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ABSTRACT 

 

The computational fluid dynamics represented by fluid dynamic science focuses on the way 

how to solve the flow problems numerically. The governing equation of fluid motion 

passing through an object flow can be presented in various forms depending on the 

assumption imposed to the flow problem in hand. Initially, in solving the flow problem 

passing through an object such as the flow passing through an aircraft, the flow is 

incompressible, irrotational, and inviscid flow. Resulting from the initial form of governing 

equation called the Navier-Stokes equations; the flow can be simplified  as the Laplace 

equation. When the incompressible condition cannot be maintained, the compressibility 

effects have to be taken into account   due to the increasing incoming velocity, while the 

inviscid and irrotational conditions are still maintained. The Navier-Stokes can be reduced to 

become a full potential equation. The Navier-Stokes equation becomes the Euler equations 

by ignoring the viscous effects. If the viscous effects are included, the presence of turbulent 

flow phenomena creates a small fluctuation to the flow variables resulting  in the Navier-

Stokes equation to reduce and become a Reynolds-averaged Navier-Stokes (RANS) 

equation. For instance, these various models of the governing equations had been formulated 

before the era of computer started.  

 The manner on how to solve the flow problem according to the level of governing 

equations is based on the achievement of computer technology. In 1960, the aerodynamic 

problems were solved when the computer capability was limited, which led to the change of 

the Laplace equation by the method known as the Panel Method. As the computer power 

became more available, the aerodynamic problems were solved through the full potential 

equation. Further improvement in computing power made the aircraft designers since 1980 

to use Euler equation  as the governing equation of motion for the flow problem in hand. 
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Continuous support gained from computer technology development has helped aircraft 

designers since 1990 by using the RANS equations in solving their flow problems. The 

success in the use of RANS equations depends on the manner in combining the numerical 

grid generation and scheme for discretizing the governing equation and turbulence model, 

which need to be provided in making the RANS equation solvable. In developing the RANS 

solver, the present research uses the unstructured grid for meshing the flow domain, 

combined with the Roe’s finite volume scheme for discretizing the RANS equation and 

Spalart-Allmaras for fulfilling the required turbulent modeling.  

  For the purpose of validation, the result of the developed computer code was 

compared with the experimental result available in the literature and result through running 

the Fluent software. The validation was carried out by using airfoil NACA 0012 and RAE 

2822. Both two airfoils have the experimental result in terms of distribution pressure 

coefficient along the airfoil surfaces at different angles of attacks and Mach numbers. The 

comparison result over these two airfoil models had found that the developed RANS solver 

was able to produce the results closed to the experimental result, as well as the Fluent 

software. 

 The developed computer code was applied to further evaluate the aerodynamic 

airfoil  characteristics NACA 4415 and Supercritical Airfoil 26a at various angles of attacks 

and Mach numbers. For the airfoil NACA 4415, the aerodynamic analysis were carried by 

treating the flow problem as inviscid flow problems while the other as viscous flow 

problems. In other words, the flow problems in hand were solved by the Euler and RANS 

solvers. As for the results of the pressure coefficient distribution along the airfoil surface, 

there was a significant difference between the result provided by the Euler and RANS 

solvers. While for the supercritical airfoil, the result of the developed computer code as 

RANS solver found the position of the shock wave strongly influenced by the angle of 

attacks as well as the Mach number.  

 Combining Roe’s finite volume scheme, the Spalart-Allmaras turbulent model, and 

unstructured grid made RANS solver developed successfully. In addition, developing the 

code for RANS solver simultaneously develops the Euler solver. When viscous term was set 

up to zero, the RANS solver became Euler solver. Hence, the present work developed both 

the RANS and Euler solver. 
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CHAPTER 1 
 

 

 

INTRODUCTION 

 

 

 

1.1 Background  of Study 

 

The publication of the equation of fluid dynamic flow with friction called for the 

“Navier-Stokes equation” in 1840s. This scenario, which can be considered as the 

governing equation of fluid motion to allow for describing all flow phenomena to appear 

in the real fluid flow, has opened up the door for scientists to go deeply in the field of 

fluid dynamics as well as in aerodynamic. The advent of high-speed computers in the 

last 30 years dramatically changed the nature of the application of the basic principles of 

theoretical fluid mechanics and heat transfer in solving engineering problems. Along 

with the development of conventional methods such as the analytical and experimental 

methods, the development of the third method called Computational Fluid Dynamics 

(CFD) has grown rapidly. This method has been used for solving various engineering 

designs ranging from the problems faced in the automotive design to the problems found 

in the aerospace flying vehicle design. The CFD capability has contributed significantly 

in reducing the design cost and shortening the required time for completing design 

process.  

Although the CFD capability has been improved significantly, CFD designer  must not 

leave the necessary experimental work in the design process. This is because the 

experiment will continuously play a very important role in the design process for design 

validation purposes.  
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As the governing equation of fluid motion in the form is a nonlinear partial differential 

equation, in which there is no analytical solution, the manner on how to solve the flow 

problem needs a numerical approach. There have been various numerical methods 

introduced for solving the governing equation of fluid motion. The growth in the 

popularity of numerical methods as a tool for solving the flow problem faced in the 

aircraft industries is due to having more available computing power. The speed and 

computer memory capacity have increased exponentially, especially due to the presence 

of super computer since 1964. In the earlier time, the first super computer named CDC 

6600 produced by Control Data Cooperation has speed at 3.0 106 FLOPS with CPU 

memory at 128 103 bytes. After 50 years of computer technology development, the 

current speed of supercomputer capability is around 93.0 1015 FLOPS and the computer 

memory is around 13.102 1013 Bytes. The specifications are provided by a 

supercomputer named the Sunway TaihuLight located at the National Supercomputing 

Wuxi, China (Fu. H and et al., 2016 ) (A. Petitet and et al., 2016) The first 

supercomputer had contributed significantly in the aircraft design activities, when the 

Boeing aircraft manufacturer designed the well-known aircrafts; Boeing 737 and 747 

(Marshall, and Jameson, 2010).  

The availability CDC 6600 allows the aerodynamic engineer of the aircraft 

company to evaluate the aerodynamic characteristics at their full aircraft configuration 

by using a panel method. This method is conducted by assuming that the Navier-Stokes 

equation can be simplified by ignoring the viscous effects and flow behaving as an 

irrotational flow. As the progress of computer technology develops better, the manner on 

how to solve the flow problem is changed. The attempt of aerodynamic to solve the flow 

problem is done by using the equation closer to Navier-Stokes. The flow problem is 

treated with no viscous effect, only with the possibility that the flow may behave as a 

compressible and rotational flow. These flow conditions can be used to reduce the 

Navier-Stokes equation to a new governing equation of fluid motion called the Euler 

equations. The solution of this equation allows  to capture the presence of shock wave 

and vortex flow phenomena, which can be found if  an aerodynamic designer solves the 

flow problem passing through a delta wing model. Various methods have been 

developed through various studies for solving the Euler equation such as the Flux 
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Splitting Method (Klaus A.Hofmann and Steve T.Chiang., 2000), Maccormack Scheme 

(Pletcher, R.H., and Tannehill., 2012), Beam–Warming Scheme (Beam, R.M., 

Warming, 1982) , and TVD scheme(Yee, 1985). The Euler equation has been used  as a 

model of the governing equation for solving the flow passing through aircraft 

configuration starting in the 1980s. Then, Boeing has started to apply RANS since 1990 

in solving the problem faced in their aircraft design activities (Johnson, and Tinoco., 

2005). 

 Basically, there are various problems in solving the flow problem numerically, 

whether the problem has to be solved through Euler equation or RANS equation. The 

first problem is in relation with the discretization of the flow or mesh flow domains. In 

the flow passing through a simple geometry, the mesh flow domain may be easily 

defined by a single block mesh. The associated numerical solution can be easily 

transformed into the computer code. However , when the flow problem related with a 

flow passing through a complex geometry such as flow past through multi component 

airfoils or multi surface such as flow passing through a complete full aircraft 

configuration or missile, the meshing of the flow domain becomes difficult and one must 

use a multi block mesh approach. As a result, the associated computer code in 

implementing the numerical approach whether using TVD scheme or MacCormack or 

others becomes more complicated. The complexity in the way to solve numerically is 

increased if the governing equation of fluid motion that must be solved is RANS. The 

complexity appears due to a finer grid requirement. For the same flow problem, using 

the finite volume method for solving the Euler equation through the Flow domains needs 

to be divided into N number elements, so that when  a designer solves through the 

RANS equation may needs at least 16 x N number of elements. Besides that, and has to 

provide a turbulence modeling in order to make the RANS Equation solvable.  

The present work focused on the development of computer code for solving the 

flow problems based on the RANS equation. This equation was solved by using Roe’s 

finite volume Scheme (J.Blazek, 2008) with Turbulence modeling according to the 

Spalart-Ammaras model (Spalart, P. R. and Allmaras, S. R., 1992). The meshing flow is 

defined according to the unstructured grid model which can be obtained by combining 

algebraic grid and elliptic grid generator. The developed computer code was applied to 
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the case of flow passing through airfoil NACA 0012 and RAE 2822 for various flow 

conditions, ranging from the low to high subsonic Mach numbers (Agard, 1992). These 

two airfoils were chosen since their aerodynamic characteristics in terms of pressure 

distribution resulted from the experiments was available. Therefore, through comparison 

results, the code validation was carried out. In addition to this, the comparisons were 

also conducted by comparing the result obtained through running the ANSYS-FLUENT 

software (Stolarski, 2011). The comparison between results provided by FLUENT as 

well the experiment result indicated that the present codes are in good agreement 

whether the flow problem under investigation is at the low or high subsonic flow 

condition. The application of the developed computer code over the flow passing 

through airfoil NACA 4415 confirmed that there was a significant difference between 

the viscous and inviscid solution as the Mach number and angle of attack of the flow 

under investigated were increasing. 

 

1.2 Problem Statement. 

 

Numerical methods for solving problems of aerodynamic are actively developed and 

widely used in various industries. The growth in the popularity of the numerical methods 

is largely due to modern supercomputers. It is true that the most accurate result as a 

complete result in providing all flow phenomena may appear in the flow field and solve 

the Navier-Stokes equation directly. This method is known as the Direct Numerical 

Simulation (DNS) (Jasak, H., 2009). Unfortunately, the availability of computing power 

and computer memory in the current computer technology is still insufficient to fulfill 

DNS requirement, especially in the case of the flow problem related to practical 

engineering applications. As a result, most efforts in solving the flow problems are still 

based on solving the governing equations of fluid motion such as RANS. However, no 

analytic solution for this type of equation is available and therefore a numerical 

approach is required. Unlike the flow problems which are solved through the Euler 

equation as its governing equation of fluid motion, this flow model made the 

corresponding solver (Euler Solver) in providing an accurate solution, which depends on 

the manner mesh of flow domain is defined and the numerical scheme in use. On the 
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other hand, the RANS solver depends on the mesh and numerical schemes, which also 

depend on the types of turbulent model in use. Hence, combining these three ingredients 

(mesh, numerical scheme, and turbulent model) may correctly lead to producing an 

accurate RANS solver. 

 

1.3 Research Objectives. 

 

The aim of the research work is to develop a CFD code for  two dimensional 

compressible flow, in order to achieve this aim, the following objectives have to be 

accomplished: 

1. To develop an unstructured C-Grid generation code for meshing flow domain over 

an airfoil. 

2. To develop computer code for 2D Euler solver based on Roe’s Cell Centered 

Finite Volume method. . 

3. To develop the extension of above 2D Euler solver as 2D  Reynold Averaged 

Navier Stokes equations with Spalart–Allmaras turbulent model. 

4. To validate the aerodynamic properties through developed CFD code with the 

available experimental results and results produced by Fluent software.  

 

1.4 Research Goals  

 

End of this research will produce an integrated computer code between numerical code 

designed for creating mesh systems and CFD solver dedicated for  solving  two 

dimensional aerodynamics problems as viscous or inviscid flow problem for any given 

flow condition from a low to high subsonic Mach number for different angle of attacks.   

 

1.5 Scope of Research Study. 

 

To achieve such objective as mentioned above, sequential research work need to be 

developing step by step started from: 
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1. Study on the implementation of the Finite Volume Method for a simple flow 

model ( Quasi One Dimensional Compressible Flow ). The result of this study 

applied to the case of flow  past through Nozzle presented in the appendix-A. 

2. Study on the manner how meshing flow domain past surrounding airfoil based 

on the C-topology developed. . 

3. Understanding the 2D Euler solver based on Roe’s cell center  finite volume 

method applied to the case of flow past through an airfoil. 

4. Understanding the way how to solve a 2D  Reynold Averaged Navier Stokes 

Solver with Spalart – Allmaras turbulence modeling.  

5. Finding the experimental result which the available data can be used for a 

validation purposes beside the use of  Fluent software.  

 

1.6 Contribution to knowledge 

 

The present work provides a new CFD code which allows  the  aerodynamic designers 

to carry out the aerodynamic analysis of the two-dimensional flow through airfoil with 

viscous effect as part of their flow solution. The code developed by using the second 

level of the governing fluid equations is named as RANS. Currently, most of the aircraft 

manufacturer industries use this type of equation to solve their flow problem in their 

aircraft design activities. For instance, another approach newly introduced called the 

DNS scheme gives a more complete and accurate solution. However, this approach can 

only be used in the aircraft design process when computer power is highly demanded. 

The present work combines  Roe’s finite volume scheme as a numerical scheme for 

solving the governing equation, Spalart-Allmaras as its turbulent model, and 

unstructured grid scheme for meshing flow domain to become an integrated solver for 

solving a turbulent flow past through any airfoil types. The developed solver can be used 

easier than the  CFD designers using the Fluent software, since users are only required to 

input the airfoil geometry and the free stream flow condition (Angle of Attack, Mach 

number, and Reynolds number) in a simple manner. The developed code will produce 

the result of pressure, density and Mach number distribution over the flow field domain, 

similar with the result provided by the Fluent software. 
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