

pantas dan tegap. 
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CHAPTER I 

INTRODUCTION 

In recent years, with huge evolution and advancement in computer world, intelligent 

vision has become an active area of research , with the goal of developing visual sensing 

as well as processing algorithms and hardware that can distinguish and understand the 

world around them. Among those, visual surveillance system receives a great deal of 

interest. Video surveillance has been applied widely to ensure better precautions in 

security-sensitive areas, like factory, airports, schools or government offices. 

Traditionally, the most important task of monitoring precautions is primarily based on 

human visual observation, which is a hard work for watchmen. During a long hour of 

monitoring, human concentration will slightly decrease and simultaneously affect the 

efficiency of the monitoring system. In addition, area enclosed under surveillance may 

be too large to be monitored by a few operators whereas number of cameras might 

exceed their monitoring capability. 

These problems urge the usage of automation in surveillance system where computer 

performs the task that human operator normally would. Vast amount of data acquired 

from video imagery will be analyzed by an intelligent and useful autonomous structure. 

Also, this intelligent system will have the capacity to observe the surrounding 

environment and extract useful information for subsequent reasoning, such as detecting 
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and analyzing the activity (motion), or identifying objects that enter the scene. Even 

though this system cannot completely replace the human's presence, it will provide a 

great help for the watchmen to monitor large surveillance area with minimum human 

power supervision. 

The formation of intelligence surveillance systems requires fast, reliable and robust 

algorithms for moving object detection, classification, and activity analysis. Moving 

object detection is the first step towards activity analysis. Commonly used techniques for 

this purpose are background subtraction, temporal differencing and optical flow [1], This 

step not only creates a focus of attention for higher level processing but also decreases 

computation time considerably. The output of a motion-based detector is an essential 

collection of foreground that might correspond to the moving objects. However, 

classification of these regions into different categories of objects is still a huge 

challenge. 

Object classification step categorizes detected objects into predefined classes such as 

human, vehicle, animal, etc. It is necessary to distinguish objects from each other in 

order to analyze their reliable actions. Currently, there are two major approaches 

towards moving object classification, which are shape-based and motion-based methods 

[2], Shape-based methods make use o f t h e objects' two dimensional spatial information 

whereas motion-based methods use temporal tracked features of objects for the 

classification solution. 
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Both, the outputs detection and classification algorithms can be used for providing the 

human operator with high level data in order to yield accurate decisions within a short 

time besides offering an effective offline indexing practice and a proficient routine to 

search for stored video data. Advancement in the development of these algorithms 

would lead to breakthroughs on applications that use visual surveillance. Table 1.1 

showed some scenarios that these algorithms might handle [5] [7] [8] [9] [10] [13] [15] 

[19] [22] [25] [48]: 

Table 1.1: Automated visual surveillance system application. 

Application area Example of the application 

Public and commercial security i. Monitoring banks, department stores 

and parking lots. 

ii. Patrolling highways and railways for 

accident detection. 

iii. Access control 

Smart video data mining i. Measuring traffic (low and 

pedestrian congestion. 

ii. Counting vehicle that entering and 

leaving the scene. 

Law enforcement i. Measuring the speed of vehicles 

ii. Detecting red light crossings and 

unnecessary lane occupation 

350 1 
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1.1 O bj ectives of Resea rc Ii 

Automated surveillance system carries a large number of benefits especially for safety 

precaution. The objectives of this research are: 

i. To develop a motion detector module that can robustly detect and segment 

motions accurately from captured video sequences, in RGB colour mode and 

capable to cope with the changes in the scene. 

ii. To propose a method for eliminating noise and shadow, from the segmented 

blobs, and extract important features for classification determination. 

iii. To develop algorithm of an object classification system that employs the filtered 

blobs based on supervised learning with a small number of labelled examples, to 

distinguish between human and vehicle. 

The software is developed using C++ and Visual Basic. 
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1.2 Scope of Thesis 

This thesis deals with the problems of defining and developing the building blocks of 

moving object detection and classification system. The scope of this thesis is on method 

to detect and distinguish semantically-different classes of objects which have gross 

differences. The system can perform the classification task for multiple objects as long 

as the object is not occluded. Besides, it is limited to classify between human and 

vehicle class, for video inputs from static camera where the view frustum that may 

change arbitrarily are not supported. The corresponding performances of the proposed 

system blocks are validated by examine the extent of similarity between the outputs 

from the classified image with the ground truth. 

1.3 Thesis Outline 

This thesis is being divided into five consecutive chapters where each chapter reviews 

different issues regarding to the project objectives. Chapter 1 covers the introductory 

section of the project while Chapter 2 describes the literature review and theoretical 

background that related to automated surveillance system. The following Chapter 3 

provides the explanation on project methodology used throughout the operation of the 

project analysis, result, and discussion are explained individually in Chapter 4 and the 

last chapter, which is Chapter 5. considers the conclusion and future recommendations 

in extending the project into a better prospect. 
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CHAPTER 2 

LITERATURE REVIEW 

The framework described in this study includes four building blocks for an automated 

surveillance system, which can be listed as moving object detection, post processing, 

feature extraction and object classification. This chapter describes the theory, related 

work and studies in the literature on each of these building blocks and the complete 

system of automated surveillance system. 

2.1 Moving Object Detection 

Detecting changes in image sequences of the same scene, captured at different times, is 

of significant interest due to a large number of applications in several disciplines. Video 

surveillance is among the important applications, which requires reliable detection of 

changes in the scene. Detecting a region that correspond to the moving objects in video 

is the first basic step of almost every vision system since, it provides a focus of attention 

and simplifies the processing on subsequent analysis steps. Due to dynamic changes in 

natural scenes such as sudden illumination and weather changes, repetitive motions that 

cause clutter (tree leaves moving in blowing wind), motion detection is a difficult 

problem to process reliably. There are mainly three methods to detect moving objects 

which are optical flow, frame differencing and background subtraction [I]. 
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2.1.1 Optical Flow 

Optical flow is a velocity field in the image that transforms one image into the next 

image in a sequence [14]. It can be used to detect and track targets without only a prior 

knowledge about the background, this method can also be performed when the camera is 

moving. Optical flow is calculated based on the changes in the image intensity originate 

from local translation of the pixels. Many of the optical flow algorithms arc proposed in 

the recent years, among of them are Horn and Schunck [14], Lucas and Kanadc [15|. 

Anandan [16], "Nagel [17], Uras [18], Camus [19] and Proesmans [20]. Despite their 

differences, many of these techniques can be viewed conceptually in terms of three 

stages of processing [21]: 

1. Pre filtering or smoothing with low pass or band pass filters in order to extract 

signal structure of interest and to enhance the signal-to-noise ratio. 

2. The extraction of basic measurements, such as spatiolemporal derivatives (to 

measure normal components of velocity) or local correlation surfaces. 

3. The integration of these measurements to produce a two dimension (low Held, 

which often involves assumptions about the smoothness of the underlying How 

field. 

From the evaluation in [22], it concludes that Lucas and Kanade [15] method produced 

an accurate depth maps, simple assumption, and good noise tolerance. I lo\ \e\er . most of 

optical flow method are computationally complex and cannot be used in real-time 

without specialized hardware [3], 
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2.1.2 Frame Differencing 

Frame differencing method attempts to detect moving regions by making use of the 

pixel-by-pixel differences of two consecutive frames in a video sequence. The 

implementation of this method in [23], [4] found that it can detect a moving object in 

real time and highly adaptive to the dynamic scene changes. However, it generally fails 

in detecting whole relevant pixels of some types of moving objects and fails to detect 

stopped objects in the scene. The common equation for detecting foreground using two 

frame differencing method is shown below [23]: 

| l t ( x , y ) - l , _ , ( x , y ) | > x (2.1) 

where 

T is a threshold values. 

It(x, y) is pixel intensity at respected x and y coordinate 

Additional methods need to be adopted in order to detect stopped objects for the success 

of higher level processing. In order to overcome shortcomings of two frame differencing 

in some cases, three frame differencing [5] were used. This improvement can obtain a 

belter result than two frame differences, but the shortcomings of frame difference are 

keeping up because it cannot detect the stopped object and thus forces to turn up to the 

other detection method . 
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2.1.3 Background Subtraction 

Background subtraction is a commonly used technique for segmenting out objects of 

interest in scene applications such as surveillance. It attempts to detect moving regions 

by subtracting the current image pixel-by-pixel from a reference background image that 

is created by averaging images over t ime in an initialization period [1], The pixels where 

the difference is above a threshold are classified as foreground. The reference 

background is updated with new images over t ime to adapt to dynamic scene changes. 

The block diagram of background subtraction is shown in Figure 2.1 consists of three 

main components which are background modelling, foreground detection, and post 

processing [6]. Background modelling uses the new video frame to calculate and update 

a background model. This background model provides a statistical description of the 

entire background scene. Foreground detection then identifies pixels in the video frame 

that cannot be adequately explained by the background model, and outputs them as a 

binary candidate foreground mask. Finally, post processing examines the candidate 

mask, eliminates those pixels that do not correspond to actual moving objects, and 

outputs the final foreground mask. 
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Most background subtraction algorithms detect changes in the current frame by 

comparing it with a reference frame, where the reference frame may be the previous 

frame or the estimated background. The techniques for performing the comparison can 

be divided into three categories [7]: 

1. Feature Matching: These techniques attempt to match features, such as edges and 

corners, and detect differences in the location of the features. 

2. Difference and Threshold: This is probably the most widely used type of 

technique. The difference between the current and reference frames is 

determined, and for each pixel if the value exceeds a threshold the pixel is 

flagged as having changed. 

3. Statistical: In these techniques statistical properties over regions of the current 

and reference images are compared, and if the statistical property differ 

sufficiently then these regions are flagged as having changed. 

Figure 2.1: Block diagram of background subtraction algorithm 
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Background modelling is an important part of any background subtraction algorithm. 

Acquiring the background model is a complicated task. The most straightforward 

approach would be to simply set up the camera, empty the scene of any moving objects 

and take a snapshot. Although this approach is simple, it is always impractical in real 

scenes because background can change over time, it is difficult to empty a scene, 

lighting can change, and the camera position can drift. A good background model should 

adapt scene changes and need to be updated continuously. The updated is normally 

performed in a first in first out manner, means that the oldest sample is discarded, and a 

new sample is added to the model. There are two alternative mechanisms to update the 

background which listed below [24]: 

1. Selective update: Add the new sample image to the model only if it is classified 

as background sample. This method enhances detection of the targets, since 

target pixels are not added to the model. The simplest way to do this is to use the 

detection result as an update decision. The problem of this approach is that any 

incorrect detection decision will result an incorrect detection later which cause a 

deadlock situation [25]. For example, if one object is added to the background 

scene and slay for a long time, it will be continually detected as a foreground 

object. 

2. Blind update: Add the entire sample image to the model. This approach does not 

suffer from the deadlock situation since it does not involve any update decision 

and allows intensity values that do not belong to the background to be added to 

the model. This lead to bad detection o f t h e targets as they become part o f t h e 

model. This effect is reduced when the time window is increased, but more 

misclassified occurs because the adaptation to changes is slower. 
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Much research has been devoted to enhance the updated method of a background model 

to make it robust against environmental changes in the background, but sensitive enough 

to identify all moving objects of interest. The comprehensive comparison and method of 

background modelling techniques can be found in [1] [7] [8] [13]. The model can be 

classified into two broad categories which are non recursive and recursive techniques. 

Some of the methods will be described in the following subsections. 

2.1.3.1 Non Recursive Techniques 

A non recursive technique uses a sliding window approach for background estimation. It 

stores a buffer of the previous N video frames, and estimates the background image 

based on the temporal variation of each pixel within the buffer. Non recursive 

techniques are highly adaptive as they do not depend on the history beyond those frames 

stored in the buffer. On the other hand, the storage requirement can be significant if a 

large buffer is needed to cope with slow-moving traffic. Some of the commonly used 

non recursive techniques are described in the next paragraph. 
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Cuccliiara, et al. [9] used median filtering to model the background from incoming input 

frame. The background is estimate based on the median at each pixel location of all the 

frames in the buffer. The assumption is that the pixel stays in the background for more 

than half of the frames in the buffer. They conclude that median function has proven 

effectiveness while at the same time, less computational cost than the Gaussian or other 

complex statistics. For updating the background, the selective background update was 

used. In order to avoid a deadlock, an average optical flow (AOF) is calculated for each 

object to decide whether the object should be added or eliminated from the background 

model. In order to detect the moving object, colour distance measure was implemented, 

in practical this method finds the maximum value between input and background image 

for each of the three RGB channel. If the maximum value is greater than the threshold 

value the pixel will be marked as move. 

Toyama, et al. [27] described an algorithm called Wallflower that used a wiener filter to 

predict a pixel's current value from a linear combination of its N previous values in the 

buffer. Pixels whose prediction error is several times worse than the expected error are 

classified as moved pixel. The predictive coefficients are adaptively updated at each 

frame. The Wallflower algorithm also tries to correctly classify the interiors of 

homogeneously coloured moving object by determining the histogram of connected 

component of change pixels and adding pixels to the change mask based on distance and 

colour similarity. Wallflower attempts to solve many of the common problems with 

background maintenance such as handling stopping object, detect foreground object that 

have similarity with background and adapt to the changing in the environment. 
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Elgammal, et al. [24] use the entire of N history of image sample in buffer, to form a 

non-parametric estimate of the pixel probability density function using kernel estimator 

which was chosen to be Gaussian. For updating the background they used both selective 

and blind update. Selective update is used to update the short term model that adapt to 

quick changes in the scene, while the blind update is used to update a long term model 

that adapts to change slowly. The intersection between these two models that satisfy the 

threshold value is then used to update the background model. All current pixels then are 

declared as foreground if the probability value between current and background image is 

smaller than the predefined threshold. The advantage of estimating intensity directly 

from sample history values is the ability to handle multi-modal background distribution. 

Examples of multi-modal background include pixels from a swinging tree or near high-

contrast edges where they flicker under small camera movement. As a matter of fact, 

this theoretically well established method yields many accurate results under challenging 

outdoor conditions such as snow and fog [24], 

2.1.3.2 Recursive Techniques 

Recursive techniques do not maintain a buffer for background estimation. Instead, they 

recursively update.a single background model based on each input frame. As a result, 

input frames from distant past could have an effect on the current background model. 

Compared with non-recursive techniques, recursive techniques require less storage, but 

any error in the background model can affect the detection process for a much longer 

period of time. They are many research devoted to background modelling based on this 

technique. Some o f t h e representative method techniques are described in the following 

paragraph. 
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Stauffer and Grimson [28] described an adaptive background mixture model for real-

time tracking. In their work, every pixel is separately modelled by a mixture of 

Gaussians (MoG) which are updated online by incoming image data. The idea is to 

correctly classify dynamic background pixels, such as the swaying branches of a tree or 

the ripples of water on a lake. Every pixel value is compared against the existing set of 

models at that location to find match. The parameters for the matched model are updated 

based on a learning factor. If there is no match, the least-likely model is discarded and 

replaced by a new Gaussian with statistics initialized by the current pixel value. In order 

to detect the foreground and background of the new pixel, the Gaussian distributions are 

sorted according to a simple metric. The accumulated pixels define the background 

Gaussian distribution whereas scattered pixels are classified as foreground. 

Block based approaches have been also used for modelling the background. Block 

matching has been used to detect change between two consecutive frames. In [29], both 

reference and current frame are divided evenly into a number of non overlapping blocks. 

Then the average grey level of pixel in each block is computed. Moving object is 

detected then by threshold the difference curve of the block average grey level of the 

two images. In [10], the method divides each new video frame into equally sized block 

by using partially overlapping grid structure. Each block then was modelled by a group 

of weighted local binary pattern (LBP) histogram. Subsequently, at each new frame, 

each block histogram is compared against background model histogram using histogram 

intersection distance measure. Any intersection values that exceed the given threshold 

values are considered to be foreground. The major drawback with block-based 

15 1 

PTTA
PERPUS

TAKAAN
 TUNKU

 TUN A
MINAH



approaches is that the detection unit is a whole image block and therefore they are only 

suitable for coarse detection. 

Edge features have also been used to model the background. The use of edge features to 

model the background is motivated by the desire to have a representation of the scene 

background that is invariant to illumination changes. In [30], foreground edges are 

detected by comparing the edges in each new frame with an edge map of the background 

which is called the background "primal sketch:'' The major drawback of using edge 

features to model the background is that it would only be possible to detect edges of 

foreground objects instead of the dense connected regions that result from pixel-

intensity-based approaches. 

Oliver, et al. [31] has proposed an eigenspace model for moving object segmentation. In 

this method, dimensionality of the space constructed from sample images is reduced by 

using Principal Component Analysis (PCA). The principal component images 

corresponding to large eigenvalues are assumed to reflect the unchanged part of the 

images (background) and those corresponding to small eigenvalues correspond to a 

moving part (foreground). From various experiment, they claims that this method 

produced same accuracy with a MoG approach, but the computational run time is much 

faster. 
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Shading Model Method (SMM) [11] models the intensity at any pixel as the product of 

the illumination and a shading coefficient. In order to detect structural changes in a 

scene, the ratio of the mask pixel intensities between current frame and background 

frame were calculated, produced a variance values. If this value is larger than the 

predefined threshold, the pixel is marked as a moving object. The window mask choose 

to be a 3x3 pixels, since larger window will cause larger processing time because it 

involve a division operation in each window pixels. For updating the background, 

selective background updating with averaging (SBA) is implemented. Their method 

robustly handling large and fast changes of scene illumination, but computational time 

cost for calculating mask window pixel variance at each frame is an advantage. 

Extended image averaging is presented in [32] and works on greyscale video imagery 

from a static camera. The subtraction method initializes a reference background with the 

new frames of the video input. Then it subtracts the intensity value of each pixel in the 

current image from the corresponding value in the reference background image. Any 

difference intensity values that exceed the threshold values were marked as a foreground 

pixel. The reference background images are updated by using cross intersection method 

between two filters. The first filter image is updated for only background pixel while the 

second filter image is updated for the entire pixel. Both the pixels are updated by using 

an Infinite Impulse Response (I1R) filter. At any pixel .if the current image is within 

another threshold value of the second filtered image, then the background is replaced 

with the second filter image values, if not the background is update then by using first 

filler image values. 
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2.2 Post Processing 

The main purpose for applying the post processing module is to remove noise and 

unwanted foreground object from the segmented blobs. This process is crucial since 

noise can affect the ability of the system to identify and classify the blobs accurately. 

There are various factors that cause the noise in foreground detection such as: 

i. Camera noise: This type of noise is caused by the camera's image acquisition 

components. During acquisition, fluctuating or intensity level changing of a 

camera are major factors that affect the amount of noise in resulting image. 

ii. Background colour object noise: Certain parts of the objects may have similar 

colour as the reference background behind them. This resemblance causes some 

of the algorithms to detect the corresponding pixels as non foreground and 

caused the objects to be segmented inaccurately. 

iii. Shadows and sudden illumination change: Shadows appears due to reflection by 

sun rays or light. Normally, shadow will be detected as a foreground by most of 

the detection algorithms. However, this problem will makes the algorithms fail 

to detect actual foreground objects accurately. 

Post processing is defined as a process of improving the candidate foreground mask. 

Normally all the foreground mask produced by segmentation process contaminated with 

noise. These problems occur because some reason. Some of them are the system ignore 

any correlation between neighbouring pixels, the rate of adaptation may not match the 

moving speed o f t h e foreground objects and non-stationary pixels from moving leaves 

or shadow cast by moving objects are easily mistaken as true foreground objects. 
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The first problem typically results in small false-positive (wrong pixel in the foreground) 

or false-negative (wrong pixel in the background) regions distributed randomly across 

the candidate mask. The most common approach is to combine morphological filtering 

and connected component grouping to eliminate these regions [12] [33] [34], Applying 

morphological filtering (combination of erosion and dilation) on foreground masks 

eliminates isolated foreground pixels and merges nearby disconnected foreground 

regions. Many applications assume that all moving objects of interest must be larger 

than a certain size such as 30 pixels and above. Connected-component grouping can then 

be used to identify all connected foreground regions, and eliminates those that are loo 

small to correspond to real moving objects. 

When the background model is adapted at a slower rate than the foreground scene, large 

areas of false foreground commonly known as "ghosts" often occur [28], If the 

background model adapts too fast, it will fail to identify the portion of a foreground 

object that has corrupted the background model. A simple approach to alleviate these 

problems is to use multiple background models running at different adaptation rates, and 

periodically cross-validate between different models to improve performance [24]. 

Sophisticated vision techniques can also be used to validate foreground detection. 

Computing optical flow for candidate foreground regions can eliminate ghost objects as 

they have no motion [24], Colour segmentation can be used to grow foreground regions 

by assuming similar colour composition throughout the entire object [27J. 
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The moving-leaves problem can be addressed by using sophisticated background 

modelling techniques like MoG [28] and applying morphological filtering for cleanup. 

For suppressing a moving shadow is much more problematic, especially for luminance-

only video. Shadows cause the motion detection methods fail in segmenting only the 

moving objects and make the upper levels such as object classification to perform 

inaccurate. The proposed methods in the literature mostly use chromatic colour [24] [35] 

[36] or HSV colour [9] [37] information to cope with shadows and sudden light changes. 

In [35], each pixel is represented by a colour model that separates brightness from the 

chromaticity component. A given pixel is classified into four different categories 

(background, shaded background or shadow, highlighted background and moving 

foreground object) by calculating the distortion of brightness and chromaticity between 

the background and the current image pixels. The approach described by Mikic et al. in 

[36] uses brightness and normalized red and blue colour components information to 

cope with shadows. Each feature is analyzed by a posterior probability estimator that 

computes membership probabilities for the three classes (background, foreground, and 

shadow). The algorithm literates between the three estimators by using the output of one 

as the prior probability input to the next. The method presented in [24] adopts a shadow 

detection scheme which depends on two heuristics which are chromatic colour value and 

lightness variable for each pixels. Shadow is detected and marked if distance chromatic 

colour measure and ratio of lightness between current and reference is greater than 

threshold value. 
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An attempt to use HSV colour space for shadow detection is presented in [9] [37]. They 

claim that HSV colour space correspond closely to the human perception of colour and 

more accurate in distinguishing shadows than the RGB space. During implementation, 

the pixel is marked as a shadow if ratio of V, difference of S and absolute difference of 

H for current frame and background frame within the range of the define threshold 

values. However the choice of threshold parameters is less straightforward, and normally 

is done empirically with the assumption that the chrominance of shadowed and non-

shadowed points even if could vary, does not vary too much. 
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2.3 Feature Extraction 

It is very important to recognize the type of a detected object in order to track it reliably 

and analyze its activities correctly. Before object can be recognized, an important feature 

need to be extract from it, usually features are selected based on its' ability to distinguish 

or separate the object classes with a minimum overlapping between it. Currently, there 

are two major feature extraction approaches for moving object classification which are 

shape-based and motion-based methods [2], Shape-based methods make use of the 

objects ' two dimension spatial information whereas motion-based methods use 

temporally tracked features of objects for the classification solution. This thesis focuses 

on a method to recognize object based on its shape features because human and vehicle 

can easily discriminate based on it shape. Therefore, the remainder of the section will 

concentrate on this features which can be used in most applications. 

Shape is an important visual feature and it is one of the primitive features for image 

content description. In the recent years, shape research has been driven mainly by object 

recognition. As a result, techniques of shape representation and description mostly target 

at particular applications. Effectiveness or accuracy is the main concern of these 

techniques. The variety of shape representation techniques can be classified into contour 

based and region based method. Under these classes, the different methods are further 

distinguished between structural and global based on whether the shape is represented as 

a whole or represented by sub parts (primitives). 
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The whole hierarchy o f t h e feature extraction based on shape is shown in Figure 2.2. 

Figure 2.2: Hierarchy of shape based representation and description techniques. 

Region and contour shape techniques exploit shape region or boundary information. 

There are generally two types of very different approaches for the shape modelling: 

global approach and structural approach. Global approaches do not divide shape into sub 

parts. A feature vector derived from the boundary is used to describe the shape. The 

measure of shape similarity is either point-based matching or feature-based matching. 

Structural approaches break the shape boundary into segments, called primitives using a 

particular criterion. The final representation is usually a string or a graph, the similarity 

measure is done by string matching or graph matching. 
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However structural approaches have some drawbacks, because there is no formal 

definition for an object or shape, the number of primitives required for each shape is 

unknown [38], Therefore, the success of applying this method depends on the a priori 

knowledge of the shape boundary features during learning. So it is impractical to use it 

for general applications, because it is impossible to know in advance the types of objects 

primitives in a real time environment. Furthermore, structural approach fails to capture 

global shape features which are equally important for the shape representation. Because 

of structural representation do not represent topological structure of the object. 

Therefore it is not suitable to be implemented in the system. In this case, global features 

are more reliable. The following subsection will discuss some of the well known global 

contour and region based shape representation techniques. 

2.3.1 Global Contour Based Shape Representation Techniques. 

Global contour shape representation techniques usually compute a multi-dimensional 

numeric feature vector from shape boundary information. Matching between shapes is a 

straightforward process, which is usually conducted by using a metric distance, such as 

Euclidean distance or city block distance. Point or point feature based matching is also 

used in particular applications. 

Common simple global descriptors like dispersedness (perimeter/area), eccentricity 

(length of major axis/length of minor axis) and major axis orientation have been 

implemented in various of surveillance system [ 12][39][40).These simple global 

descriptors usually can only discriminate shapes with large dissimilarities. Therefore. 
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